
Engineering Applications of Artificial Intelligence 93 (2020) 103682

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Auto-adaptive multi-scale Laplacian Pyramids for modeling non-uniform
data
Ángela Fernández a,∗, Neta Rabin c, Dalia Fishelov d, José R. Dorronsoro a,b

a Departamento de Ingeniería Informática, Universidad Autónoma de Madrid, Spain
b Instituto de Ingeniería del Conocimiento, Madrid, Spain
c Department of Industrial Engineering, Tel-Aviv University, Israel
d Department of Mathematics, Afeka Academic College of Engineering, Israel

A R T I C L E I N F O

Keywords:
Laplacian Pyramids
Kernel methods
Overfitting
Multi-scale interpolation
Non-uniform data
Adaptive stopping

A B S T R A C T

Kernel-based techniques have become a common way for describing the local and global relationships
of data samples that are generated in real-world processes. In this research, we focus on a multi-scale
kernel based technique named Auto-adaptive Laplacian Pyramids (ALP). This method can be useful for
function approximation and interpolation. ALP is an extension of the standard Laplacian Pyramids model
that incorporates a modified Leave-One-Out Cross Validation procedure, which makes the method stable and
automatic in terms of parameters selection without extra cost. This paper introduces a new algorithm that
extends ALP to fit datasets that are non-uniformly distributed. In particular, the optimal stopping criterion will
be point-dependent with respect to the local noise level and the sample rate. Experimental results over real
datasets highlight the advantages of the proposed multi-scale technique for modeling and learning complex,
high dimensional data.

1. Introduction

An important challenge nowadays, when large amounts of data is
collected, is the correct approximation of functions for modeling and
analyzing data. These approximations have special interest in cases
where the values of the functions are not known over the entire dataset.
They can also be useful when the function may be too expensive to
compute, or it is only represented on a finite expansion. There exist
several methods for modeling and analyzing data, but when dealing
with functions that depend on multiple variables, or that are defined
over many scattered data points, the best way to tackle the general
problem of approximation and interpolation is using an approach based
on Radial Basis Functions (RBFs) (Buhmann, 2003).

An RBF is defined in terms of an univariate continuous function
𝜙. Given a training sample {𝑥𝑛}𝑁𝑛=1, a linear combination of RBFs
approximates a real function 𝑓 over a new data point 𝑥 in the following
way:

𝑓 (𝑥) ≈ 𝑠(𝑥) =
∑

𝜉
𝑤𝜉𝜙(‖𝑥 − 𝑥𝜉‖).

Here, 𝑤𝜉 represents the weight associated with the expansion points 𝜉,
and ‖ ⋅‖ is an adequate norm. The most usual choice for the norm is the
Euclidean distance, and one of the most common RBFs are Gaussians,
where 𝜙 is defined as 𝜙(𝑟) = exp (𝜖𝑟)2.

∗ Corresponding author.
E-mail addresses: a.fernandez@uam.es (Á. Fernández), netara@tauex.tau.ac.il (N. Rabin), daliaf@afeka.ac.il (D. Fishelov), jose.dorronsoro@uam.es

(J.R. Dorronsoro).

There exists a comprehensive literature on RBF methods and expan-
sions (see for example Buhmann, 2003; Wang and Liu, 2002; Beatson
and Light, 1997; Carozza and Rampone, 2001). In this work we will
focus on Laplacian Pyramids (LP), a multi-scale model that generates a
smoothed version of a function in an iterative manner, using Gaussian
kernels of decreasing widths (Burt and Adelson, 1983). It is a simple
method for learning functions from a general set of samples. The
LP approximation algorithm works in the spirit of wavelets, as the
reconstruction goes from coarser to finer scales and due to this fact, it is
stable and convenient for working in the manifold learning context. It
is also remarkable that this method can be seen as an iterative version
of a Nadaraya–Watson estimator (Nadaraya, 1964; Watson, 1964). This
classic estimator is typically defined as

𝑔(𝑥) = 1
𝑛
∑

𝑛
𝐾(𝑥, 𝑥𝑛)𝑦𝑛,

where 𝐾 is a kernel function and 𝑦𝑛 are the objective function values
on the training points 𝑥𝑛. As we shall see, the proposed LP procedure
uses this type of construction at each iteration.

The LP scheme has been used for several applications in diverse
domains; most of them utilize LP for function approximation and its
out-of-sample extension. When a model does not allow a direct out-
of-sample solution, the extension of the model to new points is not

https://doi.org/10.1016/j.engappai.2020.103682
Received 15 July 2019; Received in revised form 13 March 2020; Accepted 28 April 2020
Available online xxxx
0952-1976/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2020.103682
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2020.103682&domain=pdf
mailto:a.fernandez@uam.es
mailto:netara@tauex.tau.ac.il
mailto:daliaf@afeka.ac.il
mailto:jose.dorronsoro@uam.es
https://doi.org/10.1016/j.engappai.2020.103682

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

trivial (Duchateau et al., 2013; Bengio et al., 2004; Long and Fergu-
son, 2019), and the LP method offers one way for extension of such
models. In Mishne and Cohen (2012), an multi-scale anomaly detection
algorithm that is based on diffusion maps (Coifman and Lafon, 2006a)
was proposed. The diffusion maps embedding was calculated on a
subset of the points and extended to the rest of the dataset with the
LP function extension scheme. LP based out-of-sample extension for
target detection was presented in Mishne et al. (2014). Extensions of
the anomaly detection algorithm (Mishne et al., 2014), which utilizes
LP for extension, include anomaly detection in side-scan sonar images
of sea-mines (Mishne and Cohen, 2014b) and detection of defects
in wafers (Mishne and Cohen, 2014a). LP was utilized for function
extension in problems related to voice activity detection. In N. Sp-
ingarn and Cohen (2014), the likelihood ratio function of unlabeled
data was learned by extending the likelihood ratios obtained from the
labeled data. An LP-based speech enhancement algorithm was proposed
in M. Li and Mousazadeh (2014). The LP-based extension was compared
with the Geometric harmonics extension scheme (Coifman and Lafon,
2006b), for which parameters need to be carefully tuned, and it was
shown that the LP-scheme provides better results.

Another domain in which Laplacian Pyramids have been applied is
for data lifting. This challenge arises in models that first reduce the
dimension of the data to obtain a compact and reliable representation,
and then need to estimate new points in the ambient space from the
low-dimensional embedding. LP-based lifting was applied in Dsilva
et al. (2013) and Chiavazzo et al. (2014) for reconstruction of data in
molecular dynamics applications and for modeling chemical kinetics.
Last, the LP method has been applied in the context of kernel based
forecasting in dynamical systems such as prediction of the North Pacific
climate variability (Comeau et al., 2017), prediction of regional and
pan-Arctic sea ice anomalies (Comeau et al., 2019) and forecasting of
tropical intraseasonal oscillations (Alexander et al., 2017). In all of the
above applications, heuristic approaches were used in order to limit the
number of iterations of the LP algorithm to avoid a risk of overfitting
if too many iterations are executed.

As mentioned above, and as it is often the case in machine learning,
when an LP model is applied, one may overfit the data by refining
the prediction too much during the training phase (Chiavazzo et al.,
2014). In fact, it is difficult to decide when to stop the training phase
to maximize the generalization capabilities of the resultant model. A
usual approach is to apply the Cross Validation (CV) method (Duda
et al., 2001, chap. 9) to measure a validation error during the training
in order to stop when this error starts to increase. An extreme form
of CV is Leave-One-Out CV (LOOCV): a model is built using all the
samples but one, which is then used as a single validation pattern; this
is repeated for each sample in the dataset, and the validation error is the
average of all the one-pattern errors. Although LOOCV has a theoretical
support and often yields good results, it has the drawback of being a
time-consuming process.

Auto-adaptive LP (ALP), proposed in Fernández et al. (2016), is a
modification of the LP training algorithm that merges training and an
approximate LOOCV in one single phase. The ALP algorithm results
in a LOOCV approximation that does not add any cost during the
training step. This reduces significantly the training complexity and
provides an automatic global criterion to stop training. Thus, the risk of
overfitting, which may appear in a standard LP, is avoided. Therefore,
ALP prevents overfitting the data and, moreover, it requires essentially
no parametrization or expert knowledge about the problem under
study, while still achieving a good test error. Moreover, it adds no extra
cost compared to other classical neighbor-based interpolation methods.

In this paper we propose a new implementation of the ALP al-
gorithm, providing a natural improvement of it. The main idea is to
work with a local (point-wise) kernel scale that better suited to the
density of the data and, consequently, to perform the optimal number
of training iterations around each point. This modification allows us
to deal with datasets where sample densities vary in different regions,

which may require a different resolution. The algorithm will be auto-
matically adapted to each of these areas when necessary. The proposed
method can also be seen as a variant of the iterative Nadaraya–Watson
regression with 𝐿2 boosting (Bühlmann and Yu, 2003).

To sum up, the contribution of this paper is twofold. On one hand,
it presents a self-contained explanation about Laplacian Pyramids,
including a complete analysis of the error bounds and decay rates.
Moreover we review in detail the automatic stopping criteria which
is integrated into the algorithm without extra computational cost,
prevents overfitting and bypasses the need for heuristic approaches
to set the parameters of the method. On the other hand, the second
contribution is an extension of the ALP algorithm to a local resolution
setting, taking advantage of the different sample statistics that might
appear in the data.

