Time-Dependent Two-Dimensional Fourth-Order Problems: Optimal Convergence

J.-P. Croisille and D. Fishelov

Abstract

Here we present a new approach for the analysis of high-order compact schemes for the clamped plate problem. A similar model is the Navier-Stokes equation in streamfunction formulation. In our book "Navier-Stokes Equations in Planar Domains", Imperial College Press, 2013, we have suggested fourth-order compact schemes for the Navier-Stokes equations. The same type of schemes may be applied to the clamped plate problem. For these methods the truncation error is only of firstorder at near-boundary points, but is of fourth order at interior points. It is proven that the rate of convergence is actually four, thus the error tends to zero as $O\left(h^{4}\right)$.

1 Introduction

The 2D incompressible Navier-Stokes (NS) equations $\partial_{t}(\Delta \psi)+\left(\nabla^{\perp} \psi\right) \cdot \nabla(\Delta \psi)=$ $v \Delta^{2} \psi$, where ψ is the streamfunction, play an important role in various areas of physics. In [2] we suggested fourth-order compact schemes for the NS problem, including important foundations for their error analysis.

In Section 2 we analyze the error for the two-dimensional problem $\partial_{t} u+\Delta^{2} u=f$ the time-dependent clamped plate problem. This is related to the time dependent Navier-Stokes equations since both equations include the biharmonic operator. We prove that even though the truncation error is only $O(h)$ at near boundary points, the scheme is fourth-order accurate and the error is $O\left(h^{4}\right)$, where h is the mesh size. Similar situations occur also for the high-order finite difference schemes suggested in [1] and [6].
J.-P. Croisille

Department of Mathematics, Univ. de Lorraine, Metz 57045, France e-mail: jean-pierre.croisille@univ-lorraine.fr
D. Fishelov

Department of Mathematics, Afeka Tel-Aviv Academic College of Engineering, Tel-Aviv 69107, Israel e-mail: daliaf@afeka.ac.il

2 The equation $\partial_{t} u+\Delta^{2} u=f$

Consider the fourth-order partial differential problem

$$
\begin{align*}
& \partial_{t} u+\Delta^{2} u=f(x, y, t), \quad(x, y) \in(0,1) \times(0,1), \quad t>0, \\
& u(0, y, t)=u(1, y, t)=0, \quad u_{x}(0, y, t)=u_{x}(1, y, t)=0, \quad 0 \leq y \leq 1, \tag{1}\\
& u(x, 0, t)=u(x, 1, t)=0, \quad u_{y}(x, 0, t)=u_{y}(x, 1, t)=0, \quad 0 \leq x \leq 1, \\
& u(x, y, 0)=g(x, y), \quad(x, y) \in[0,1] \times[0,1] .
\end{align*}
$$

In order to approximate the solution of Equation (1), we lay out a uniform grid $\left(x_{j}, y_{k}\right)=\left(\frac{j}{N}, \frac{k}{N}\right), j, k=0,1, \ldots, N$. Let $\mathfrak{f}(t)$ be the evaluation of f at the grid points. Then, we define a grid function $\mathfrak{v}_{j, k}(t)$, which serves as an approximation of $u\left(x_{j}, y_{k}, t\right)$ for $j, k=0, \ldots, N$, to be the solution of

$$
\begin{align*}
& \partial_{t} \mathfrak{v}_{j, k}(t)+\tilde{\Delta}_{h}^{2} \mathfrak{w}_{j, k}(t)=\mathfrak{f}_{j, k}(t), \quad j, k=1, \ldots, N-1, \\
& \mathfrak{p}_{0, k}(t)=\mathfrak{p}_{N, k}(t)=0, \quad\left(\mathfrak{v}_{x}\right)_{0, k}(t)=\left(\mathfrak{v}_{x}\right)_{N, k}(t)=0, \quad k=0, \ldots, N, \tag{2}\\
& \mathfrak{v}_{j, 0}(t)=\mathfrak{v}_{j, N}(t)=0, \quad\left(\mathfrak{v}_{y}\right)_{j, 0}(t)=\left(\mathfrak{v}_{y}\right)_{j, N}(t)=0, \quad j=0, \ldots, N, \\
& \mathfrak{v}_{j, k}(0)=g_{j, k}, \quad j, k=0, \ldots, N .
\end{align*}
$$

