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Abstract Here we present a new approach for the analysis of high-order compact

schemes for the clamped plate problem. A similar model is the Navier-Stokes equa-

tion in streamfunction formulation. In our book "Navier-Stokes Equations in Planar

Domains", Imperial College Press, 2013, we have suggested fourth-order compact

schemes for the Navier-Stokes equations. The same type of schemes may be applied

to the clamped plate problem. For these methods the truncation error is only of first-

order at near-boundary points, but is of fourth order at interior points. It is proven

that the rate of convergence is actually four, thus the error tends to zero as O(h4).

1 Introduction

The 2D incompressible Navier-Stokes (NS) equations ∂t (∆ψ) + (∇⊥ψ) · ∇(∆ψ) =

ν∆2ψ, where ψ is the streamfunction, play an important role in various areas of

physics. In [2] we suggested fourth-order compact schemes for the NS problem,

including important foundations for their error analysis.

In Section 2 we analyze the error for the two-dimensional problem ∂tu+∆
2u = f -

the time-dependent clamped plate problem. This is related to the time dependent

Navier-Stokes equations since both equations include the biharmonic operator. We

prove that even though the truncation error is only O(h) at near boundary points, the

scheme is fourth-order accurate and the error is O(h4), where h is the mesh size.

Similar situations occur also for the high-order finite difference schemes suggested

in [1] and [6].
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2 The equation ∂tu + ∆
2u = f

Consider the fourth-order partial differential problem

∂tu + ∆
2u = f (x, y, t), (x, y) ∈ (0, 1) × (0, 1), t > 0,

u(0, y, t) = u(1, y, t) = 0, ux(0, y, t) = ux(1, y, t) = 0, 0 ≤ y ≤ 1,

u(x, 0, t) = u(x, 1, t) = 0, uy(x, 0, t) = uy(x, 1, t) = 0, 0 ≤ x ≤ 1,

u(x, y, 0) = g(x, y), (x, y) ∈ [0, 1] × [0, 1].

(1)

In order to approximate the solution of Equation (1), we lay out a uniform grid

(xj, yk) =
( j

N
, k
N

)
, j, k = 0, 1, ..., N . Let f(t) be the evaluation of f at the grid

points. Then, we define a grid function vj,k(t), which serves as an approximation of

u(xj, yk, t) for j, k = 0, ..., N , to be the solution of

∂tvj,k(t) + ∆̃
2
h
vj,k(t) = fj,k(t), j, k = 1, ..., N − 1,

v0,k(t) = vN,k(t) = 0, (vx)0,k(t) = (vx)N,k(t) = 0, k = 0, ..., N,

vj,0(t) = vj,N (t) = 0, (vy)j,0(t) = (vy)j,N (t) = 0, j = 0, ..., N,

vj,k(0) = gj,k, j, k = 0, ..., N .

(2)

Here

∆̃2
h = δ

4
x + δ

4
y + 2[δ2

xδ
2
y −

h2

12
(δ4

xδ
2
y + δ

4
yδ

2
x)], (3)

where, for j, k = 1, ..., N − 1,

(δ4
xv)j,k =

12
h2 (δxvx − δ

2
xv)j,k,

(δ4
yv)j,k =

12
h2 (δyvy − δ

2
yv)j,k,

(4)

(σxvx)j,k = (δxv)j,k,

(σyvy)j,k = (δyv)j,k,
(5)

(σxw)j,k =
1
6
(wj−1,k + 4wj,k +wj+1,k),

(σyw)j,k =
1
6
(wj,k−1 + 4wj,k +wj,k+1).

(6)

Thus, the approximated solution satisfies

∂tvj,k(t) + ∆̃
2
h
vj,k(t) = fj,k(t), j, k = 1, ..., N − 1. (7)

Let u∗(t) be the evaluation of u on the grid points at time t. Then,

∂tu
∗
j,k
(t) + ∆̃2

h
u∗
j,k
(t) = fj,k(t) − rj,k(t) j, k = 1, ..., N − 1, (8)

where r(t) is the truncation error. By Taylor expansions, if u has continuous deriva-

tives up to order 8, the components of the truncation error r for all t may be written

as (see [2] Proposition 10.8)
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rj,k = O(h4) j, k = 2, ..., N − 2,

r1,k = O(h), rN−1,k = O(h), k = 1, ..., N

rj,1 = O(h), rj,N−1 = O(h), j = 1, ..., N .

