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Abstract. In our book ”Navier-Stokes Equations in Planar Domains”, Imperial College Press, 2013, we have
suggested a fourth-order compact scheme for the Navier-Stokes equations in streamfunction formulation ∂t(∆ψ)+
(∇⊥ψ) · ∇(∆ψ) = ν∆2ψ. Here we present a new approach for the analysis of a high-order compact scheme for the
Navier-Stokes equations in cases where the convective term vanishes, or in cases where the viscous term dominates
the convective term. In these cases the Navier-Stokes equations is replaced by the time-dependent Stokes equation
∂t(∆ψ) = ν∆2ψ. The same type of fourth-order compact schemes that were proposed for the Navier-Stokes
equations, may be adopted to the time-dependent Stokes problem. For these methods the truncation error is
only of first-order at near-boundary points, but is of fourth order at interior points. We prove that the rate of
convergence is actually four, thus the error tends to zero as O(h4), where h is the size of the mesh.
Keywords: Biharmonic problem, high-order compact scheme, optimal convergence, time dependent Stokes
problem, Navier-Stokes equations.

1. Introduction

The 2D incompressible Navier-Stokes (NS) equations in streamfunction formulation, ∂t(∆ψ)+(∇⊥ψ) ·∇(∆ψ) =
ν∆2ψ, play an important role in various areas of physics. The streamfunction formulation of NS equations is due
to Lagrange (1768); see [25]. In [5] we have suggested a fourth-order compact scheme for this equation, including
a suboptimal error analysis.

In this paper we consider the time dependent Stokes equation in streamfunction formulation

(1.1) ∂t(∆ψ) = ν∆2ψ + f.

This equation coincides with the NS equation ∂t∆ψ(x, t) +C(ψ) = ν∆2ψ(x, t) + f(x, t) when the convective term
vanishes. Examples of the so-called Taylor flows and generalizations are given in [14, Chap. 4.6]. The Stokes flow
is also an approximate version of the Navier-Stokes system in cases of low Reynolds numbers (and therefore the
convective term is small compared to the viscous term). Typically it happens in microfluidics and in creeping flows
[33]. It is therefore natural to use (1.1) as an intermediate model for the NS equations [3, 26]. In this paper we
consider the fourth-order convergence of a compact high-order scheme suggested for the time-dependent Stokes
equation.

The finite difference scheme studied here is based on the Discrete Biharmonic Operator (DBO), which is a
compact (”3 point”) operator of fourth-order accuracy. Compact high-order schemes for the biharmonic equation
were suggested by Stephenson [35] for the two-dimensional biharmonic problem. The DBO studied here may
be viewed as a one-dimensional analog of Stephenson’s scheme. In our approach, the DBO is obtained as a
fourth-order derivative of an interpolating polynomial. This polynomial requires not only values of the function
at neighboring points, but also a high-order approximation for the first-order derivative. It turns out that if
the first-order derivative is approximated by an Hermitian scheme, then an overall fourth-order accuracy for the
fourth-order derivative at interior points is achieved. The DBO operator has a special property that it is compact
and its truncation error is fourth order accurate at interior points, while it is only first order accurate at near
boundary points. This numerical phenomenon is known in various other contexts. In [19, 20] a hyperbolic system
of first order and a parabolic problem were analyzed in the case where extra boundary conditions were given in
order to ”close” the numerical scheme. It was shown that if the accuracy of the extra boundary conditions is one
less compared to the accuracy of the inner scheme, then the overall accuracy of the scheme is determined by the
accuracy at inner points. Similarly, in [1] it was proved for a parabolic equation that if the scheme is of order O(hα)
at inner points and of order O(hα−s) at near boundary points and if s = 0, 1, then the accuracy of the scheme is
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O(hα). Finally, in [37] the authors consider the wave equation, which is approximated via a summation-by-parts
finite difference scheme and is fourth-order accurate at interior points. They show that if the truncation error at
interior points is O(h4) and it is only O(h2) at near boundary points, then the overall accuracy of the scheme is
O(h4).