This paper is organized as follows. In Section 2 we briefly review
the LP model and present a detailed analysis of its training error. We
describe classical ALP and its LOOCV estimation in Section 3, and an
improved ALP version with local resolution is presented. The algorithm
description is accompanied by a synthetic example to illustrate its
behavior. Results over several datasets are shown in Section 4, and the
paper ends with some conclusions in Section 5.

2. Laplacian pyramids

Laplacian Pyramids (LP) is an iterative model introduced by Burt
and Adelson (1983) for image processing applications. In its traditional
form, the LP algorithm decomposes the input image into a series of
sub-images, and each of them captures a different frequency band of
the original one. This process is carried out by constructing Gaussian
kernel-based smoothing masks of different widths, followed by a down-
sampling (quantization) step. LP was later proved to be a tight frame
(see Do and Vetterli, 2003) and used for signal processing applica-
tions, for example as a reconstruction scheme in Liu et al. (2008).
In Rabin and Coifman (2012), a multi-scale algorithm was introduced
in the spirit of LP to be applied in the setting of high-dimensional
data analysis. In particular, it was proposed as a simple method for
extending low-dimensional embedding coordinates, that result from the
application of a non-linear dimensionality reduction technique, to a
high-dimensional dataset (this has been recently applied in Mishne and
Cohen, 2013).

2.1. The basic LP procedure

Next, we review the LP procedure as described in Rabin and
Coifman (2012) (note that the down-sampling step, which is part of
Burt and Adelson’s algorithm is skipped here). Let 𝑆 = {(𝑥𝑖, 𝑓𝑖 =
𝑓 (𝑥𝑖))}𝑁𝑖=1, 𝑥𝑖 ∈ R𝑀 be the sample dataset where 𝑓 is a function which
is only known on the sample points. For simplicity we assume that it
belongs to a Sobolev space (Adams and Fournier, 2003) ‖𝑓‖𝑚,2 for a
certain 𝑚. The algorithm approximates the function 𝑓 by constructing
a series of functions {𝑓 (𝓁)} obtained by several refinements 𝑑(𝓁) over
the approximation errors. In a slight abuse of notation we will use the
same name 𝑓 for both the general function 𝑓 (𝑥) and also for the vector
of its sample values 𝑓 = (𝑓1 = 𝑓 (𝑥1),… , 𝑓𝑁 = 𝑓 (𝑥𝑁)). The end result of
this process yields a function approximation to 𝑓 in the form

𝑓 ≃ 𝑓 = 𝑓 (0) + 𝑑(1) + 𝑑(2) + 𝑑(3) +⋯

In more detail, a first level kernel 𝐾 (0)(𝑥, 𝑥′) = 𝛷
(

dist(𝑥, 𝑥′)∕𝜎
)

is
chosen using a one dimensional positive function 𝛷(𝑧) and a wide,
initial scale 𝜎; dist(𝑥, 𝑥′) denotes some distance function between points
in the ambient space. As mentioned before, the Gaussian kernel with
Euclidean distances is applied here, i.e., we take dist(𝑥, 𝑥′) = ‖𝑥 − 𝑥′‖.
Then, we define

𝐾 (0)(𝑥, 𝑥′) = 𝜅(0)𝑒−
‖𝑥−𝑥′‖2

𝜎2 ,

2

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

where 𝜅(0) is the Gaussian kernel normalizing constant which depends
on 𝜎.

The notation 𝐾 (0) is used (with a slight abuse of notation) for the
general continuous kernel 𝐾 (0)(𝑥, 𝑥′) and its discrete matrix counterpart
𝐾 (0)

𝑗𝑘 = 𝐾 (0)(𝑥𝑗 , 𝑥𝑘) over the sample points. The smoothing operator 𝑃 (0)

is constructed as the row-stochastic normalized kernel matrix

𝑃 (0)
𝑖𝑗 =

𝐾 (0)
𝑖𝑗

∑

𝑘 𝐾
(0)
𝑖𝑘

. (1)

A first coarse representation of 𝑓 is then generated by the convolution
𝑓 (0) = 𝑓 ∗ 𝑃 (0) that captures the low-frequencies of the function. For
the next steps, a parameter value 𝜇 > 1 is fixed. A sharper normalized
Gaussian kernel matrix 𝑃 (𝓁) is constructed at level 𝓁 with scale 𝜎∕𝜇𝓁 .
Then, the residual 𝑑(𝓁−1) = 𝑓 −𝑓 (𝓁−1) is computed. It captures the error
of the approximation of 𝑓 at the previous 𝓁 − 1 step. A more detailed
representation of 𝑓 is generated. It is given by

𝑓 (𝓁) = 𝑓 (𝓁−1) + 𝑑(𝓁−1) ∗ 𝑃 (𝓁) = 𝑓 (𝓁−1) + 𝑔(𝓁),

with 𝑔(𝓁) = 𝑑(𝓁−1) ∗ 𝑃 (𝓁). The iterative algorithm stops once the norm of
the residual vector 𝑑(𝓁) is smaller than a predefined tolerance. Stopping
at iteration 𝐿, the final LP model has the form

𝑓 (𝐿) = 𝑓 (0) +
𝐿
∑

𝓁=1
𝑔(𝓁) = 𝑓 ∗ 𝑃 (0) +

𝐿
∑

𝓁=1
𝑑(𝓁−1) ∗ 𝑃 (𝓁). (2)

Extending this multi-scale representation to a new data point 𝑥 ∈
R𝑀 is now straightforward by setting

𝑓 (𝐿)(𝑥) = 𝑓 ∗ 𝑃 (0)(𝑥) +
𝐿
∑

𝓁=1
𝑑(𝓁−1) ∗ 𝑃 (𝓁)(𝑥)

=
∑

𝑗
𝑓𝑗𝑃

(0)(𝑥, 𝑥𝑗) +
𝐿
∑

𝓁=1

∑

𝑗
𝑑(𝓁−1)𝑗 𝑃 (𝓁)(𝑥, 𝑥𝑗).

The kernels 𝑃 (𝓁) are directly extended for a new point 𝑥 as

𝑃 (𝓁)(𝑥, 𝑥𝑗) =
𝐾 (𝓁)(𝑥, 𝑥𝑗)

∑

𝑘 𝐾 (𝓁)(𝑥, 𝑥𝑘)
(3)

with 𝐾 (𝓁)(𝑥, 𝑥′) = 𝜅(𝓁)𝑒
− ‖𝑥−𝑥′‖2

(𝜎∕𝜇𝓁)2 . Observe that when defining 𝑃 (𝓁), 𝜅(𝓁)

disappears for being also present in the denominator.
Next, we show that the 𝐿2 norms of the residuals 𝑑(𝓁) decay ex-

tremely fast.

2.2. Error analysis for the LP scheme

For analyzing the LP error, the previously defined kernel is consid-
ered. First notice that, when working in the continuous kernel setting,
the summation becomes an integral. Therefore, we have 𝑃 (𝓁)(𝑥, 𝑥′) =
𝐾 (𝓁)(𝑥, 𝑥′) for a Gaussian function since the denominator in (3) is just
∫ 𝐾 (𝓁)(𝑥, 𝑧)𝑑𝑧 = 1.

Furthermore, for all 𝓁, writing now 𝑃 (𝓁) (𝑥) = 𝑃 (𝓁)(𝑥, 0), 𝑃 is an
approximation to a delta function satisfying

∫ 𝑃 (𝓁) (𝑥) 𝑑𝑥 = 1,

∫ 𝑥𝑃 (𝓁) (𝑥) 𝑑𝑥 = 0, (4)

∫ ‖𝑥‖22𝑃
(𝓁) (𝑥) 𝑑𝑥 ≤ 2𝐶, where 𝐶 is a constant.

Assume that 𝑓 is in 𝐿2, i.e., ∫𝑥 𝑓
2(𝑥) 𝑑𝑥 < ∞. The LP scheme

is a relaxation process for which in the first step the function 𝑓 is
approximated by (0)(𝑓) = 𝑓 ∗ 𝑃 (0) (𝑥). In the second step 𝑓 is
approximated by (0)(𝑓) + (1)(𝑑(0)), where 𝑑(0) = 𝑓 − (0)(𝑓) and
(1)(𝑑(0)) = 𝑑(0) ∗ 𝑃 (1) (𝑥), and so on. Taking the Fourier transform of
𝑃 (𝓁) (𝑥) results in (see Fishelov, 1990)

|

|

|

𝑃 (𝓁) (𝜔) − 1||
|

≤
(𝜎∕𝜇𝓁)2

2 ∫ ‖𝑥‖22‖𝜔‖
2
2𝑃

(𝓁) (𝑥) 𝑑𝑥 ≤ 𝐶 (𝜎∕𝜇𝓁)2 ‖𝜔‖22. (5)

We first analyze the error 𝑑(0)(𝑥) in the first step, which is defined
by 𝑑(0)(𝑥) = 𝑓 − 𝑓 ∗ 𝑃 (0) (𝑥). Taking the Fourier transform of 𝑑(0)(𝑥)
together with the bound in (5) yields
|

|

|

𝑑(0)(𝜔)||
|

= |

|

|

𝑓 (𝑤)||
|

|

|

|

𝑃 (0)(𝜔) − 1||
|

≤ 𝐶‖𝜔‖22𝜎
2 |
|

|

𝑓 (𝜔)||
|

. (6)

The error in the second step is

𝑑(1)(𝑥) = 𝑑(0) − (1)(𝑑(0)) =
(

𝑓 − 𝑓 ∗ 𝑃 (0))− 𝑑(0) ∗ 𝑃 (1) = 𝑑(0) − 𝑑(0) ∗ 𝑃 (1).