(9)

Define the error e(t) = v(t) − u∗(t). Then, by subtracting (8) from (7), we have

∂te(t) + ∆̃
2
h
e(t) = r(t). (10)

The following Optimal Convergence Theorem holds (see [2], [5], [4]).

Theorem 1 (One-dimensional case) Suppose that the vector τ ∈ R(N−1), containing

the truncation errors, satisfies

τ1 = O(h) τj = O(h4), j = 2, ..., N − 2, τN−1 = O(h). (11)

Then, the operator δ−4
x , operating on τ satisfy

max1≤ j≤N−1 |(δ
−4
x τ)j | ≤ Ch4, where C does not depend on N . (12)

We relate the grid function vj,k, j, k = 1, ..., N − 1 with the column vector

V =
[
v1,1, ..., vN−1,1, v1,2, ...vN−1,2, ..., v1,N−1, ..., vN−1,N−1

]T
∈ R(N−1)2 . (13)

The bottom ordering of vector V ∈ R(N−1)2 is obtained by letting the index j vary

first while keeping k fixed, then vary the index k (see [3]). Then, we relate the two-

dimensional finite difference operators with matrix operators of size (N−1)×(N−1)

for N ≥ 2, acting on a vector V . Most of those operators are obtained as Kronecker

products of (N − 1) × (N − 1) matrices. Recall that the Kronecker product of the

matrices G ∈ Mm,n and H ∈ Mp,q is the matrix G ⊗ H ∈ Mmp,nq defined by

G ⊗ H =



g1,1H g1,2H ... g1,nH

...

...

gm,1H gm,2H ... gm,nH



. (14)

Let the matrix B represent the biharmonic discrete operator in one dimension and

the matrix D represent −δ2
x (or −δ2

y) in one dimension. Then, I ⊗ B and B ⊗ I

represent the biharmonic operators δ4
x and δ4

y , respectively. Similarly, I ⊗ D and

D ⊗ I represents the operator −δ2
x and −δ2

y , respectively. In addition,

R(t) =
[
r1,1, ..., rN−1,1, r1,2, ..., rN−1,2, ..., r1,N−1, ..., rN−1,N−1

]T
∈ R(N−1)2 (15)

is related to the truncation error. Therefore, inequality (12) may be written in vector

notation as follows.

Corollary 1 Let R(t) = R(1)(t) + R(2)(t) ∈ R(N−1)2 , where

R(1)(t) =
[
r1,1, 0, ..., 0, rN−1,1, r1,2, ..., rN−1,2, ..., r1,N−1, 0, ..., 0, rN−1,N−1

]T
, (16)
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R(2)(t) =
[
0, r2,1, .., rN−2,1, 0, 0, ..., 0, ..., 0, ..., 0, 0, r2,N−1..., rN−2,N−1, 0

]T
. (17)

Then,

max
1≤m≤(N−1)2

|((I ⊗ B−1)R(1)(t))m | ≤ Ch4, 0 < t < T, (18)

where I ⊗ B−1 represents the operator δ−4
x , and

max
1≤m≤(N−1)2

|((B−1 ⊗ I)R(2)(t))m | ≤ Ch4, 0 < t < T, (19)

where (B−1 ⊗ I) represents the operator δ−4
y .

Proof We may write (16) and (17) as R(1)
=

[
R
(1)

1
; ...; R

(1)

N−1

]
and R(2)

=

[
R
(2)

1
; ...; R

(2)

N−1

]
, respectively, where

R
(1)

1
= [r1,1, 0, ..., 0, rN−1,1]

T ,

R
(1)

j
= [r1, j, ..., rN−1, j]

T , j = 2, ..., N − 2,

R
(1)

N−1
= [r1,N−1, 0, ..., 0, rN−1,N−1]

T .

R
(2)

1
= [0, r2,1, ..., rN−2,1, 0]

T ,

R
(2)

j
= [0, ..., 0]T , j = 2, ..., N − 2,

R
(2)

N−1
= [0, r2,N−1, ..., rN−2,N−1, 0]

T .

(20)

Using the definition of a Kronecker product, we have

I ⊗ B =



B 0
¯
... ... 0

¯0
¯

B 0
¯
... 0

¯...

0
¯

0
¯
... 0

¯
B



, (I ⊗ B)−1
=



B−1 0
¯

... ... 0
¯

0
¯

B−1 0
¯
... 0

¯...