In previous papers we studied various compact schemes for the Navier Stokes equations: We describe now the
convergence analysis that what was already carried out in previous works. The NS equation in streamfunction
form reads

(1.2) ∂t∆ψ(x, t) + C(ψ) = ν∆2ψ(x, t) + f(x, t),

where the convective term is the RHS is C(ψ) = ∇⊥ψ ·(∇∆ψ(x, t)). In [2] and in [5] the authors described a fourth-
order accurate finite difference scheme for the 2D Navier-Stokes equations. In [3] we have proved convergence for a
second-order compact scheme, where the convective term was replaced by a constant coefficients equation. It was
shown in [3] that the error in the discrete l2 norm (including the discrete l2 norm of the first order derivatives) is
bounded by Ch2, where h is the mesh size. In [4], we had proven convergence and error bounds for a second-order
compact scheme for the full (nonlinear) Navier-Stokes equations. We have shown that the error in the discrete l2
norm of the first order derivatives is bounded by Ch1.5. We don’t have yet a convergence proof for the 4th order
compact scheme for the NS equations, which we have suggested in [2] and [5]. The convergence analysis carried
out in this paper for the Stokes equation may pave out the way for the convergence of a fourth-order scheme for
the NS system which was suggested in [5].

The focus of this paper is the way to overcome the first order truncation at near boundary points and prove
4th order error estimate. This numerical ”phenomenon” is the main topic of the paper. It is of interest at
the computing level, since it gives a direction to better understand ”superconvergence” phenomenon observed in
scientific computing.

Our objective here is to extend the DBO fourth-order error analysis in the one-dimensional time-independent
case, as accomplished in [16, 2], to a discrete-in-space and continuous-in-time approximation of (1.1). The key
idea is to represent the error e(t) as an integral over time of the time-evolution operator, which operates on
the truncation error. Then, to express e(t) in terms of the DBO error, rather than the truncation error, using
the analysis derived in [16, 2]. As a first step we establish the fourth-order convergence for the model problem
∂xxtu = ∂4xu+ f . Then, we proceed to the convergence analysis for (1.1).

The novelty in this approach is that the exact solution of the system of ordinary differential equations is handled
delicately, while postponing to later stages of the proof the application of energy estimates. This is done by dealing
with the orders of magnitude of the matrices involved, using their known structure, given in [7, 2, 6]. This approach
paves the way for the case of the full NS equations, which may however require an additional analysis which is
related to the non-linear convective term. In [4] an error estimate was derived for a second order compact scheme
for the NS equations in streamfunction formulation. The error due to the convective term was decomposed to a sum
of several terms that may be bounded in terms of h and in terms of the error. Finally, with convergence analysis
was concluded using the Gronwall’s inequality. We have shown in [4] a sub-optimal error estimate of O(h1.5). For
the fourth-order compact scheme suggested in [5] a similar decomposition of the error due to the convective term
may be applied as well, however the challenge is to prove optimal O(h4) convergence. This is deferred to a future
work.

The quest for fourth order accuracy and beyond for the incompressible Navier-Stokes equations has been an
active area of research since more than forty years. In the context of finite differences, we refer to [15, 11, 27, 23]. In
the paper of E and Liu [15], the authors suggested a fourth-order essentially compact scheme for the Navier-Stokes
equations. The scheme in [15] is designed for the NS equations in vorticity-streamfunction formulation, where
the vorticity is evolved in time and the streamfunction is constructed from the vorticity in a separate stage. The
boundary condition on the vorticity was chosen via a Briley’s formula (see [10], [38]). Its stability was proved in
[38]. Moreover, since Briley’s formula is formally only third order accurate, a new vorticity boundary formula,
formally fourth order accurate on the boundary, has been proposed and analyzed in [39, 40, 28]. Stability and
convergence estimates have been provided for the full PDE system. The scheme in [5] uses pure streamfunction
formulation, where the streamfunction is evolved directly in time. The boundary conditions are applied solely
on the streamfunction and there is no need for vorticity boundary conditions. A convergence analysis for the
biharmonic equation in two dimensions was carried out in [30]. It was proved that the standard 13-point finite
difference scheme converges to the exact solution with O(h2) error in case the exact solution u is in H4(Ω)∩H2

0 (Ω).
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In [24] a second-order scheme for the NS equations in streamfunction formulation was designed; numerical results
for the driven cavity were performed. In the context of finite element methods (continuous or discontinuous) a
primitive formulation (velocity-pressure) of NS equations is invoked. Then, convergence analysis is often available.
The precise design of the global discrete operators resulting from the variational form requires a fine tuning,
including nontrivial penalization operators. It is possible to use these schemes for the Stokes equation by dropping
the convective term. We refer to [13] and the references therein.