(7)

Taking the Fourier transform of (7) yields
|

|

|

𝑑(1)(𝜔)||
|

= |

|

|

𝑑(0)(𝜔) − 𝑑(0)(𝜔)𝑃 (1)(𝜔)||
|

= |

|

|

̂𝑑(0)(𝜔)||
|

|

|

|

𝑃 (1)(𝜔) − 1||
|

. (8)

Using (5) and (6) we obtain
|

|

|

𝑑(1)(𝜔)||
|

≤ 𝐶‖𝜔‖22
|

|

|

𝑑(0)(𝜔)||
|

(𝜎∕𝜇)2 ≤ 𝐶𝜎2 (𝜎∕𝜇)2 ||
|

𝑓 (𝜔)||
|

‖𝜔‖42. (9)

Since 𝜇 > 1, then |

|

|

𝑑(1)(𝜔)||
|

≤ 𝐶𝜎2 𝜎2

𝜇2
|

|

|

𝑓 (𝜔)||
|

‖𝜔‖42. Similarly, for the 𝓁th
step the error is bounded by

|

|

|

𝑑(𝓁)(𝜔)||
|

≤ 𝐶𝜎2
(

𝜎2

𝜇(𝓁+1)

)𝓁
|

|

|

𝑓 (𝜔)||
|

‖𝜔‖2(𝓁+1)2 . (10)

By Parseval’s equality we obtain

‖

‖

‖

𝑑(𝓁)‖‖
‖

𝐿2 = ‖

‖

‖

𝑑(𝓁)‖‖
‖

𝐿2 ≤ 𝐶𝜎2
(

𝜎2

𝜇(𝓁+1)

)𝓁
‖

‖

‖

𝑓 (𝜔)‖𝜔‖2(𝓁+1)2
‖

‖

‖

𝐿2

≤ 𝐶𝜎2
(

𝜎2

𝜇(𝓁+1)

)𝓁

‖𝑓‖2𝓁+2,2, (11)

where ‖𝑓‖𝑚,2 denotes the Sobolev norm of a function with up to 𝑚
derivatives in 𝐿2. Thus, the 𝐿2 norm of the LP error decays at a very
fast rate.

2.3. Overfitting risk

Since the error of the LP method decays fast, setting a small error
threshold may easily result in 𝑓 (𝓁) ≃ 𝑓 and hence cause overfitting of
the data. In order to understand the approximation process, we express
𝑓 (𝓁) = 𝑓 (𝓁−1) + 𝑔(𝓁) by

𝑓 (𝓁) = 𝑓 (𝓁−1) + 𝑔(𝓁) = 𝑓 (𝓁−1) + (𝑓 − 𝑓 (𝓁−1)) ∗ 𝑃 (𝓁)

= 𝑓 ∗ 𝑃 (𝓁) + 𝑓 (𝓁−1) ∗ (𝐼 − 𝑃 (𝓁)),

where 𝐼 denotes the identity matrix. Now, taking the limit 𝑓 (𝓁) → 𝜙
yields

𝜙 = 𝑓 ∗ lim𝑃 (𝓁) + 𝜙 ∗ lim(𝐼 − 𝑃 (𝓁)),

i.e., 𝜙 = 𝑓 , for 𝑃 (𝓁) → 𝐼 . In practice, when 𝓁 is large enough,
numerically 𝑃 (𝓁) ≃ 𝐼 , so that 𝐾 (𝓁)(𝑥𝑖, 𝑥𝑗) ≃ 0, 𝑖 ≠ 𝑗. Then 𝑑(𝓁)𝑗 = 0 for all
𝑗 and the LP stays almost the same for a large enough 𝓁. In other words,
care has to be taken when deciding when to stop the LP iterations in
order to avoid overfitting.

3. Auto-adaptive Laplacian pyramids

The standard way to prevent overfitting is to use an independent
validation subset and to stop the iterations as soon as the validation
error on that subset starts to increase. This can be problematic for
small samples as it introduces a random dependence on the choice
of the particular validation subset. 𝑘-fold Cross Validation (CV) is
then usually the standard choice to avoid this. Samples are randomly
distributed in 𝑘 subsets, and iteratively 𝑘 − 1 subsets are used for
training while the remaining 𝑁 − (𝑘 − 1) are used for validation. In
the extreme case when 𝑘 = 𝑁 , i.e., when just one pattern is used
for validation, CV becomes Leave-One-Out Cross Validation (LOOCV)
and the train iterations are stopped when the LOOCV error starts to

3

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

increase. Besides its simplicity, LOOCV has the attractive property of
being an almost unbiased estimator of the true generalization error
(see for instance Cawley and Talbot, 2004; Elisseeff and Pontil, 2002),
possibly with a high variance (Kohavi, 1995). In our case, LOOCV can
be easily applied using for training a 𝑁 ×𝑁 normalized kernel matrix
𝑃(𝑝). This is just the previous matrix 𝑃 , where we set to 0 the 𝑝th rows
and columns when 𝑥𝑝 is held out of the training sample and used for
validation. The most obvious drawback of LOOCV is its rather high cost,
which in our case would be in principle 𝑁 ×𝑂(𝐿𝑁2) = 𝑂(𝐿𝑁3), where
we recall that 𝐿 is the number of LP iterations. However, it is often the
case for other models that there are ways to estimate the LOOCV error
with a smaller cost. This can be done exactly in the case of 𝑘-Nearest
Neighbors (Fukunaga and Hummels, 1989) or Ordinary Least Squares
(Hastie et al., 2008, Chapter 7); or approximately for Support Vector
Machines (Chapelle et al., 2002) or Gaussian Processes (Rasmussen
and Williams, 2005). We show next how to perform LOOCV without
essentially augment training cost.

3.1. Standard ALP

In the context of this work and to alleviate the LOOCV cost, notice
first that here when 𝑥𝑝 is removed from the training sample, the test
value of the 𝑓(𝑝) extension at the point 𝑥𝑝 is given by

𝑓 (𝐿)
(𝑝) (𝑥𝑝) =

∑

𝑗≠𝑝
𝑓𝑗𝑃

(0)(𝑥𝑝, 𝑥𝑗) +
𝐿
∑

𝓁=1

∑

𝑗≠𝑝
𝑑(𝓁−1)(𝑝);𝑗 𝑃 (𝓁)(𝑥𝑝, 𝑥𝑗)

=
∑

𝑗
𝑓𝑗𝑃

(0)(𝑥𝑝, 𝑥𝑗) +
𝐿
∑

𝓁=1

∑

𝑗
𝑑(𝓁−1)(𝑝);𝑗 𝑃 (𝓁)(𝑥𝑝, 𝑥𝑗).

Here 𝑃 (𝓁) is a modification of 𝑃 (𝓁), where the diagonal elements in
𝑃 (𝓁) are set to zero, i.e., 𝑃𝑖,𝑗 = 𝑃𝑖,𝑗 when 𝑗 ≠ 𝑖. 𝑑(𝓁)(𝑝) are the different
previously defined errors computed using the 𝑃 (𝓁)

(𝑝) matrices.
This observation leads to the modification of the standard LP that

was proposed in Rabin and Coifman (2012), and which simply consists
on applying the LP procedure described in Section 2 but replacing the
𝑃 matrix by its 0-diagonal version 𝑃 . This modification requires the
computation of the function approximation 𝑓 (0) = 𝑓 ∗ 𝑃 (0) at the
beginning, and then the vectors �̃�(𝓁) = 𝑑(𝓁−1) ∗ 𝑃 (𝓁), 𝑓 (𝓁) = 𝑓 (𝓁−1) + �̃�(𝓁)

and 𝑑(𝓁) = 𝑓 − 𝑓 (𝓁) are computed at each iteration. This algorithm is
denoted as the Auto-adaptive Laplacian Pyramid (ALP) (Fernández et al.,
2016).

According to the previous formula for the 𝑓 (𝐿)
(𝑝) (𝑥𝑝), we can take the

ALP values 𝑓 (𝐿)
𝑝 = 𝑓 (𝐿)(𝑥𝑝) given by

𝑓 (𝐿)(𝑥𝑝) =
∑

𝑗
𝑓𝑗𝑃

(0)(𝑥𝑝, 𝑥𝑗) +
𝐿
∑

𝓁=1

∑

𝑗
𝑑(𝓁−1)𝑗 𝑃 (𝓁)(𝑥𝑝, 𝑥𝑗),

as approximations to the LOOCV validation values 𝑓 (𝐿)
(𝑝) (𝑥𝑝).

The squared LOOCV error at each iteration may be approximated
by
∑

𝑝
(𝑓 (𝑥𝑝) − 𝑓 (𝐿)

(𝑝) (𝑥𝑝))
2 ≃

∑

𝑝
(𝑓 (𝑥𝑝) − 𝑓 (𝐿)

𝑝)2 =
∑

𝑝
(𝑑(𝐿)𝑝)2,

which is just the training error of ALP at the current iteration. In other
words, working with the 𝑃 matrix instead of 𝑃 , the training error at
step 𝐿 gives in fact an approximation to the LOOCV error at this step.