Here

$$
\begin{equation*}
\tilde{\Delta}_{h}^{2}=\delta_{x}^{4}+\delta_{y}^{4}+2\left[\delta_{x}^{2} \delta_{y}^{2}-\frac{h^{2}}{12}\left(\delta_{x}^{4} \delta_{y}^{2}+\delta_{y}^{4} \delta_{x}^{2}\right)\right] \tag{3}
\end{equation*}
$$

where, for $j, k=1, \ldots, N-1$,

$$
\begin{gather*}
\left(\delta_{x}^{4} \mathfrak{v}\right)_{j, k}=\frac{12}{h^{2}}\left(\delta_{x} \mathfrak{v}_{x}-\delta_{x}^{2} \mathfrak{v}\right)_{j, k}, \\
\left(\delta_{y}^{4} \mathfrak{v}\right)_{j, k}=\frac{12}{h^{2}}\left(\delta_{y} \mathfrak{v}_{y}-\delta_{y}^{2} \mathfrak{v}\right)_{j, k}, \tag{4}\\
\left(\sigma_{x} \mathfrak{v}_{x}\right)_{j, k}=\left(\delta_{x} \mathfrak{v}\right)_{j, k}, \tag{5}\\
\left(\sigma_{y} \mathfrak{v}_{y}\right)_{j, k}=\left(\delta_{y} \mathfrak{v}\right)_{j, k}, \\
\left(\sigma_{x} \mathfrak{w}\right)_{j, k}=\frac{1}{6}\left(\mathfrak{w}_{j-1, k}+4 \mathfrak{w}_{j, k}+\mathfrak{w}_{j+1, k}\right), \tag{6}\\
\left(\sigma_{y} \mathfrak{w}\right)_{j, k}=\frac{1}{6}\left(\mathfrak{w}_{j, k-1}+4 \mathfrak{w}_{j, k}+\mathfrak{w}_{j, k+1}\right) .
\end{gather*}
$$

Thus, the approximated solution satisfies

$$
\begin{equation*}
\partial_{t} \mathfrak{v}_{j, k}(t)+\tilde{\Delta}_{h}^{2} \mathfrak{v}_{j, k}(t)=\tilde{\mathfrak{f}}_{j, k}(t), \quad j, k=1, \ldots, N-1 \tag{7}
\end{equation*}
$$

Let $u^{*}(t)$ be the evaluation of u on the grid points at time t. Then,

$$
\begin{equation*}
\partial_{t} u_{j, k}^{*}(t)+\tilde{\Delta}_{h}^{2} u_{j, k}^{*}(t)=\tilde{\mathfrak{f}}_{j, k}(t)-\mathfrak{r}_{j, k}(t) \quad j, k=1, \ldots, N-1, \tag{8}
\end{equation*}
$$

where $\mathrm{r}(t)$ is the truncation error. By Taylor expansions, if u has continuous derivatives up to order 8 , the components of the truncation error \mathfrak{r} for all t may be written as (see [2] Proposition 10.8)

$$
\begin{array}{ll}
\mathfrak{r}_{j, k}=O\left(h^{4}\right) & j, k=2, \ldots, N-2 \\
\mathfrak{r}_{1, k}=O(h), & \mathfrak{r}_{N-1, k}=O(h), \quad k=1, \ldots, N \tag{9}\\
\mathfrak{r}_{j, 1}=O(h), & \mathfrak{r}_{j, N-1}=O(h), \quad j=1, \ldots, N .
\end{array}
$$

Define the error $\mathfrak{e}(t)=\mathfrak{v}(t)-u^{*}(t)$. Then, by subtracting (8) from (7), we have

$$
\begin{equation*}
\partial_{t} \mathrm{e}(t)+\tilde{\Delta}_{h}^{2} \mathrm{e}(t)=\mathrm{r}(t) \tag{10}
\end{equation*}
$$

The following Optimal Convergence Theorem holds (see [2], [5], [4]).
Theorem 1 (One-dimensional case) Suppose that the vector $\tau \in \mathbb{R}^{(N-1)}$, containing the truncation errors, satisfies

$$
\begin{equation*}
\tau_{1}=O(h) \quad \tau_{j}=O\left(h^{4}\right), j=2, \ldots, N-2, \quad \tau_{N-1}=O(h) \tag{11}
\end{equation*}
$$

Then, the operator δ_{x}^{-4}, operating on τ satisfy

$$
\begin{equation*}
\max _{1 \leq j \leq N-1}\left|\left(\delta_{x}^{-4} \tau\right)_{j}\right| \leq C h^{4}, \quad \text { where } C \text { does not depend on } N \tag{12}
\end{equation*}
$$