The outline of the paper is the following. In Section 2 we introduce the notation of the compact scheme involved
on the model equation

(1.3) ∂xxtu = ∂4xu+ f.

Vectors and matrices, which are associated with the compact difference operators are introduced as well. In Section
3 the fourth order convergence for (1.3) is proved. In Section 4, it is shown that a similar result extends to the two
dimensional time dependent Stokes problem. In Section 5 optimal bounds, given on norms of several matrices of
interest which operate on the truncation vector, are derived. These bounds are needed for the convergence proofs
in Sections 3 and 4. Truncation errors, needed for the analysis conduced in Sections 3 and 4, are derived in Section
6. Finally, numerical results are presented in Section 7. They assess the fourth-order accuracy of the scheme.

2. A Compact Scheme for the diffusion equation ∂xxtu = ∂4xu+ f

In [32] the diffusion equation (1.3) is considered as a model for (1.1). The goal was to analyze the constraints
on the solution u(x, t) of (1.3) imposed by the rigid wall conditions u(0, t) = 0 and ∂xu(0, t) = 0. The absence of
boundary conditions on ∂xxu(0, t) corresponds to the unknown vorticity at the wall for (1.1). In this section, we
study equation (1.3) as a model for our convergence analysis. Similar ideas will be applied to (1.1) in Section 4.

2.1. Grid function notation. We consider the problem

(2.1)

 ∂xxtu = ∂4xu+ f, x ∈ (0, 1), t ≥ 0,

u(0, t) = u(1, t) = 0, ∂xu(0, t) = ∂xu(1, t) = 0; u(x, 0) = g(x).

In what follows, we assume that the data, f(x, t), g(x) and the solution u(x, t), are regular functions of (x, t) ∈
[0, 1]× [0, tf ), where 0 < tf is a fixed time.

The discrete setting in approximating (2.1) is based on the analysis conducted in [2, Part II]. If a uniform grid
xj = jh, h = 1/N, j = 0, 1, ..., N is laid out on [0, 1], then we denote by v = [v0, v1, . . . , vN−1, vN ]⊺ the grid
function, defined at the points xj , j = 0, 1, ..., N only. Using grid functions, it is understood that h = 1/N
becomes a small parameter, which tends to zero. Equivalently, the number of grid points N = 1/h tends to +∞.
Finite difference operators act naturally on grid functions.

Throughout this paper we assume that the grid functions v satisfy v0 = vN = 0. The space of such grid functions
is called l2h,0, which is equipped with the norm

(2.2) |v|h =

√√√√h

N−1∑
j=1

|vj |2.

To a given function u(x), 0 ≤ x ≤ 1, we denote by u∗ the grid function defined by

(2.3) u∗j = u(xj), 1 ≤ j ≤ N − 1,

where N ≥ 1.
Now, we approximate the solution of Equation (2.1), on the uniform grid xj = j/N, j = 0, 1, ..., N . The grid

function v(t) = [vj(t)], j = 0, 1, ..., N , which serves as an approximation in space of u(x, t), is defined as the solution
of

(2.4)

 (∂tδ̃
2
xv)j = δ4xvj + fj , j = 1, ..., N − 1,

v0(t) = vN (t) = 0, (δ̃xv)0(t) = (δ̃xv)N (t) = 0, vj(0) = g(xj), j = 0, 1, ..., N.

Hence t 7→ v(t) satisfies

(2.5) ∂tδ̃
2
xv = δ4xv+ f∗,
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where f∗ is the grid function defined by fj = f(xj , t). The following finite difference operators are involved.
• The three point Laplacian δ2x and the centered difference δx are defined by

(2.6) (δ2xv)j =
vj+1 + vj−1 − 2vj

h2
, (δxv)j =

vj+1 − vj−1

2h
, 1 ≤ j ≤ N − 1.

• The Hermitian derivative is δ̃xv ∈ l2h,0, defined by

(2.7) δ̃xvj = (σ−1
x δx)vj , j = 1, ..., N − 1,

where

(2.8) (σxw)j =
1

6
(wj−1 + 4wj +wj+1), j = 1, ..., N − 1.