For the parameter selection, choosing as customarily done 𝜇 = 2,
the only required parameter would be the initial 𝜎 but assuming it is
wide enough, its 𝜎∕2𝓁 scalings will yield an adequate final kernel width.
Furthermore, in this paper we propose a heuristic technique to compute
the initial bandwidth 𝜎 and the maximum number of iterations maxits
ensuring that all the interesting 𝜎 values (and only the interesting ones)
will be tested. Relevant values of 𝜎 are obtained in between the ones
that yield an all-ones 𝑃 matrix, and the ones that produce a 𝑃 = 𝐼
matrix. In the first case, every data point obtains the same weight,
resulting in a mean function. In the second case, as mentioned in

Section 2.3, the original function is reproduced. To approximate these
values, the parameters are fixed in the following way:

𝜎 = 10max (𝑊𝑖𝑗)

maxits = log2(𝜎∕𝜎min), with 𝜎min = 1∕5min (𝑊𝑖𝑗),

where W represents the distance matrix.
We also point out that it is straightforward to extend the model to

a vectorial function 𝐹 = (𝐹1,… , 𝐹𝑀). The squared ALP error at the 𝐿th
iteration becomes
∑

𝑝
‖𝐹 (𝑥𝑝) − 𝐹 (𝐿)

(𝑝) (𝑥𝑝)‖
2 ≃

∑

𝑝
‖𝐹 (𝑥𝑝) − 𝐹 (𝐿)

𝑝 ‖

2 =
∑

𝑝
‖�̃�(𝐿)

𝑝 ‖

2,

where here 𝐷 = (𝐷1,… , 𝐷𝑀) is the vector formed of the ALP residuals
𝐷𝑚 of each component 𝐹𝑚 of 𝐹 . Again, the optimal value for 𝐿 is set as
the iteration where this estimate of the LOOCV error begins to grow.

The cost of running 𝐿 steps of ALP is just 𝑂(𝐿𝑁2) and, thus, we
gain the advantage of approximating the exhaustive LOOCV without
any additional cost on the overall algorithm. The complete training
and test procedures are presented in Algorithms 1 and 2 respectively.
Notice that in this work, the computed error for setting the optimal
stopping iterations number of the algorithm is the Root Mean Squared
Error (RMSE). This type of error measure was selected because it is
the classical error to compute when dealing with functions and due
to the improved results obtained empirically compared with the Mean
Absolute Error (MAE).

Algorithm 1 The ALP Training Algorithm
Input: {𝑥𝑖, 𝐹𝑖}𝑁𝑖=1.
Output: ({𝑑(𝓁)}, 𝜎, 𝜇, 𝐿), the trained model.
1: 𝜇 ← 2, 𝑊𝑖𝑗 ← 𝑥𝑖 − 𝑥𝑗 ∀𝑖, 𝑗, 𝜎 ← 10max (𝑊𝑖𝑗), maxits ← log2(5

𝜎
min (𝑊𝑖𝑗)

).
2: 𝐹 (0) ← 𝐹 ; 𝐹 (0) ← 0; 𝓁 ← 1.
3: while (𝓁 < maxits) do
4: �̃� (𝓁) ← 𝑒−

‖𝑊 ‖

2

𝜎2 , with 0-diagonal. % LOOCV approximation.
5: 𝑃 (𝓁) ← normalize(�̃� (𝓁)).
6: 𝐹 (𝓁) ← 𝐹 (𝓁−1) + �̃�(𝓁−1) ∗ 𝑃 (𝓁).
7: �̃�(𝓁) ← 𝐹 − 𝐹 (𝓁).
8: err(𝓁) ← ‖�̃�(𝓁)

‖

2. % For each point a mean error value is computed.
9: 𝜎 ← 𝜎∕𝜇; 𝓁 ← 𝓁 + 1.

10: end while
11: 𝐿 ← argmin𝓁{err𝓁}. % Optimal iteration.

Algorithm 2 The ALP Testing Algorithm
Input: {𝑥𝑖}𝑁𝑖=1, 𝑥te, ({�̃�(𝓁)}, 𝜎, 𝜇, 𝐿).
Output: 𝐹te.
1: 𝐹te ← 0.
2: for 𝓁=1 to L do
3: 𝐾 (𝓁)

𝑖;te ← 𝑒−
‖𝑥𝑖−𝑥te‖2

𝜎2 ∀𝑖.
4: 𝑃 (𝓁) ← normalize(𝐾 (𝓁)).
5: 𝑃 (𝓁) ← normalize(𝐾 (𝓁)).
6: 𝐹te ← 𝐹te + �̃�(𝓁−1) ∗ 𝑃 (𝓁).
7: 𝜎 ← 𝜎∕𝜇.
8: end for

As it has just being argued, the obvious advantage of ALP is that
when the training error is evaluated, in practice the LOOCV error
after each LP iteration is estimated. Therefore, the evolution of these
LOOCV values automatically defines the optimal iteration at which the
algorithm is stopped, i.e., just when the training error starts to increase.
Thus, the risk of overfitting is removed and in addition the training
errors can be used as an approximation to the generalization error. This
effect can be seen in Fig. 1 that illustrates the application of ALP to the
synthetic problem described in the next subsection. In this example,
the optimum stopping time for ALP is exactly the same as the LOOCV
error would generate, where the training error stabilizes afterwards at

4

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

Fig. 1. Training errors for the original LP models (with and without LOOCV) and its modified version, the ALP model, applied over a perturbed sine. Left: 𝛿 = 0.1 over 4000
patterns; right: 𝛿 = 0.5 over 2000 patterns.

a slightly larger value. Moreover, ALP achieves an automatic selection
of the width of the Gaussian kernel which makes this version of LP
to be auto-adaptive as it does not require costly parameter selection
procedures.

3.2. ALP with local resolution

When working with scattered datasets, it is often the case that the
available data is not equally distributed, and there exist regions with
different sample statistics and density characteristics. In these cases, it
makes sense to define different models, with different stopping times,
adapted to each region.

Focusing on the ALP method, the original algorithm may be mod-
ified to take into account this particular issue. We propose to use
a point-wise 𝜎 value, computed by using the neighborhood of each
sample point. To accomplish this goal, the train and test phases are
modified as follows.

• Training step: An error per point is computed in terms of the 𝜈
nearest neighbors mean error. The optimal number of iterations
will be given then by 𝐿∗

𝑖 ← argmin𝓁{err(𝓁)𝑖 }.
• Test step: The optimal number of iterations 𝐿∗

te of each test point
will be given by the optimal number of iterations of the nearest
training point 𝑥𝑛, i.e. 𝐿∗

te = 𝐿∗
𝑛.

The proposed modification introduces a new parameter 𝜈, that
represents the number of neighbors taken into account to define the
best local 𝜎 per point. This parameter will have the same value for every
point in the training set, and it will be determined by CV.

To sum up and remark the changes with respect to the original ALP
algorithm, the corresponding training and test procedures are presented
in Algorithms 3 and 4.

Algorithm 3 The Local ALP Training Algorithm
Input: {𝑥𝑖, 𝐹𝑖}𝑁𝑖=1.
Output: ({�̃�(𝓁)}, 𝜎, 𝜇, {𝐿𝑖}𝑁𝑖=1).
1: 𝜇 ← 2, 𝑊𝑖𝑗 ← 𝑥𝑖 − 𝑥𝑗 ∀𝑖, 𝑗, 𝜎 ← 10max (𝑊𝑖𝑗), maxits ← log2(5

𝜎
min (𝑊𝑖𝑗)

).
2: �̃�(0) ← 𝑓 ; 𝐹 (0) ← 0; 𝓁 ← 1.
3: while (𝓁 < maxits) do
4: �̃� (𝓁) ← 𝑒−

‖𝑊 ‖

2

𝜎2 , with 0-diagonal.
5: 𝑃 (𝓁) ← normalize(�̃� (𝓁)).
6: 𝐹 (𝓁) ← 𝐹 (𝓁−1) + �̃�(𝓁−1) ∗ 𝑃 (𝓁).
7: �̃�(𝓁) ← 𝐹 − 𝐹 (𝓁).
8: err(𝓁)𝑖 ← ‖�̃�(𝓁)

𝑖 ‖

2 ∀𝑖. % For each point the mean error of the nearest
points is computed.

9: 𝜎 ← 𝜎∕𝜇; 𝓁 ← 𝓁 + 1.
10: end while
11: 𝐿𝑖 ← argmin𝓁{err(𝓁)𝑖 }. % Optimal iteration (𝜎 value) per point.

Algorithm 4 The Local ALP Testing Algorithm
Input: {𝑥𝑖}𝑁𝑖=1, 𝑥te, ({�̃�(𝓁)}, 𝜎, 𝜇, {𝐿𝑖}𝑁𝑖=1).
Output: 𝐹te, 𝐿te.
1: 𝐹te ← 0.
2: for 𝓁 = 1 to max{𝐿𝑖} do

3: 𝐾 (𝓁)
𝑖;te ← 𝑒−

‖𝑥𝑖−𝑥te‖2

𝜎2 ∀𝑖.
4: 𝑃 (𝓁) ← normalize(𝐾 (𝓁)).
5: 𝐹te ← 𝐹te + �̃�(𝓁−1) ∗ 𝑃 (𝓁).
6: 𝜎 ← 𝜎∕𝜇.
7: if 𝓁==1 then
8: 𝐿te ← 𝐿

(

argmin𝑖{𝑥𝑖 − 𝑥te}
)

. % Return also the optimal iteration per
point.