We relate the grid function $\mathfrak{v}_{j, k}, j, k=1, \ldots, N-1$ with the column vector

$$
\begin{equation*}
V=\left[\mathfrak{p}_{1,1}, \ldots, \mathfrak{v}_{N-1,1}, \mathfrak{v}_{1,2}, \ldots \mathfrak{v}_{N-1,2}, \ldots, \mathfrak{v}_{1, N-1}, \ldots, \mathfrak{v}_{N-1, N-1}\right]^{T} \in \mathbb{R}^{(N-1)^{2}} \tag{13}
\end{equation*}
$$

The bottom ordering of vector $V \in \mathbb{R}^{(N-1)^{2}}$ is obtained by letting the index j vary first while keeping k fixed, then vary the index k (see [3]). Then, we relate the twodimensional finite difference operators with matrix operators of size $(N-1) \times(N-1)$ for $N \geq 2$, acting on a vector V. Most of those operators are obtained as Kronecker products of $(N-1) \times(N-1)$ matrices. Recall that the Kronecker product of the matrices $G \in \mathbb{M}_{m, n}$ and $H \in \mathbb{M}_{p, q}$ is the matrix $G \otimes H \in \mathbb{M}_{m p, n q}$ defined by

$$
G \otimes H=\left[\begin{array}{cccc}
g_{1,1} H & g_{1,2} H & \ldots & g_{1, n} H \tag{14}\\
\ldots & & & \\
\ldots & & & \\
g_{m, 1} H & g_{m, 2} H & \ldots & g_{m, n} H
\end{array}\right] .
$$

Let the matrix B represent the biharmonic discrete operator in one dimension and the matrix D represent $-\delta_{x}^{2}$ (or $-\delta_{y}^{2}$) in one dimension. Then, $I \otimes B$ and $B \otimes I$ represent the biharmonic operators δ_{x}^{4} and δ_{y}^{4}, respectively. Similarly, $I \otimes D$ and $D \otimes I$ represents the operator $-\delta_{x}^{2}$ and $-\delta_{y}^{2}$, respectively. In addition,

$$
\begin{equation*}
R(t)=\left[\mathfrak{r}_{1,1}, \ldots, \mathfrak{r}_{N-1,1}, \mathfrak{r}_{1,2}, \ldots, \mathfrak{r}_{N-1,2}, \ldots, \mathfrak{r}_{1, N-1}, \ldots, \mathfrak{r}_{N-1, N-1}\right]^{T} \in \mathbb{R}^{(N-1)^{2}} \tag{15}
\end{equation*}
$$

is related to the truncation error. Therefore, inequality (12) may be written in vector notation as follows.
Corollary 1 Let $R(t)=R^{(1)}(t)+R^{(2)}(t) \in \mathbb{R}^{(N-1)^{2}}$, where

$$
\begin{equation*}
R^{(1)}(t)=\left[\mathrm{r}_{1,1}, 0, \ldots, 0, \mathrm{r}_{N-1,1}, \mathfrak{r}_{1,2}, \ldots, \mathrm{r}_{N-1,2}, \ldots, \mathrm{r}_{1, N-1}, 0, \ldots, 0, \mathrm{r}_{N-1, N-1}\right]^{T} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
R^{(2)}(t)=\left[0, \mathfrak{r}_{2,1}, . ., \mathfrak{r}_{N-2,1}, 0,0, \ldots, 0, \ldots, 0, \ldots, 0,0, \mathfrak{r}_{2, N-1} \ldots, \mathfrak{r}_{N-2, N-1}, 0\right]^{T} \tag{17}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\max _{1 \leq m \leq(N-1)^{2}}\left|\left(\left(I \otimes B^{-1}\right) R^{(1)}(t)\right)_{m}\right| \leq C h^{4}, \quad 0<t<T \tag{18}
\end{equation*}
$$

where $I \otimes B^{-1}$ represents the operator δ_{x}^{-4}, and

$$
\begin{equation*}
\max _{1 \leq m \leq(N-1)^{2}}\left|\left(\left(B^{-1} \otimes I\right) R^{(2)}(t)\right)_{m}\right| \leq C h^{4}, \quad 0<t<T, \tag{19}
\end{equation*}
$$