Here we assume that w0 = wN = (δ̃xv)0 = (δ̃xv)N = 0.
• The Discrete Biharmonic Operator (DBO) δ4x is defined by

(2.9) (δ4xv)j =
12

h2

(
(δxδ̃x)v− δ2xv

)
j
, j = 1, ..., N − 1.

• The operator δ̃2x is a discrete Laplacian, which has higher accuracy compared with δ2x. It is defined by

(2.10) (δ̃2xv)j = 2(δ2xv)j −
(
(δxδ̃x)v

)
j
= (δ2xv)j −

h2

12
(δ4xv)j , j = 1, ..., N − 1.

The exact solution u(x, t) of (2.1) is associated with the grid function u∗(t), defined by

(2.11) u∗j (t) = u(xj , t), 1 ≤ j ≤ N − 1.

The truncation error for the discrete equation (2.5) is the grid function t 7→ r(t), defined by

(2.12) ∂tδ̃
2
xu

∗ = δ4xu
∗ + f∗ + r.

It is expressed in terms of u(x, t) as

(2.13) r(t) = −
(
δ4xu(., t)

∗ − (∂4xu(., t))
∗
)
+
(
∂t(δ̃

2
xu

∗(., t))− (∂t∂
2
xu(., t))

∗
)
.

Define the error e(t) = v(t)− u∗(t). Subtracting (2.12) from (2.5) yields

(2.14) ∂t(−δ̃2xe) + δ4xe = r.

In Section 3, we will show an ”optimal estimate” for e(t) and its derivative δ̃xe(t), meaning that |e(t)|h and |δ̃xe(t)|h
tend to zero as O(h4).

2.2. Vector notation. Assuming that the grid size N is fixed, then grid functions and finite difference operators
reduce to vectors and matrices. Matrix analysis (with fixed dimension N − 1) is therefore the main tool in what
follows. We represent (informally) by ↪→, the correspondence between finite difference operators and matrices and
between grid functions and vectors. The matrices involved are T and K, of order (N − 1)× (N − 1).

(2.15) Ti,m =

 2, m = i
−1, |m− i| = 1
0, |m− i| ≥ 2

, Ki,m =

 0, m = i
1, m− i = 1
−1, m− i = −1

• We have

(2.16) (−δ2x) ↪→ T̃ ≜ T/h2, δx ↪→ K/2h.

• The matrices corresponding to δ̃x and to σx are

(2.17) δ̃x ↪→ 3P−1K/h, σx ↪→ P/6,

where P = 6I − T .
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• We have δ4x ↪→ B where B is the matrix

(2.18) B =
6

h4
P−1T 2 +

36

h4
(V1V

⊺
1 + V2V

⊺
2 ),

where V = [V1, V2] ∈ MN−1,2 is defined by

(2.19)

{
V1 = (α− β)1/2P−1(

√
2
2 e1 −

√
2
2 eN−1)

V2 = (α+ β)1/2P−1(
√
2
2 e1 −

√
2
2 eN−1)

,

{
α = 2(2− e⊺1P

−1e1)
β = 2e⊺N−1P

−1e1.

• The matrix D such that (−δ̃2x) ↪→ D is

(2.20) D =
1

h2

(
T +

1

2
P−1T 2

)
+

3

h2
(V1V

⊺
1 + V2V

⊺
2 ) = T̃ +

h2

12
B.

• For a fixed time t > 0, E(t), R(t) ∈ RN−1 are defined by

(2.21) e(t) ↪→ E(t), r(t) ↪→ R(t).

2.3. The optimal convergence theorem for the discrete biharmonic operator. The DBO (discrete bihar-
monic operator) δ4x has been introduced in [3], based on [35]. It appears as the main tool to solve the NS equations
in streamfunction form. This discrete operator has a fourth order truncation error except at near boundary points,
where the truncation drops to first order. Nevertheless, it has been proved in [16, 2] that this does not prevent
a fourth order error estimate. A precise statement of this ”optimal convergence theorem” for the DBO operator
(2.9), both in grid function and vector formulations, is given in Theorems 2.1 and 2.2.

Theorem 2.1 (Optimal convergence theorem for the DBO). Assume that the vector r, which contains the trun-
cation errors, satisfy the following estimates:

(2.22)
|(σxr)j | ≤ Ch4, j = 2, ..., N − 2,

|(σxr)1| ≤ Ch, |(σxr)N−1| ≤ Ch.