0
¯

0
¯

... 0
¯

B−1



. (21)

Therefore, (I ⊗ B−1)R(t) =

[

B−1R
(1)

1
(t), B−1R

(1)

2
(t), ..., B−1R

(1)

N−2
(t), B−1R

(1)

N−1
(t)

]T
.

By the optimal convergence theorem

max
1≤m≤(N−1)2

|((I ⊗ B−1)R(1)(t))m | ≤ Ch4, 0 < t < T . (22)

Hence (18) holds. By a similar proof (19) holds. �

Theorem 2 Suppose the solution u(x, y, t) to the system (1) has derivatives up to

order 8 with respect to x and y, then the error e(t) is bounded by

|e(t)|h ≤ Ch4, 0 < t < T, (23)

where |e(t)|h =
√∑N−1

j=1

∑N−1
k=1 h2 |ej,k(t)|2 and C depends only on u0(x, y) and T .

Proof Define E(t) as the vector containing the components of the error at time t

E =
[
e1,1, ...eN−1,1, e1,2, ...eN−1,2, ..., e1,N−1, ...eN−1,N−1

]T
∈ R(N−1)2 . (24)
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The operator ∆̃2
h

may be represented by the matrix A of size (N − 1)2 × (N − 1)2 (see

[3]), where

A = I ⊗ B+B⊗ I +2
[
(I ⊗ D)(D⊗ I)+

h2

12
(I ⊗ D)(B⊗ I)+

h2

12
(D⊗ I)(I ⊗ B)

]
. (25)

Hence, A is a symmetric positive definite matrix. In vector notation Equation (10)

may be written as ∂tE(t)+ A E(t) = R(t). Multiplying both sides of the last equation

by eAt , we have ∂t (e
At E(t)) = eAt R(t). Integrating the last equation for ρ from 0

to t and multiplying by e−At , we have

E(t) =

∫ t

0

e−A(t−ρ)R(ρ)dρ. (26)

Multiplying R(ρ) from the left by AA−1 yields

E(t) =

∫ t

0

[e−A(t−ρ) A] [A−1R(ρ)]dρ =

∫ t

0

[e−A(t−ρ) A] [A−1(R(1)(ρ)+ R(2)(ρ))]dρ,

(27)

where R(1) and R(2) are defined in (16) and (17) (see also (20)). We decompose E(t)

in the sum E(t) = E (1)(t) + E (2)(t), where

E (1)
=

∫ t

0
[e−A(t−ρ) A] [A−1 R(1)(ρ)]dρ, E (2)

=

∫ t

0
[e−A(t−ρ) A] [A−1 R(2)(ρ)]dρ.

(28)

We show that ‖E (1)‖2 ≤ Ch3 and ‖E (2)‖2 ≤ Ch3. Using (25), then for the term E (1)

we decompose A as follows. A = (I ⊗ B)Q1, where Q1 is defined by

Q1 = I⊗I+(I⊗B)−1(B⊗I)+2(I⊗B)−1
[
(I⊗D)(D⊗I)+

h2

12
(I⊗D)(B⊗I)+

h2

12
(D⊗I)(I⊗B)

]
.

(29)

Using (25), then for the term E (2) we decompose A as follows. A = (B⊗ I)Q2, where

Q2 is defined by

Q2 = I⊗I+(B⊗I)−1(I⊗B)+2(B⊗I)−1
[
(I⊗D)(D⊗I)+

h2

12
(I⊗D)(B⊗I)+

h2

12
(D⊗I)(I⊗B)

]
.

(30)

Therefore,

E (1)(t) =
∫ t

0
[e−A(t−ρ) A] Q−1

1
[(I ⊗ B)−1R(1)(ρ)]dρ

E (2)(t) =
∫ t

0
[e−A(t−ρ) A] Q−1

2
[(I ⊗ B)−1R(2)(ρ)]dρ.

(31)

First we consider ‖E (1)(t)‖2. Expanding on Q−1
1

[(I ⊗ B)−1R(1)(ρ)], we prove that the

norm of Q−1
1

is bounded from above. Note that (since Q−1
1

and Q1 are not necessarily

symmetric matrices),

‖Q−1
1 ‖2 =

√
max

1≤k≤(N−1)2
|λk((Q

−1
1
)TQ−1

1
)|. (32)
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We show that the eigenvalues of (Q−1
1
)TQ−1

1
are positive and bounded from above

by 1. Alternatively, we show that eigenvalues of QT
1

Q1 are bounded from below by

1. We may decompose Q1 as a sum Q1 = K1 + K2, where

K1 = I ⊗ I + (I ⊗ B)−1(B ⊗ I)

K2 = 2(I ⊗ B)−1
[
(I ⊗ D)(D ⊗ I) + h2

2
(I ⊗ D)(B ⊗ I) + h2

2
(D ⊗ I)(I ⊗ B)

]
.