where $\left(B^{-1} \otimes I\right)$ represents the operator δ_{y}^{-4}.
Proof We may write (16) and (17) as $R^{(1)}=\left[R_{1}^{(1)} ; \ldots ; R_{N-1}^{(1)}\right]$ and $R^{(2)}=$ $\left[R_{1}^{(2)} ; \ldots ; R_{N-1}^{(2)}\right]$, respectively, where
$R_{1}^{(1)}=\left[\mathrm{r}_{1,1}, 0, \ldots, 0, \mathrm{r}_{N-1,1}\right]^{T}, \quad R_{1}^{(2)}=\left[0, \mathrm{r}_{2,1}, \ldots, \mathrm{r}_{N-2,1}, 0\right]^{T}$, $R_{j}^{(1)}=\left[\mathrm{r}_{1, j}, \ldots, \mathrm{r}_{N-1, j}\right]^{T}, j=2, \ldots, N-2, \quad R_{j}^{(2)}=[0, \ldots, 0]^{T}, j=2, \ldots, N-2$, $R_{N-1}^{(1)}=\left[\mathfrak{r}_{1, N-1}, 0, \ldots, 0, \mathfrak{r}_{N-1, N-1}\right]^{T} . \quad R_{N-1}^{(2)}=\left[0, \mathfrak{r}_{2, N-1}, \ldots, \mathfrak{r}_{N-2, N-1}, 0\right]^{T}$.

Using the definition of a Kronecker product, we have

$$
I \otimes B=\left[\begin{array}{ccccc}
B & \underline{0} & \ldots & \ldots & \underline{0} \tag{21}\\
\underline{0} & B & \underline{0} & \ldots & \underline{0} \\
\ldots & & & & \\
\underline{0} & \underline{0} & \ldots & \underline{0} & B
\end{array}\right], \quad(I \otimes B)^{-1}=\left[\begin{array}{ccccc}
B^{-1} & \underline{0} & \ldots & \ldots & \underline{0} \\
\underline{0} & B^{-1} & \underline{0} & \ldots & \underline{0} \\
\ldots & & & & \\
\underline{0} & \underline{0} & \ldots & \underline{0} & B^{-1}
\end{array}\right]
$$

Therefore, $\left(I \otimes B^{-1}\right) R(t)=\left[B^{-1} R_{1}^{(1)}(t), B^{-1} R_{2}^{(1)}(t), \ldots, B^{-1} R_{N-2}^{(1)}(t), B^{-1} R_{N-1}^{(1)}(t)\right]^{T}$. By the optimal convergence theorem

$$
\begin{equation*}
\max _{1 \leq m \leq(N-1)^{2}}\left|\left(\left(I \otimes B^{-1}\right) R^{(1)}(t)\right)_{m}\right| \leq C h^{4}, \quad 0<t<T . \tag{22}
\end{equation*}
$$

Hence (18) holds. By a similar proof (19) holds.
Theorem 2 Suppose the solution $u(x, y, t)$ to the system (1) has derivatives up to order 8 with respect to x and y, then the error $\mathrm{e}(t)$ is bounded by

$$
\begin{equation*}
|\mathrm{e}(t)|_{h} \leq C h^{4}, \quad 0<t<T, \tag{23}
\end{equation*}
$$

where $|\mathfrak{e}(t)|_{h}=\sqrt{\sum_{j=1}^{N-1} \sum_{k=1}^{N-1} h^{2}\left|\mathfrak{e}_{j, k}(t)\right|^{2}}$ and C depends only on $u_{0}(x, y)$ and T.
Proof Define $E(t)$ as the vector containing the components of the error at time t

$$
\begin{equation*}
E=\left[\mathrm{e}_{1,1}, \ldots \mathrm{e}_{N-1,1}, \mathrm{e}_{1,2}, \ldots \mathrm{e}_{N-1,2}, \ldots, \mathrm{e}_{1, N-1}, \ldots \mathrm{e}_{N-1, N-1}\right]^{T} \in \mathbb{R}^{(N-1)^{2}} \tag{24}
\end{equation*}
$$

The operator $\tilde{\Delta}_{h}^{2}$ may be represented by the matrix A of size $(N-1)^{2} \times(N-1)^{2}$ (see [3]), where

$$
\begin{equation*}
A=I \otimes B+B \otimes I+2\left[(I \otimes D)(D \otimes I)+\frac{h^{2}}{12}(I \otimes D)(B \otimes I)+\frac{h^{2}}{12}(D \otimes I)(I \otimes B)\right] \tag{25}
\end{equation*}
$$

Hence, A is a symmetric positive definite matrix. In vector notation Equation (10) may be written as $\partial_{t} E(t)+A E(t)=R(t)$. Multiplying both sides of the last equation by $e^{A t}$, we have $\partial_{t}\left(e^{A t} E(t)\right)=e^{A t} R(t)$. Integrating the last equation for ρ from 0 to t and multiplying by $e^{-A t}$, we have

$$
\begin{equation*}
E(t)=\int_{0}^{t} e^{-A(t-\rho)} R(\rho) d \rho \tag{26}
\end{equation*}
$$