9: end if
10: end for

When applying this new ALP version, the risk of overfitting is still
removed. In this case, in which the width of the kernel is automatically
adapted to each point, the overfitting risk is prevented in a point-
wise manner. We will see an example of this behavior in the following
subsection.

3.3. A synthetic example

For a better understanding of the proposed method and its advan-
tages, we illustrate in this section the classic ALP algorithm and its local
resolution version on a synthetic example of a composition of sines with
different frequencies plus additive noise.

Consider a sample 𝑥 with 𝑁 points equally spaced over the range
[0, 10𝜋]. The target function 𝑓 is given by

𝑓 = sin(𝑥) + 0.5 sin(3𝑥) ⋅ 𝐼2(𝑥) + 0.25 sin(9𝑥) ⋅ 𝐼3(𝑥) + 𝜀,

where 𝐼2 is the indicator function of the interval (10𝜋∕3, 10𝜋], 𝐼3 that
of (2 ⋅ 10𝜋∕3, 10𝜋] and 𝜀 ∼ ([−𝛿, 𝛿]) is uniformly distributed noise. In
other words, there is a single frequency in the interval [0, 10𝜋∕3], two
frequencies in (10𝜋∕3, 2 ⋅ 10𝜋∕3] and three in (2 ⋅ 10𝜋∕3, 10𝜋]. For the
classic ALP algorithm, two different simulations are executed: the first
one with 4000 points with small 𝛿 = 0.1 noise and the second one with
2000 points and a larger 𝛿 = 0.5 (observe that |𝑓 | ≤ 1.75). In both cases,
1∕3 of the original set is randomly chosen for test purposes.

Recall that the main advantage of ALP is the approximation of the
LOOCV error obtained while we evaluate the training error. Due to this
fact, if the algorithm iterations stop as the error starts to grow, the risk
of overfitting is removed. This effect can be observed in Fig. 1 where
ALP is applied to this synthetic example. The solid blue and dashed
green lines represent the LP training error and the true LOOCV error per
iteration respectively, and the dashed red line represents the error for
the ALP method. Notice that the ALP training error attains its minimum
at the same iteration prescribed by exact LOOCV for LP.

5

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

Fig. 2. Interpolations given by the ALP model for the last seven steps (out of 13) on the small noise example.

Fig. 3. Final interpolations given by the ALP model for the large noise example.

Recall also that the ALP model automatically adapts its multiscale
behavior to the data, trying to refine the prediction in each iteration
using a more localized kernel, given by a smaller 𝜎. This behavior can
be observed in Fig. 2, which shows the evolution of the ALP predictions
for the 0.1-noise experiment. At the beginning, the model approximates
the function just by a coarse mean of the target function values, and in
the subsequent iterations when the model starts using sharper kernels
and refined residuals, the approximating function captures the different
frequencies and amplitudes of the composite sines. In this particular
case, the minimum LOOCV value is reached after 13 iterations. Note
that we start plotting from the 7th iteration, because before the result
resembles a mean function due to a large initial 𝜎 value.

Next, the same synthetic experiment is carried out, but now the
amplitude of the uniform noise distribution is increased to 𝛿 = 0.5. The
predicted function is represented in Fig. 3 and it is obtained after 12
iterations (as shown in the right hand image of Fig. 1). As expected,
the number of LP iterations is now slightly smaller than in the previous
example because the algorithm selects a more conservative, smoother
prediction in the presence of noisier and, thus, more difficult data.

In any case, we can conclude that the ALP model captures very well
the essential underlying behavior of both samples, as it identifies the
three different frequencies of the sine and their amplitudes even when
the noise level increases.

Next, we illustrate in this subsection the advantages of the modified
ALP version with local resolution (ALP𝑙). For this purpose, the same
sine example is used, but the focus is on the third interval, where the
three frequencies of the sine are present. The function takes the form
𝑓 = sin(𝑥) + 0.5 sin(3𝑥) + 0.25 sin(9𝑥), with 4000 points and no noise
(𝛿 = 0, and thus 𝜀 = 0). In this case, also three different regions
are defined, but in terms of the subsampling density. In particular, we
divide the interval [0, 10𝜋] into three parts. The first region holds 400
samples, the second 1400 and the third one 2200. In this scenario it
seems logical to adapt the final bandwidth of the Gaussians to each
region, expecting larger bandwidth values (few iterations) for sparse
regions, obtaining then a smoother, coarser approximation; for the
dense regions we expect a smaller 𝜎 value (more iterations), that will
capture finer details, as there are more points to estimate the original
function).

The parameters of the method have been fixed automatically,
as done in the ALP case, except the parameter 𝜈 for the local ap-
proximation that has been cross-validated using 10 folds and a grid
{10, 20,… , 200}, selecting finally a value of 50. As seen in Fig. 4, the
resolution selection works as expected, presenting three main different
values corresponding to the three different subsampling regions.

The original ALP and ALP𝑙 algorithms are compared in Fig. 5 for the
three different regions, where we can acknowledge that in general the
blue ALP𝑙 points are very close to the red ALP values. Both methods
present very similar results, as expected because they used very similar
𝜎 values, and they give a good result for prediction. In particular, this
can be observed in the second and third region, where the sample set is
dense and big enough. The first region, which only has a few number of
available sampled point, is the most difficult region for approximation
and therefore the results are less accurate.

Fig. 4. Left: Representation of the synthetic example over the training set, colored by subsampling region. Right: Stopping number of iterations for the synthetic example over
the training set, represented as a constant red line for ALP and as asterisks of different colors depending on region for ALP𝑙 . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

6

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

Fig. 5. Sine example test results. Comparison between ALP (red points) and ALP𝑙 (blue points) predictions. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Training errors of a subset of the sample points. The different colors represent
the three subsampling regions as in previous plots, where blue curves correspond to
points in the first region, green curves correspond with the second region and red
ones with the third region. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Finally, we would like to emphasize that the new ALP𝑙 algorithm
prevents overfitting as well as its original version, as explained before.
This fact can be appreciated in Fig. 6 where each curve presents the
same shape than the ALP curve (like the one shown in Fig. 1). It should
be noticed that the red lines, corresponding with points in the last
region, represents an error over an easy synthetic problem with lots
of subsampled points. Because of this, the error is 0, as the method is
able to recover the original function perfectly.

4. Experiments over real data

This section presents numerous interpolation experiments over real
datasets, for which we analyze the behavior and properties of ALP and
its modified version, ALP𝑙. For this analysis, the results are compared
against a 𝑘-Nearest Neighbor (𝑘-NN) model, a standard interpolation
method. All the real problems presented in the paper will deal with the
missing values problem, which is one of the most interesting and more
frequent problems in the interpolation context, for being crucial to
tackle other problems like classification or regression. The importance
of missing values problems is shown in Liu et al. (2016), where missing
values are imputed using 𝑘-NN and Self-Organizing Map techniques
or in Xia et al. (2017), where the classification problem with missing
values is solved with a random-forest based algorithm. In this type
of problem, when the data is regressed many times against each of
the columns, methods like 𝑘-NN need to be tuned manually to fit the
behavior of each target function while ALP and ALP𝑙 automatically
choose a scale that fits the function and data.

For all the experiments we will follow the subsequent methodology:

1. Select the less correlated features among a complete dataset to
simulate the missing value problem, if needed.

2. Define 10 independent train-test folds for each case study. We
consider 3 possible scenarios: a 90%-10% train-test split, a 80%-
20% and a 70%-30%. In total, 30 experiments per problem will be
executed.

3. Parameter selection in one of the training folds. As previously
explained, the parameters needed for ALP and ALP𝑙 are auto-
matically selected by the algorithm, except in the case of the
parameter 𝜈 in the local version. Recall that this parameter is
used for determining the number of neighbors involved in the
point-wise final bandwidth selection for each training point. The
value of this parameter is estimated using a 10-fold CV. For the
𝑘-NN algorithm, the 𝑘 neighbors are also obtained via a 10-CV.

4. Run the models in each of the 30 defined experiments.
5. Evaluate the results. The Root Mean Squared Error (RMSE) is

used for measuring errors, as previously discussed. Notice that,
for making all the datasets errors comparable among them, the
errors presented are divided by the standard deviation of the
target function in the test set. We will present the median and
standard deviation of each set of 10 experiments, together with a
statistical significance test between models, in this case a Mann–
Whitney U test (Mann and Whitney, 1947) applied over the
errors obtained. The null hypothesis of this test states that both
models come from continuous distributions with equal medians,
rejecting the null hypothesis at the 5% significance level.

6. Derive plots to illustrate the results. When the dimension of the
data is large, Principal Component Analysis (PCA Jolliffe, 2002)
will be applied for making the visualization possible.

Next, the described procedure is applied to a number of real
datasets.

4.1. Wisconsin breast cancer (diagnostic) dataset

The first example selected is a classification UCI dataset (Lichman,
2013): the Wisconsin breast cancer. The features in this dataset are
characteristics of each cell nuclei presented on an image of a breast
mass. In this work, we changed the original target function and instead
we take one of the cell characteristics to be the target function for
interpolation, simulating that it has several missing values. The selected
feature for being the target function is the less correlated with the other
ones, which in this example is the number 12.