(33)

Thus, QT
1

Q1 = (K1+K2)
T (K1+K2) = KT

1
K1+ (K

T
1

K2+KT
2

K1)+KT
2

K2. The matrix

K1 is decomposed as a sum of the two positive definite matrices K1 = P1 + P2,

where P1 = I ⊗ I, P2 = (I ⊗ B)−1(B ⊗ I). Note that P1 and P2 are symmetric

positive-definite matrices. Therefore, the matrix KT
1

K1 may be written as

KT
1 K1 = I ⊗ I + 2P2 + P2

2 . (34)

Thus, KT
1

K1 is a sum of a symmetric positive definite matrix I ⊗ I and a symmetric

positive definite matrix 2P2 +P2
2
. Since all the eigenvalues of I ⊗ I are 1, then all the

eigenvalues of KT
1

K1 are greater than 1. Now we consider the matrix KT
1

K2 +KT
2

K1,

which is a symmetric matrix. We show that its eigenvalues are positive. First, the

matrix K1 is symmetric positive definite. Next, the matrix K2 is a product of two

symmetric positive definite matrices S and T , where

S = 2(I ⊗ B)−1, T = (I ⊗ D)(D ⊗ I) + h2

2
(I ⊗ D)(B ⊗ I) + h2

2
(D ⊗ I)(I ⊗ B).

(35)

Thus,

K2 = ST = ST1/2T1/2
= T−1/2T1/2ST1/2T1/2

= T−1/2(T1/2ST1/2)T1/2. (36)

Therefore, K2 is similar to a positive definite matrix, thus its eigenvalues are positive.

Since KT
1

and K2 are positive definite matrices, then by a similar argument as in (35)-

(36), the eigenvalues of KT
1

K2 are positive. Similarly, the eigenvalues of KT
2

K1 are

also positive. Therefore, the matrix KT
1

K2 + KT
2

K1 is symmetric, having positive

eigenvalues. Consider now the symmetric matrix KT
2

K2. We have shown that the

eigenvalues of K2 are positive, therefore so are the eigenvalues of KT
2

K2. Hence,

all the eigenvalues of QT
1

Q1 are greater than 1. As a result, all the eigenvalues of

(Q−1
1
)TQ−1

1
are smaller than 1. Hence,

‖Q−1
1
‖2 =

√
max1≤k≤(N−1)2 |λk

(
(Q−1

1
)TQ−1

1

)
| ≤ 1. (37)

are symmetric positive definite matrices. Similarly, ‖Q−1
2
‖2 ≤ 1. We continue with

bounding E (1)(t). The matrix e−A(t−ρ)A may be diagonalized by a unitary matrix

Z , which is independent of t − ρ containing the normalized eigenvectors of the

symmetric matrix A. Thus,

e−A(t−ρ)A = Z Λ(t − ρ) ZT , (38)
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where Λ(ρ) = diag(e− λ1(t−ρ)λ1, ..., e
− λ

(N−1)2
(t−ρ)

λ(N−1)2) and λ1, ..., λ(N−1)2 are the

eigenvalues of A. Since Z is independent of t − ρ, we obtain from (31) and (38)

E (1)(t) = Z

∫ t

0

Λ(t − ρ)ZT Q−1
1 [(I ⊗ B)−1R(1)(ρ)]dρ. (39)

We consider now the component i (for i = 1, ..., (N − 1)2) of the vector E (1)(t).

E
(1)

i
(t) =

∑(N−1)2

k=1
Zik

∫ t

0
Λk,k(t − ρ) (ZT Q−1

1
(I ⊗ B)−1 R(1)(ρ))kdρ. (40)

Expanding on (ZT Q−1
1

(I ⊗ B)−1 R(1)(ρ))k , we have

(ZT Q−1
1

(I ⊗ B)−1 R(1)(ρ))k =
∑(N−1)2

l=1
(ZT Q−1

1
)kl ((I ⊗ B)−1 R(1)(ρ))l

=

∑(N−1)2

l=1
(ZT Q−1

1
)kl

∑(N−1)2

m=1
(I ⊗ B)−1

lm
R
(1)
m (ρ).