Multiplying $R(\rho)$ from the left by $A A^{-1}$ yields
$E(t)=\int_{0}^{t}\left[e^{-A(t-\rho)} A\right]\left[A^{-1} R(\rho)\right] d \rho=\int_{0}^{t}\left[e^{-A(t-\rho)} A\right]\left[A^{-1}\left(R^{(1)}(\rho)+R^{(2)}(\rho)\right)\right] d \rho$,
where $R^{(1)}$ and $R^{(2)}$ are defined in (16) and (17) (see also (20)). We decompose $E(t)$ in the sum $E(t)=E^{(1)}(t)+E^{(2)}(t)$, where

$$
\begin{equation*}
E^{(1)}=\int_{0}^{t}\left[e^{-A(t-\rho)} A\right]\left[A^{-1} R^{(1)}(\rho)\right] d \rho, E^{(2)}=\int_{0}^{t}\left[e^{-A(t-\rho)} A\right]\left[A^{-1} R^{(2)}(\rho)\right] d \rho . \tag{28}
\end{equation*}
$$

We show that $\left\|E^{(1)}\right\|_{2} \leq C h^{3}$ and $\left\|E^{(2)}\right\|_{2} \leq C h^{3}$. Using (25), then for the term $E^{(1)}$ we decompose A as follows. $A=(I \otimes B) Q_{1}$, where Q_{1} is defined by
$Q_{1}=I \otimes I+(I \otimes B)^{-1}(B \otimes I)+2(I \otimes B)^{-1}\left[(I \otimes D)(D \otimes I)+\frac{h^{2}}{12}(I \otimes D)(B \otimes I)+\frac{h^{2}}{12}(D \otimes I)(I \otimes B)\right]$.
Using (25), then for the term $E^{(2)}$ we decompose A as follows. $A=(B \otimes I) Q_{2}$, where Q_{2} is defined by
$Q_{2}=I \otimes I+(B \otimes I)^{-1}(I \otimes B)+2(B \otimes I)^{-1}\left[(I \otimes D)(D \otimes I)+\frac{h^{2}}{12}(I \otimes D)(B \otimes I)+\frac{h^{2}}{12}(D \otimes I)(I \otimes B)\right]$.
Therefore,

$$
\begin{align*}
& E^{(1)}(t)=\int_{0}^{t}\left[e^{-A(t-\rho)} A\right] Q_{1}^{-1}\left[(I \otimes B)^{-1} R^{(1)}(\rho)\right] d \rho \tag{31}\\
& E^{(2)}(t)=\int_{0}^{t}\left[e^{-A(t-\rho)} A\right] Q_{2}^{-1}\left[(I \otimes B)^{-1} R^{(2)}(\rho)\right] d \rho
\end{align*}
$$

First we consider $\left\|E^{(1)}(t)\right\|_{2}$. Expanding on $Q_{1}^{-1}\left[(I \otimes B)^{-1} R^{(1)}(\rho)\right]$, we prove that the norm of Q_{1}^{-1} is bounded from above. Note that (since Q_{1}^{-1} and Q_{1} are not necessarily symmetric matrices),

$$
\begin{equation*}
\left\|Q_{1}^{-1}\right\|_{2}=\sqrt{\max _{1 \leq k \leq(N-1)^{2}}\left|\lambda_{k}\left(\left(Q_{1}^{-1}\right)^{T} Q_{1}^{-1}\right)\right|} . \tag{32}
\end{equation*}
$$

We show that the eigenvalues of $\left(Q_{1}^{-1}\right)^{T} Q_{1}^{-1}$ are positive and bounded from above by 1. Alternatively, we show that eigenvalues of $Q_{1}^{T} Q_{1}$ are bounded from below by 1. We may decompose Q_{1} as a sum $Q_{1}=K_{1}+K_{2}$, where

$$
\begin{align*}
& K_{1}=I \otimes I+(I \otimes B)^{-1}(B \otimes I) \\
& K_{2}=2(I \otimes B)^{-1}\left[(I \otimes D)(D \otimes I)+\frac{h^{2}}{2}(I \otimes D)(B \otimes I)+\frac{h^{2}}{2}(D \otimes I)(I \otimes B)\right] . \tag{33}
\end{align*}
$$