As explained in the general case, three different scenarios will be
considered: a 90%-10% train-test split, a 80%-20% and a 70%-30%. In all
cases, the data has been standardized before building the models. For
the 𝜈 parameter selection, the grid {10, 20,… , 200} was used in the ALP𝑙
case selecting values of 70, 110 and 170 for the 10%, 20% and 30% test
splits respectively. The grid {1, 2,… , 10} was used for the 𝑘-NN method,
obtaining 𝑘 = 2 for all the partitions.

The interpolation RMSE errors for this example are shown in Ta-
ble 1, together with the result of applying the Mann–Whitney U signif-
icance test, marking in bold font the winners and ties in first position.
Notice that we consider the three different scenarios depending on
the number of test samples: 10% of random test samples, 20% or 30%.
Observing the results in the table we can conclude that the proposed

7

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

Table 1
Normalized RMSE errors for the Breast Cancer example.

ALP ALP𝑙 𝑘-NN

10% 𝟎.𝟒𝟏𝟖𝟏 ± 𝟎.𝟏𝟎𝟐𝟓 𝟎.𝟒𝟎𝟎𝟕 ± 𝟎.𝟎𝟖𝟖𝟏 0.4797 ± 0.0666
20% 𝟎.𝟒𝟏𝟗𝟒 ± 𝟎.𝟎𝟗𝟒𝟏 𝟎.𝟒𝟐𝟔𝟓 ± 𝟎.𝟎𝟗𝟏𝟒 𝟎.𝟒𝟓𝟖𝟎 ± 𝟎.𝟎𝟒𝟖𝟖
30% 𝟎.𝟓𝟒𝟑𝟏 ± 𝟎.𝟏𝟐𝟏𝟒 𝟎.𝟒𝟓𝟏𝟕 ± 𝟎.𝟏𝟐𝟒𝟔 𝟎.𝟒𝟔𝟕𝟑 ± 𝟎.𝟎𝟑𝟖𝟑

method, in its original form and in its local version, yields the best re-
sults for the 10% case, outperforming 𝑘-NN as an interpolation method
and ties it when less information is available during training. Even
though the error values between ALP and ALP𝑙 are not significant in
this example, the ALP𝑙 errors are smaller when there is more training
data available. This implies that finer structure in the data is captured
with ALP𝑙 when data is at hand (see the 10% case).

For reinforcing these results, we present some plots to visually
appreciate the effects of these methods for modeling the considered
dataset. In Table 2 we present a comparison between the expected re-
sult (the reality, in the 𝑥 axis) and the interpolated one (the prediction,
in the 𝑦 axis) for ALP𝑙 and ALP. Both methods present similar results,
but if we focus our attention on the left lower side of the image, ALP𝑙
points are a bit nearer to the diagonal than ALP ones.

In Fig. 7, the final number of iterations are depicted over the PCA
training coordinates (recall that the number of iterations is related to
the analysis scale of the data in each region). It can be appreciated
that points with similar final number of iterations are located in the
same region, so it seems that the number of iterations it is also related
with the data structure and the ALP𝑙 method is able to capture this
information.

4.2. Wine quality dataset

For another real, but small dataset example, we consider the Wine
Quality dataset from the UCI repository. The wine dataset holds several
features based on physicochemical tests such as acidity, chlorides or
sulfur dioxide from each wine type. There is a separate dataset for red
and white variants of wine. We have discarded the discrete features
number 2 and 8 from both datasets.

As in the previous example, we change the problem for being
a missing values one. The feature with missing values, selected for
being the less correlated with the other features, is in this case the
feature number 4 for the wine red dataset, that corresponds to the
residual sugar, and feature number 10 for the white wine dataset, that
corresponds to the sulphates information.

Table 3
Normalized RMSE errors for the Wine examples.

ALP ALP𝑙 𝑘-NN

10%
Red 𝟎.𝟗𝟏𝟗𝟎 ± 𝟎.𝟎𝟗𝟓𝟎 𝟎.𝟗𝟎𝟕𝟐 ± 𝟎.𝟎𝟗𝟗𝟏 𝟎.𝟗𝟑𝟓𝟒 ± 𝟎.𝟏𝟎𝟕𝟏
White 0.8527 ± 0.0212 𝟎.𝟖𝟏𝟗𝟏 ± 𝟎.𝟎𝟒𝟎𝟓 0.8704 ± 0.0243

20%
Red 𝟎.𝟖𝟖𝟒𝟓 ± 𝟎.𝟎𝟔𝟕𝟔 𝟎.𝟖𝟖𝟗𝟖 ± 𝟎.𝟎𝟔𝟗𝟎 𝟎.𝟗𝟐𝟒𝟔 ± 𝟎.𝟎𝟖𝟐𝟔
White 0.8627 ± 0.0197 𝟎.𝟖𝟐𝟗𝟑 ± 𝟎.𝟎𝟐𝟕𝟗 0.8767 ± 0.0191

30%
Red 𝟎.𝟖𝟒𝟖𝟗 ± 𝟎.𝟎𝟓𝟎𝟏 𝟎.𝟖𝟕𝟐𝟓 ± 𝟎.𝟏𝟎𝟓𝟕 0.9043 ± 0.0654
White 0.8712 ± 0.0110 𝟎.𝟖𝟓𝟒𝟎 ± 𝟎.𝟎𝟏𝟑𝟗 0.8963 ± 0.0104

We consider again three different scenarios: a 90%-10% train-test
split, a 80%-20% and a 70%-30% and, in all cases, the data has been
standardized before building the models.

For the parameter selection of the ALP𝑙 algorithm and for the 𝑘
of 𝑘-NN, the used grids where the same than for the first example,
obtaining the values of 50, 40 and 50 for the 10%, 20% and 30% test splits
respectively in the case of the red wine dataset and 𝜈 = {110, 60, 90}
for the white wine dataset. for the 10% test case values of 𝜈 = 70, for
the 20% case 𝜈 = 110 and for the 30% test split, 𝜈 = 170. For the 𝑘
parameter, the best values were 𝑘 = {4, 3, 3} for the 10%, 20% and 30%
cases respectively for the red wine dataset and 𝑘 = 7 for all the white
wine cases.

The RMSE errors for both examples are shown in Table 3, where it
is also shown the result of the significance test over the errors obtained
at a 5% significance level. It can be appreciated that for the red wine
variant, there is no significance difference between models except for
the 30% case, where the ALP models outperform 𝑘-NN. For the 10% and
20% cases, even though there is no significance difference, the errors is
smaller also in the ALP models. For the white variant, the ALP𝑙 model
is clearly better than the other two, independently of the test subset
size.

In Tables 4 and 5 a comparison between the expected result (the
target, in the 𝑥 axis) and the interpolated one (the prediction, in the
𝑦 axis) for ALP and ALP𝑙 is shown for both examples. The previous
conclusions can be also observed in the images: for the red wine
variant, both models look almost indistinguishable, while for the white
wine the results are clearly better (they follow better the diagonal line).

4.3. Mice protein dataset

The Mice Protein Expression (Higuera et al., 2015) dataset from the
UCI repository consists of the expression levels of 77 protein modifica-
tions that produce detectable signals in the nuclear fraction of cortex

Table 2
Breast Cancer example. Comparison between ALP (red points) and ALP𝑙 (blue points) predictions over the
test set for different test subsets.

8

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

Fig. 7. Breast Cancer Wisconsin (Diagnostic) number of iterations. The image plots the final number of iterations, represented in different colors according to the colorbar, over
the PCA components of the training set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Red wine example. Comparison between ALP (red points) and ALP𝑙 (blue points) predictions over different
test subset sizes.

Table 5
White wine example. Comparison between ALP (red points) and ALP𝑙 (blue points) predictions over different
test subset sizes.

of mice. The dataset contains a total of 1080 measurements per protein
and each measurement can be considered as an independent sample.
The original task for this problem is the classification of different types
of mice but, as explained before, here the dataset will be used to
demonstrate the interpolation capabilities of the proposed methods.

Nevertheless, this real-life dataset presents a high rate of missing
values, and interpolation methods can be a good solution for filling
in these gaps (Rabin and Fishelov, 2017). For measuring the quality
of the results, the experimental data will be set as the subset of the
66 features from the entire dataset that have no missing values. From

9

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

Table 6
Normalized RMSE errors for the Mice Protein example.

ALP ALP𝑙 𝑘-NN

10% 𝟎.𝟏𝟖𝟖𝟑 ± 𝟎.𝟎𝟐𝟒𝟑 𝟎.𝟏𝟖𝟕𝟒 ± 𝟎.𝟎𝟐𝟒𝟏 𝟎.𝟏𝟗𝟔𝟐 ± 𝟎.𝟎𝟑𝟎𝟐
20% 𝟎.𝟐𝟎𝟐𝟎 ± 𝟎.𝟎𝟐𝟐𝟐 𝟎.𝟏𝟗𝟗𝟖 ± 𝟎.𝟎𝟐𝟐𝟑 𝟎.𝟐𝟏𝟐𝟐 ± 𝟎.𝟎𝟑𝟓𝟔
30% 𝟎.𝟐𝟏𝟑𝟑 ± 𝟎.𝟎𝟐𝟑𝟓 𝟎.𝟐𝟏𝟑𝟑 ± 𝟎.𝟎𝟐𝟑𝟓 0.2529 ± 0.0426

this dataset, we will simulate that one feature has some gaps on it. In
particular, feature number 52 is chosen as the missing data feature as
it is less correlated with the rest of the feature columns in the data.