The DBO operator δ4x is invertible and its inverse is denoted by

(2.23) δ−4
x = (δ4x)

−1.

Then, the vector δ−4
x r = [(δ−4

x r)1, . . . , (δ
−4
x r)N−1]

⊺ satisfies

(2.24) |(δ−4
x r)j | ≤ Ch4, j = 1, ..., N − 1.

Therefore, the following max norm estimate holds

(2.25) max
1≤j≤N−1

|(δ−4
x r)j | ≤ Ch4.

The following Theorem translates Theorem 2.1 into vector form.

Theorem 2.2 (Vector form of the optimal convergence theorem for the DBO). Assume that R ∈ RN−1 satisfies

(2.26) PR = [O(h), O(h4), . . . , O(h4), O(h)]⊺,

then the vector B−1R satisfies

(2.27) |(B−1R)j | ≤ Ch4, j = 1, . . . , N − 1.

In addition,

(2.28)


|(P−1B−1R)j | ≤ Ch4, j = 2, . . . , N − 2,

|(P−1B−1R)j | ≤ Ch5, j = 1, N − 1.

Let us recall the main steps in the proof presented in [16, 2]. From (2.18) we deduce that the matrix PBP is
expressed as

(2.29) PBP =
6

h4
T 2P +

36

h4
JJ⊺, where J = PV.
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This may be rewritten as

(2.30) PBP = GH−1,

where

(2.31) G = I + 6JJ⊺P−1T−2, H =
h4

6
P−1T−2.

Thus,

(2.32) (PBP )−1 = HG−1.

Therefore,

(2.33) B−1 = PHG−1P,

which results in

(2.34) P−1B−1R = HG−1PR.

We have shown in [16] and [2, chap. 10.7] that

(2.35) G−1PR = [O(h2), O(h4), ...., O(h4), O(h2)]⊺.

Furthermore, the matrix H may be diagonalized using the spectral basis Zk of the matrix T , where

(2.36) Zk
j =

( 2

N

)1/2

sin
kjπ

N
, 1 ≤ k, j ≤ N − 1.

It results that (see [2, Sect. 10.7, pp. 174 sqq])

(2.37) Hij =

 O(h), if 2 ≤ i, j ≤ N − 2
O(h2), if i ∈ {1, N − 1} or j ∈ {1, N − 1}
O(h3), if (i, j) ∈

{
(1, 1), (1, N − 1), (N − 1, 1), (N − 1, N − 1)

}
.

Therefore

(2.38) P−1B−1R = H(G−1PR) = [O(h5), O(h4), ...., O(h4), O(h5)]⊺.

Thus, the estimate (2.28) holds. It yields

(2.39) B−1R = P [O(h5), O(h4), ...., O(h4), O(h5)]⊺ = [O(h4), O(h4), ...., O(h4), O(h4)]⊺.

Hence, we conclude that (2.27) is valid.

3. Convergence analysis for the equation ∂xxtu = ∂
(4)
x u+ f

In this section we state and prove the fourth-order converge of our scheme (2.4) to the exact solution of the
diffusion equation (2.1). We have defined the error e(t) = v(t)− u∗(t) and obtained that (see Equation (2.14))

(3.1) ∂t(−δ̃2xe) + δ4xe = r.

Our goal is to prove the following bound on e(t), assuming a priori regularity on u(x, t).

Theorem 3.1. Let tf > 0 be a fixed time.
(i) Suppose that u is a solution to the problem (2.1) having spatial derivatives up to order 8, then the error e(t),
satisfying Equation (3.1), is bounded by

(3.2) max
0≤t≤tf

|(−δ̃2x)1/2e(t)|h ≤ C(tf )h
4.

(ii) The following error estimates holds

(3.3) max
0≤t≤tf

|e(t)|h ≤ C(tf )h
4,

and

(3.4) max
0≤t≤tf

|δ̃xe(t)|h ≤ C(tf )h
4.

In (3.2)-(3.3)-(3.4), C(tf ) denotes a constant depending only on ∂k0
t ∂k1

x u(x, t), 0 ≤ k0 ≤ 2, 4 ≤ k1 ≤ 8 (x, t) ∈
[0, 1]× [0, tf ].
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Proof. (i) Our approach for estimating the error e(t) relies on vectors and matrices formulations in RN−1 and
MN−1(R), respectively. Consider the vector function t ∈ [0, tf ] 7→ E(t) ∈ RN−1, where E(t) ↪→ e(t). We have
E(t) = [e1(t), ..., eN−1(t)]

⊺ at time t. The claim in Theorem 3.1 is equivalent to

(3.5) max
0≤t≤tf

∥D1/2E(t)∥2 ≤ C(tf )h
3.5.