Thus, $Q_{1}^{T} Q_{1}=\left(K_{1}+K_{2}\right)^{T}\left(K_{1}+K_{2}\right)=K_{1}^{T} K_{1}+\left(K_{1}^{T} K_{2}+K_{2}^{T} K_{1}\right)+K_{2}^{T} K_{2}$. The matrix K_{1} is decomposed as a sum of the two positive definite matrices $K_{1}=P_{1}+P_{2}$, where $P_{1}=I \otimes I, \quad P_{2}=(I \otimes B)^{-1}(B \otimes I)$. Note that P_{1} and P_{2} are symmetric positive-definite matrices. Therefore, the matrix $K_{1}^{T} K_{1}$ may be written as

$$
\begin{equation*}
K_{1}^{T} K_{1}=I \otimes I+2 P_{2}+P_{2}^{2} \tag{34}
\end{equation*}
$$

Thus, $K_{1}^{T} K_{1}$ is a sum of a symmetric positive definite matrix $I \otimes I$ and a symmetric positive definite matrix $2 P_{2}+P_{2}^{2}$. Since all the eigenvalues of $I \otimes I$ are 1 , then all the eigenvalues of $K_{1}^{T} K_{1}$ are greater than 1 . Now we consider the matrix $K_{1}^{T} K_{2}+K_{2}^{T} K_{1}$, which is a symmetric matrix. We show that its eigenvalues are positive. First, the matrix K_{1} is symmetric positive definite. Next, the matrix K_{2} is a product of two symmetric positive definite matrices S and T, where

$$
\begin{equation*}
S=2(I \otimes B)^{-1}, T=(I \otimes D)(D \otimes I)+\frac{h^{2}}{2}(I \otimes D)(B \otimes I)+\frac{h^{2}}{2}(D \otimes I)(I \otimes B) \tag{35}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
K_{2}=S T=S T^{1 / 2} T^{1 / 2}=T^{-1 / 2} T^{1 / 2} S T^{1 / 2} T^{1 / 2}=T^{-1 / 2}\left(T^{1 / 2} S T^{1 / 2}\right) T^{1 / 2} \tag{36}
\end{equation*}
$$

Therefore, K_{2} is similar to a positive definite matrix, thus its eigenvalues are positive. Since K_{1}^{T} and K_{2} are positive definite matrices, then by a similar argument as in (35)(36), the eigenvalues of $K_{1}^{T} K_{2}$ are positive. Similarly, the eigenvalues of $K_{2}^{T} K_{1}$ are also positive. Therefore, the matrix $K_{1}^{T} K_{2}+K_{2}^{T} K_{1}$ is symmetric, having positive eigenvalues. Consider now the symmetric matrix $K_{2}^{T} K_{2}$. We have shown that the eigenvalues of K_{2} are positive, therefore so are the eigenvalues of $K_{2}^{T} K_{2}$. Hence, all the eigenvalues of $Q_{1}^{T} Q_{1}$ are greater than 1 . As a result, all the eigenvalues of $\left(Q_{1}^{-1}\right)^{T} Q_{1}^{-1}$ are smaller than 1 . Hence,

$$
\begin{equation*}
\left\|Q_{1}^{-1}\right\|_{2}=\sqrt{\max _{1 \leq k \leq(N-1)^{2}}\left|\lambda_{k}\left(\left(Q_{1}^{-1}\right)^{T} Q_{1}^{-1}\right)\right|} \leq 1 . \tag{37}
\end{equation*}
$$

are symmetric positive definite matrices. Similarly, $\left\|Q_{2}^{-1}\right\|_{2} \leq 1$. We continue with bounding $E^{(1)}(t)$. The matrix $e^{-A(t-\rho)} A$ may be diagonalized by a unitary matrix Z, which is independent of $t-\rho$ containing the normalized eigenvectors of the symmetric matrix A. Thus,

$$
\begin{equation*}
e^{-A(t-\rho)} A=Z \Lambda(t-\rho) Z^{T}, \tag{38}
\end{equation*}
$$

where $\Lambda(\rho)=\operatorname{diag}\left(e^{-\lambda_{1}(t-\rho)} \lambda_{1}, \ldots, e^{-\lambda_{(N-1)^{2}}(t-\rho)} \lambda_{(N-1)^{2}}\right)$ and $\lambda_{1}, \ldots, \lambda_{(N-1)^{2}}$ are the eigenvalues of A. Since Z is independent of $t-\rho$, we obtain from (31) and (38)

$$
\begin{equation*}
E^{(1)}(t)=Z \int_{0}^{t} \Lambda(t-\rho) Z^{T} Q_{1}^{-1}\left[(I \otimes B)^{-1} R^{(1)}(\rho)\right] d \rho \tag{39}
\end{equation*}
$$

We consider now the component i (for $\left.i=1, \ldots,(N-1)^{2}\right)$ of the vector $E^{(1)}(t)$.