We consider again three different scenarios: a 90%-10% train-test
split, a 80%-20% and a 70%-30% and, in all cases, the data has been
standardized before building the models.

For the 𝜈 parameter selection of the ALP𝑙 algorithm and for the 𝑘
of 𝑘-NN, the used grids where the same as for the previous examples,
obtaining for the 10% test case values of 𝜈 = 40, for the 20% case 𝜈 = 130
and for the 30% test split, 𝜈 = 140. For the 𝑘 parameter the best value
was 2 for all the partitions.

The RMSE errors are shown in Table 6, where the significance test
results (at the 5% significance level) are also shown, following the same
notation as in the previous examples. In this case there is a tie between
the three compared methods in almost all the tested cases, but as in
the first example, and even though the difference is not significant, it
can be seen that when more data is available (the 10% case) the ALP𝑙
obtains a lower error.

In Table 7 we present a comparison between the expected result
(the target, in the 𝑥 axis) and the interpolated one (the prediction, in
the 𝑦 axis) for ALP and ALP𝑙. The results obtained with both models
look very similar, as expected.

4.4. Seismic data

Seismic data analysis is another real example where interpolation
is necessary. In these datasets, temporal data is collected by using a
grid of sensors, in this case seismometers, and missing data values is a
common problem that occurs when one of the sensors stops to function.
The task at hand is a multidimensional interpolation problem, where a
complete temporal series that was not recorded needs to be recovered.

The presented examples are from a marine and a land seismic
networks, and the data was taken from the New Zealand open database
(http://wiki.seg.org/wiki/Open_data). The number of patterns, i.e. the
information of each point of the grid, available for these examples

Table 8
Normalized RMSE errors for the Seismic examples.

ALP ALP𝑙 𝑘-NN

10%
Marine 𝟎.𝟐𝟗𝟑𝟕 ± 𝟎.𝟎𝟐𝟐𝟏 𝟎.𝟐𝟕𝟖𝟑 ± 𝟎.𝟎𝟎𝟗𝟗 0.3299 ± 0.0068
Land 𝟎.𝟎𝟗𝟖𝟗 ± 𝟎.𝟎𝟎𝟏𝟏 𝟎.𝟎𝟗𝟖𝟗 ± 𝟎.𝟎𝟎𝟏𝟏 0.1450 ± 0.0010

20%
Marine 𝟎.𝟑𝟐𝟎𝟐 ± 𝟎.𝟎𝟎𝟗𝟔 𝟎.𝟑𝟐𝟐𝟒 ± 𝟎.𝟎𝟎𝟗𝟓 0.3557 ± 0.0078
Land 𝟎.𝟏𝟎𝟕𝟓 ± 𝟎.𝟎𝟎𝟎𝟖 𝟎.𝟏𝟎𝟕𝟓 ± 𝟎.𝟎𝟎𝟎𝟖 0.1567 ± 0.0015

30%
Marine 𝟎.𝟑𝟑𝟒𝟐 ± 𝟎.𝟎𝟏𝟏𝟒 0.3479 ± 0.0086 0.3776 ± 0.0088
Land 𝟎.𝟏𝟏𝟖𝟕 ± 𝟎.𝟎𝟎𝟏𝟐 𝟎.𝟏𝟏𝟖𝟕 ± 𝟎.𝟎𝟎𝟏𝟐 0.1707 ± 0.0014

(around 70,000) was too big, so a reduced dataset of the first 10,000
coordinates available was prepared for the simulations. The objective
function to interpolate here is the entire temporal series of dimension
1252 in the marine case and 2500 in the land one.

In this case, for CV of the number 𝜈 of neighbors for the ALP𝑙
algorithm, we have used the knowledge of the grid structure of the
data, trying as grid sizes {8, 24, 48, 80, 120, 168, 224} (with the idea of
taking in each case bigger squares around the point). In the case of the
marine seismic dataset we obtain values of 𝜈 = 168 for the 10% test
partition, 𝜈 = 24 for the 20% test partition and 𝜈 = 8 for the 30% one,
and in the case of the land seismic dataset we obtain 𝜈 = 120, 168, 168
respectively. To set the 𝑘-NN parameter, the grid {1, 2,… , 10} was used,
like in the previous examples, obtaining 𝑘 = 3 for all the partitions in
both datasets.

Table 8 presents the RMSE errors for the different models, where
ALP models again outperform 𝑘-NN as interpolation methods, and again
we can observe that in general when more train data is available, the
ALP𝑙 model has an advantage. This table also presents the results of
the significance test applied at the 5% significance level over the errors
obtained, remarking the most significant results in bold-faced.

In Tables 9 and 10 the two ALP versions are depicted and also the
real objective function for an interval of the temporal series interpo-
lation of one of the patterns. The results in this case are essentially
indistinguishable, as both models are basically equal.

In this case, the difference between the ALP versions is neither
significant at a 5% significance level but we can conclude that the
ALP with local resolution is also able to detect this global structures
where just a global 𝜎 is needed, offering the same results as the ALP
original model. It should be remarked the difference with respect to the
𝑘-NN model, being again that the ALP models are a better option for
interpolation in this real problem.

Table 7
Mice protein example. Comparison between ALP (red points) and ALP𝑙 (blue points) predictions over the
test set for different test subsets.

10

http://wiki.seg.org/wiki/Open_data

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

Table 9
Marine seismic example. Comparison between ALP (red points) and ALP𝑙 (blue points) predictions over one
test pattern.

Table 10
Land seismic example. Comparison between ALP (red points) and ALP𝑙 (blue points) predictions over one
test pattern.

5. Conclusions

The proposed framework provides novel, flexible and multi-scale
analysis tools, which are easy to implement and are suitable for model-
ing different types of datasets including those with non-uniform data
distribution. In particular, we introduce an extended version of the
Auto-adaptive Laplacian Pyramids (ALP) where the local structure of
the data is taken into account with success, defining a different width
of the kernel per point. In addition, this adaptive version of LP training
yields, at no extra cost, an estimate of the LOOCV value at each
iteration, allowing thus to automatically decide when to stop in order
to avoid overfitting.

All together, the proposed methodology provides a robust and flex-
ible framework supported by theoretical error analysis for modeling
complex datasets. This work overcomes the limitations of previous
LP methods and, thus, applications that utilizes LP will benefit from
this research. Indeed, these advantages are already expressed in the
experimental results where ALP outperforms 𝑘-NN in the different
examples presented.

Regarding future work, one challenge we plan to tackle is the
global nature of these algorithms, which requires high computational
cost as data size grows. This may be addressed by modifying the
training step stages of the current algorithm by considering smaller
suitable subsamples. Finally, since our method offers a general setting,
it can be applied in different domains for out-of-sample extension and
forecasting problems.

CRediT authorship contribution statement

Ángela Fernández: Conceptualization, Methodology, Software, In-
vestigation, Visualization, Writing - original draft. Neta Rabin: Con-
ceptualization, Methodology, Validation, Writing - original draft. Dalia
Fishelov: Formal analysis, Supervision, Writing - review & editing.
José R. Dorronsoro: Conceptualization, Methodology, Supervision,
Writing - review & editing.

11

Á. Fernández, N. Rabin, D. Fishelov et al. Engineering Applications of Artificial Intelligence 93 (2020) 103682

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

They wish to thank Prof. Ronald R. Coifman for helpful remarks.
They also gratefully acknowledge the use of the facilities of Centro de
Computación Científica (CCC) at Universidad Autónoma de Madrid.

Funding

This work was supported by Spanish grants of the Ministerio de
Ciencia, Innovación y Universidades [grant numbers: TIN2013-42351-
P, TIN2015-70308-REDT, TIN2016-76406-P]; project CASI-CAM-CM
supported by Madri+d [grant number: S2013/ICE-2845]; project FACIL
supported by Fundación BBVA (2016); and the UAM–ADIC Chair for
Data Science and Machine Learning.

References

Adams, R., Fournier, J., 2003. Sobolev Spaces, Vol. 140. Academic press.
Alexander, R., Zhao, Z., Székely, E., Giannakis, D., 2017. Kernel analog forecasting of

tropical intraseasonal oscillations. J. Atmos. Sci. 74 (4), 1321–1342.
Beatson, R., Light, W., 1997. Fast evaluation of radial basis functions: methods for

two-dimensional polyharmonic splines. IMA J. Numer. Anal. 17 (3), 343–372.
Bengio, Y., Paiement, J.-f., Vincent, P., Delalleau, O., Roux, N.L., Ouimet, M., 2004.

Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering.
In: Advances in Neural Information Processing Systems. pp. 177–184.

Bühlmann, P., Yu, B., 2003. Boosting with the 𝐿2 loss: regression and classification. J.
Amer. Statist. Assoc. 98 (462), 324–339.

Buhmann, M., 2003. Radial Basis Functions: Theory and Implementations. In: Cam-
bridge Monographs on Applied and Computational Mathematics, Cambridge
University Press.

Burt, P., Adelson, E., 1983. The Laplacian Pyramid as a compact image code. IEEE
Trans. Commun. 31, 532–540.