(41)

E
(1)

i
(t) =

∑(N−1)2

k=1
Zik

∑(N−1)2

l=1
(ZT Q−1

1
)kl

∑(N−1)2

m=1
(I ⊗ B)−1

lm

∫ t

0
Λk,k(t − ρ) R

(1)
m (ρ)dρ.

(42)

Since Λk,k(t − ρ) = e−λk (t−ρ)λk and e−λk (t−ρ)λk ≥ 0, we have (by the extended

mean-value theorem for integration)

E
(1)

i
(t) =

∑(N−1)2

k=1
Zik

∑(N−1)2

l=1
(ZT Q−1

1
)kl

∑(N−1)2

m=1
(I ⊗ B)−1

lm

[ ∫ t

0
e−λk (t−ρ) λkdρ

]
R
(1)
m (ρm,k)

=

∑(N−1)2

k=1
Zik

[
1 − e−λk t

] ∑(N−1)2

l=1
(ZT Q−1

1
)kl

∑(N−1)2

m=1
(I ⊗ B)−1

lm
R
(1)
m (ρm,k),

(43)

where 0 ≤ ρm,k ≤ t.

Let L(k)
= [R1(ρ1,k), R2(ρ2,k), ..., R(N−1)2 (ρ(N−1)2,k)]

T . Using (16), we have

L(k)
= [O(h), 0, ..., 0,O(h),O(h),O(h4), ...,O(h4),O(h), ...,O(h), 0, ..., 0,O(h)]T .

(44)

Define V (k)
= (I ⊗ B)−1L(k). Then, Equation (43) may be written as

Ei(t) =
∑(N−1)2

k=1
Zik

[
1 − e−λk t

] ∑(N−1)2

l=1
(ZT Q−1

1
)kl V

(k)

l
. (45)

By the Corollary 1, Equation (18), we have

|V
(k)

l
| = |

(N−1)2∑

m=1

((I ⊗ B)−1)lm L
(k)
m | ≤ Ch4, 0 < t < T, (46)

where C is independent of N . Define the vector W by Wl = maxk=1,...,(N−1)2 |V
(k)

l
|.

By Equation (46) the L2 norm of the vector W is bounded by

‖W ‖2 ≤ Ch3. (47)
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Define D1 = diag(1 − e−λ1t, ..., 1 − e
−λ

(N−1)2
t
). Therefore, Equation (45) yields

‖E (1)(t)‖2 ≤ ‖Z ‖2‖D1‖2 ‖ZT ‖2 ‖Q−1
1
‖2 ‖W ‖2. (48)

Since ZT
= Z−1 and by Equation (37), we have ‖Z ‖2 = ‖ZT ‖2 = 1, ‖Q−1

1
‖2 ≤ 1.

We show now that ‖D1‖2 ≤ C. Since the eigenvalues A are positive, we have ‖D1‖2 =

max1≤ j≤(N−1)2 |1 − e−λ j t | ≤ 1. We conclude from (48) (47) that ‖E (1)(t)‖2 ≤ Ch3.

Similarly, ‖E (2)(t)‖2 ≤ Ch3. Therefore, for |e(t)|h =
√∑N−1

j=1

∑N−1
k=1 h2 |ej,k |2, we

have |e(t)|h ≤ Ch4, 0 < t < T, which concludes the proof. �

3 Numerical Results

Consider the equation ut +∆
2u = f with the exact solution u = e−t (1− x2)2(1− y

2)2

on [−1, 1], t > 0, where f (x, t) is chosen so that u is the solution of the differential

equation above.

Table 1 Compact scheme for ut + ∆
2u = f with exact solution: u = e−t (1 − x2)2(1 − y2)2 on

[−1, 1], t > 0. We present |e |h the error in u, and |ex |h the error in ux in the l2 norm at t = 0.25.

Mesh N = 8 Rate N = 16 Rate N = 32 Rate N = 64

|e |h 1.0819(-4) 3.91 7.2142(-6) 4.00 4.5152(-7) 4.00 2.8221(-8)

|ex |h 1.8773(-4) 3.97 1.2001(-5) 4.01 7.4422(-7) 4.00 4.6480(-8)
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