$$
\begin{equation*}
E_{i}^{(1)}(t)=\sum_{k=1}^{(N-1)^{2}} Z_{i k} \int_{0}^{t} \Lambda_{k, k}(t-\rho)\left(Z^{T} Q_{1}^{-1}(I \otimes B)^{-1} R^{(1)}(\rho)\right)_{k} d \rho \tag{40}
\end{equation*}
$$

Expanding on $\left(Z^{T} Q_{1}^{-1}(I \otimes B)^{-1} R^{(1)}(\rho)\right)_{k}$, we have

$$
\begin{align*}
& \quad\left(Z^{T} Q_{1}^{-1}(I \otimes B)^{-1} R^{(1)}(\rho)\right)_{k}=\sum_{l=1}^{(N-1)^{2}}\left(Z^{T} Q_{1}^{-1}\right)_{k l}\left((I \otimes B)^{-1} R^{(1)}(\rho)\right)_{l} \tag{41}\\
& =\sum_{l=1}^{(N-1)^{2}}\left(Z^{T} Q_{1}^{-1}\right)_{k l} \sum_{m=1}^{(N-1)^{2}}(I \otimes B)_{l m}^{-1} R_{m}^{(1)}(\rho) . \\
& E_{i}^{(1)}(t)=\sum_{k=1}^{(N-1)^{2}} Z_{i k} \sum_{l=1}^{(N-1)^{2}}\left(Z^{T} Q_{1}^{-1}\right)_{k l} \sum_{m=1}^{(N-1)^{2}}(I \otimes B)_{l m}^{-1} \int_{0}^{t} \Lambda_{k, k}(t-\rho) R_{m}^{(1)}(\rho) d \rho . \tag{42}
\end{align*}
$$

Since $\Lambda_{k, k}(t-\rho)=e^{-\lambda_{k}(t-\rho)} \lambda_{k}$ and $e^{-\lambda_{k}(t-\rho)} \lambda_{k} \geq 0$, we have (by the extended mean-value theorem for integration)

$$
\begin{align*}
E_{i}^{(1)}(t) & =\sum_{k=1}^{(N-1)^{2}} Z_{i k} \sum_{l=1}^{(N-1)^{2}}\left(Z^{T} Q_{1}^{-1}\right)_{k l} \sum_{m=1}^{(N-1)^{2}}(I \otimes B)_{l m}^{-1}\left[\int_{0}^{t} e^{-\lambda_{k}(t-\rho)} \lambda_{k} d \rho\right] R_{m}^{(1)}\left(\rho_{m, k}\right) \\
& =\sum_{k=1}^{(N-1)^{2}} Z_{i k}\left[1-e^{-\lambda_{k} t}\right] \sum_{l=1}^{(N-1)^{2}}\left(Z^{T} Q_{1}^{-1}\right)_{k l} \sum_{m=1}^{(N-1)^{2}}(I \otimes B)_{l m}^{-1} R_{m}^{(1)}\left(\rho_{m, k}\right) \tag{43}
\end{align*}
$$

where $0 \leq \rho_{m, k} \leq t$.
Let $L^{(k)}=\left[R_{1}\left(\rho_{1, k}\right), R_{2}\left(\rho_{2, k}\right), \ldots, R_{(N-1)^{2}}\left(\rho_{(N-1)^{2}, k}\right)\right]^{T}$. Using (16), we have

$$
\begin{equation*}
L^{(k)}=\left[O(h), 0, \ldots, 0, O(h), O(h), O\left(h^{4}\right), \ldots, O\left(h^{4}\right), O(h), \ldots, O(h), 0, \ldots, 0, O(h)\right]^{T} \tag{44}
\end{equation*}
$$

Define $V^{(k)}=(I \otimes B)^{-1} L^{(k)}$. Then, Equation (43) may be written as

$$
\begin{equation*}
E_{i}(t)=\sum_{k=1}^{(N-1)^{2}} Z_{i k}\left[1-e^{-\lambda_{k} t}\right] \sum_{l=1}^{(N-1)^{2}}\left(Z^{T} Q_{1}^{-1}\right)_{k l} V_{l}^{(k)} \tag{45}
\end{equation*}
$$