Carozza, M., Rampone, S., 2001. An incremental multivariate regression method for
function approximation from noisy data. Pattern Recognit. 34 (3), 695–702.

Cawley, G., Talbot, N., 2004. Fast exact leave-one-out cross-validation of sparse
least-squares support vector machines. Neural Netw. 17 (10), 1467–1475.

Chapelle, O., Vapnik, V., Bousquet, O., Mukherjee, S., 2002. Choosing multiple
parameters for support vector machines. Mach. Learn. 46 (1), 131–159.

Chiavazzo, E., Gear, C.W., Dsilva, C.J., Rabin, N., Kevrekidis, I.G., 2014. Reduced
models in chemical kinetics via nonlinear data-mining. Processes 2 (1), 112–140.

Coifman, R., Lafon, S., 2006a. Diffusion maps. Appl. Comput. Harmon. Anal. 21 (1),
5–30.

Coifman, R., Lafon, S., 2006b. Geometric harmonics: A novel tool for multiscale out-
of-sample extension of empirical functions. Appl. Comput. Harmon. Anal. 21 (1),
31–52.

Comeau, D., Giannakis, D., Zhao, Z., Majda, A.J., 2019. Predicting regional and pan-
arctic sea ice anomalies with kernel analog forecasting. Clim. Dynam. 52 (9–10),
5507–5525.

Comeau, D., Zhao, Z., Giannakis, D., Majda, A.J., 2017. Data-driven prediction strategies
for low-frequency patterns of North Pacific climate variability. Clim. Dynam. 48
(5–6), 1855–1872.

Do, M., Vetterli, M., 2003. Framing Pyramids. IEEE Trans. Signal Process. 51,
2329–2342.

Dsilva, C.J., Talmon, R., Rabin, N., Coifman, R.R., Kevrekidis, I.G., 2013. Nonlinear
intrinsic variables and state reconstruction in multiscale simulations. J. Chem. Phys.
139 (18), 11B608_1.

Duchateau, N., De Craene, M., Sitges, M., Caselles, V., 2013. Adaptation of multiscale
function extension to inexact matching: application to the mapping of individ-
uals to a learnt manifold. In: International Conference on Geometric Science of
Information. Springer, pp. 578–586.

Duda, R., Hart, P., Stork, D., 2001. Pattern Classification. Wiley, New York.
Elisseeff, A., Pontil, M., 2002. Leave-one-out error and stability of learning algorithms

with applications. In: Suykens, J., Horvath, G., Basu, S., Micchelli, C., Vande-
walle, J. (Eds.), Advances in Learning Theory: Methods, Models and Applications.
In: NATO ASI, IOS Press, Amsterdam, Washington, DC, pp. 152–162.

Fernández, A., Rabin, N., Fishelov, D., Dorronsoro, J., 2016. Auto-adaptive Laplacian
Pyramids. In: European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning - ESANN 2016. i6doc.com, pp. 59–64.

Fishelov, D., 1990. A new vortex scheme for viscous flows. J. Comput. Phys. 86 (1),
211–224.

Fukunaga, K., Hummels, D., 1989. Leave-one-out procedures for nonparametric error
estimates. IEEE Trans. Pattern Anal. Mach. Intell. 11 (4), 421–423.

Hastie, T., Tibshirani, R., Friedman, J., 2008. The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer.

Higuera, C., Gardiner, K., Cios, K., 2015. Self-organizing feature maps identify proteins
critical to learning in a mouse model of down syndrome. PLOS ONE 10 (6), 1–28.

Jolliffe, I., 2002. Principal Component Analysis. Springer Series in Statistics.
Kohavi, R., 1995. A study of cross-validation and bootstrap for accuracy estimation

and model selection. In: Proceedings of the 14th International Joint Conference
on Artificial Intelligence. In: IJCAI’95, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, pp. 1137–1143.

Lichman, M., 2013. UCI Machine Learning Repository. University of California, Irvine,
School of Information and Computer Sciences, [online].

Liu, L., Gan, L., Tran, T., 2008. Lifting-based Laplacian Pyramid reconstruction schemes.
In: ICIP. IEEE, pp. 2812–2815.

Liu, Z., Pan, Q., Dezert, J., Martin, A., 2016. Adaptive imputation of missing values
for incomplete pattern classification. Pattern Recognit. 52, 85–95.

Long, A.W., Ferguson, A.L., 2019. Landmark diffusion maps (L-dMaps): Accelerated
manifold learning out-of-sample extension. Appl. Comput. Harmon. Anal. 47 (1),
190–211.

M. Li, I.C., Mousazadeh, S., 2014. Multisensory speech enhancement in noisy envi-
ronments using bone-conducted and air-conducted microphones. In: 2014 IEEE
China Summit & International Conference on Signal and Information Processing
(ChinaSIP). pp. 1–5.

Mann, H., Whitney, D., 1947. On a test of whether one of two random variables is
stochastically larger than the other. Ann. Math. Stat. 18 (1), 50–60.

Mishne, G., Cohen, I., 2012. Multiscale anomaly detection using diffusion maps. IEEE
J. Sel. Top. Signal Process. 7 (1), 111–123.

Mishne, G., Cohen, I., 2013. Multiscale anomaly detection using diffusion maps. J. Sel.
Top. Signal Process. 7 (1), 111–123.

Mishne, G., Cohen, I., 2014a. Multi-channel wafer defect detection using diffusion
maps. In: 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel
(IEEEI). IEEE, pp. 1–5.

Mishne, G., Cohen, I., 2014b. Multiscale anomaly detection using diffusion maps and
saliency score. In: 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, pp. 2823–2827.

Mishne, G., Talmon, R., Cohen, I., 2014. Graph-based supervised automatic target
detection. IEEE Trans. Geosci. Remote Sens. 53 (5), 2738–2754.

N. Spingarn, S.M., Cohen, I., 2014. Voice activity detection in transient noise environ-
ment using Laplacian pyramid algorithm. In: 2014 14th International Workshop on
Acoustic Signal Enhancement (IWAENC). pp. 238–242.

Nadaraya, E., 1964. On estimating regression. Theory Probab. Appl. 9 (1), 141–142.
Rabin, N., Coifman, R., 2012. Heterogeneous datasets representation and learning using

Diffusion Maps and Laplacian Pyramids. In: SDM. SIAM / Omnipress, pp. 189–199.
Rabin, N., Fishelov, D., 2017. Missing data completion using diffusion maps and

Laplacian Pyramids. In: International Conference on Computational Science and
Its Applications. Springer, pp. 284–297.

Rasmussen, C., Williams, C., 2005. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press.

Wang, J., Liu, G.R., 2002. A point interpolation meshless method based on radial basis
functions. Internat. J. Numer. Methods Engrg. 54 (11), 1623–1648.

Watson, G., 1964. Smooth regression analysis. Sankhyā 359–372.
Xia, J., Zhang, S., Cai, G., Li, L., Pan, Q., Yan, J., Ning, G., 2017. Adjusted weight

voting algorithm for random forests in handling missing values. Pattern Recognit.
69, 52–60.

12

http://refhub.elsevier.com/S0952-1976(20)30120-2/sb1
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb2
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb2
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb2
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb3
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb3
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb3
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb4
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb4
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb4
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb4
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb4
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb5
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb5
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb5
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb6
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb6
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb6
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb6
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb6
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb7
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb7
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb7
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb8
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb8
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb8
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb9
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb9
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb9
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb10
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb10
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb10
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb11
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb11
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb11
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb12
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb12
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb12
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb13
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb13
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb13
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb13
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb13
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb14
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb14
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb14
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb14
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb14
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb15
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb15
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb15
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb15
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb15
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb16
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb16
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb16
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb17
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb17
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb17
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb17
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb17
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb18
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb18
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb18
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb18
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb18
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb18
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb18
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb19
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb20
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb20
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb20
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb20
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb20
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb20
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb20
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb21
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb21
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb21
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb21
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb21
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb22
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb22
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb22
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb23
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb23
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb23
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb24
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb24
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb24
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb25
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb25
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb25
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb26
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb27
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb27
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb27
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb27
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb27
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb27
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb27
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb28
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb28
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb28
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb29
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb29
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb29
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb30
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb30
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb30
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb31
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb31
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb31
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb31
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb31
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb32
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb32
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb32
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb32
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb32
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb32
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb32
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb33
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb33
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb33
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb34
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb34
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb34
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb35
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb35
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb35
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb36
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb36
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb36
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb36
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb36
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb37
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb37
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb37
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb37
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb37
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb38
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb38
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb38
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb39
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb39
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb39
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb39
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb39
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb40
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb41
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb41
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb41
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb42
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb42
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb42
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb42
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb42
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb43
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb43
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb43
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb44
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb44
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb44
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb45
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb46
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb46
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb46
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb46
http://refhub.elsevier.com/S0952-1976(20)30120-2/sb46

	Auto-adaptive multi-scale Laplacian Pyramids for modeling non-uniform data
	Introduction
	Laplacian pyramids
	The basic LP procedure
	Error analysis for the LP scheme
	Overfitting risk

	Auto-adaptive Laplacian pyramids
	Standard ALP
	ALP with local resolution
	A synthetic example

	Experiments over real data
	Wisconsin breast cancer (diagnostic) dataset
	Wine quality dataset
	Mice protein dataset
	Seismic data

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