By the Corollary 1, Equation (18), we have

$$
\begin{equation*}
\left|V_{l}^{(k)}\right|=\left|\sum_{m=1}^{(N-1)^{2}}\left((I \otimes B)^{-1}\right)_{l m} L_{m}^{(k)}\right| \leq C h^{4}, \quad 0<t<T, \tag{46}
\end{equation*}
$$

where C is independent of N. Define the vector W by $W_{l}=\max _{k=1, \ldots,(N-1)^{2}}\left|V_{l}^{(k)}\right|$. By Equation (46) the L_{2} norm of the vector W is bounded by

$$
\begin{equation*}
\|W\|_{2} \leq C h^{3} \tag{47}
\end{equation*}
$$

Define $D_{1}=\operatorname{diag}\left(1-e^{-\lambda_{1} t}, \ldots, 1-e^{-\lambda_{(N-1)^{2}} t}\right)$. Therefore, Equation (45) yields

$$
\begin{equation*}
\left\|E^{(1)}(t)\right\|_{2} \leq\|Z\|_{2}\left\|D_{1}\right\|_{2}\left\|Z^{T}\right\|_{2}\left\|Q_{1}^{-1}\right\|_{2}\|W\|_{2} . \tag{48}
\end{equation*}
$$

Since $Z^{T}=Z^{-1}$ and by Equation (37), we have $\|Z\|_{2}=\left\|Z^{T}\right\|_{2}=1, \quad\left\|Q_{1}^{-1}\right\|_{2} \leq 1$. We show now that $\left\|D_{1}\right\|_{2} \leq C$. Since the eigenvalues A are positive, we have $\left\|D_{1}\right\|_{2}=$ $\max _{1 \leq j \leq(N-1)^{2}}\left|1-e^{-\lambda_{j} t}\right| \leq 1$. We conclude from (48) (47) that $\left\|E^{(1)}(t)\right\|_{2} \leq C h^{3}$. Similarly, $\left\|E^{(2)}(t)\right\|_{2} \leq C h^{3}$. Therefore, for $|\mathrm{e}(t)|_{h}=\sqrt{\sum_{j=1}^{N-1} \sum_{k=1}^{N-1} h^{2}\left|\mathrm{e}_{j, k}\right|^{2}}$, we have $|\mathfrak{e}(t)|_{h} \leq C h^{4}, \quad 0<t<T$, which concludes the proof.

3 Numerical Results

Consider the equation $u_{t}+\Delta^{2} u=f$ with the exact solution $u=e^{-t}\left(1-x^{2}\right)^{2}\left(1-y^{2}\right)^{2}$ on $[-1,1], t>0$, where $f(x, t)$ is chosen so that u is the solution of the differential equation above.

Table 1 Compact scheme for $u_{t}+\Delta^{2} u=f$ with exact solution: $u=e^{-t}\left(1-x^{2}\right)^{2}\left(1-y^{2}\right)^{2}$ on $[-1,1], t>0$. We present $|e|_{h}$ the error in u, and $\left|e_{x}\right|_{h}$ the error in u_{x} in the l_{2} norm at $t=0.25$.

Mesh	$N=8$	Rate	$N=16$	Rate	$N=32$	Rate	$N=64$
$\|e\|_{h}$	$1.0819(-4)$	3.91	$7.2142(-6)$	4.00	$4.5152(-7)$	4.00	$2.8221(-8)$
$\left\|e_{\boldsymbol{x}}\right\|_{h}$	$1.8773(-4)$	3.97	$1.2001(-5)$	4.01	$7.4422(-7)$	4.00	$4.6480(-8)$

Acknowledgements The authors would like thank Professor Matania Ben-Artzi from the Hebrew University, for his comments and insights concerning the matter of this work.

References

1. S. Abarbanel, A. Ditkowski and B. Gustafsson, "On Error Bounds of Finite Difference Approximations to Partial Differential Equations Temporal Behavior and Rate of Convergence", J. Sci. Comput., 15 (2000), pp. 79-116.
2. M. Ben-Artzi, J.-P. Croisille and D. Fishelov, "Navier-Stokes Equations in Planar Domains", Imperial College Press, 2013.
3. M. Ben-Artzi, J.-P. Croisille and D. Fishelov, "A fast direct solver for the biharmonic problem in a rectangular grid", SIAM Journal on Scientific Computing, 31 (2008), pp. 303-333.
4. M. Ben-Artzi and G. Katriel, "Spline functions, the biharmonic operator and approximate eigenvalues", Numer. Mathematik, 141 (2019), pp. 839-879.
5. D. Fishelov, M. Ben-Artzi and J.-P. Croisille, "Recent advances in the study of a fourth-order compact scheme for the one-dimensional biharmonic equation", J. Sci. Comput., 53 (2012), pp. 55-79.
6. S. Wang and G. Kreiss, "Convergence of Summation-by-Parts Finite Difference Methods for the Wave Equation", J. Sci. Comput., 71 (2017), pp. 219-245.