We invoke the matrices B and D given in (2.18) and (2.20), where the matrix B represents the biharmonic operator
δ4x and the matrix

D corresponds to the operator −δ̃2x. In vector form, Equation (2.14) may be written as

(3.6) ∂t(DE(t)) +B E(t) = R(t).

The vector R(t) = [r1(t), ..., rN−1(t)]
⊺ ∈ RN−1 is such that R(t) ↪→ r(t)), where r(t) is the truncation error in

(2.13). It is obtained by applying matrices of fixed size N − 1 to the vectors U(t) ↪→ [u(x1, t), . . . , u(xN−1, t)]
⊺ and

Uk(t) ↪→ [∂
(k)
x (x1, t), . . . , ∂

(k)
x (xN−1, t)]

⊺. Due to the a priori regularity hypothesis on u(x, t), the solution of (2.1),
the function t 7→ R(t) is regular in time, with R(0) = 0.

Define

(3.7) F (t) = D1/2E(t),

or equivalently

(3.8) E(t) = D−1/2F (t),

then

(3.9) ∂t
(
D1/2F (t)

)
+BD−1/2 F (t) = R(t).

Multiplying both sides by D−1/2 we have

(3.10) ∂tF (t) +D−1/2BD−1/2F (t) = D−1/2R(t).

Let B̃ be the symmetric matrix defined by

(3.11) B̃ = D−1/2BD−1/2,

then, the time dependent equation for F (t) is

(3.12) ∂tF (t) + B̃F (t) = D−1/2R(t).

Note that the matrix B̃ stands for an approximation of a second order derivative. Since F (0) = 0, the Duhamel
formula for (3.12) is

(3.13) F (t) =

∫ t

0

e−B̃(t−ρ)D−1/2R(ρ)dρ,

or equivalently

(3.14) F (t) =

∫ t

0

e−ρB̃D−1/2R(t− ρ)dρ.

For ρ ∈ [0, t], t ≤ T , we rewrite the integrand of (3.14) as

(3.15) e−ρB̃D−1/2R(t− ρ) = e−ρB̃B̃ B̃−1D1/2R(t− ρ) = e−ρB̃B̃ D1/2B−1R(t− ρ).

Therefore, (3.14) is expressed as

(3.16) F (t) =

∫ t

0

(e−ρB̃B̃)
(
D1/2B−1R(t− ρ)

)
dρ.

Here the main point is that the integrand involves the error B−1R, which is O(h4) and not the truncation error

R. Since B̃ is a symmetric definite positive, it may be diagonalized via an orthogonal matrix Q. We denote the
eigenvalues of B̃ by

(3.17) 0 < λ1 < · · · < λN−1.

Let Λ̃(ρ) be

(3.18) Λ̃(ρ) = diag
{
e−ρλ1λ1, ..., e

−ρλN−1λN−1

}
,
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where λi, i = 1, ..., N − 1 are the eigenvalues of B̃ = D−1/2BD−1/2. Then,

(3.19) e−ρB̃B̃ = Q Λ̃(ρ) Q⊺.

Inserting Equation (3.19) in (3.16), we have

(3.20) F (t) =

∫ t

0

Q Λ̃(ρ) Q⊺ D1/2B−1R(t− ρ)dρ.

Notice that

(3.21) Λ̃(ρ) = − d

dρ
Λ(ρ),

where

(3.22) Λ(ρ) = diag{e−ρλ1 , ..., e−ρλN−1}.

Inserting (3.21)-(3.22) into (3.20), we have

(3.23) F (t) = −
∫ t

0

d

dρ
(QΛ(ρ) Q⊺)D1/2B−1R(t− ρ)dρ.

Integration by parts yields

(3.24) F (t) =
[
− (QΛ(ρ) Q⊺)D1/2B−1R(t− ρ)

]t
ρ=0

+

∫ t

0

(QΛ(ρ) Q⊺)D1/2B−1
( d

dρ
R(t− ρ)

)
dρ.

We decompose F (t) as F (t) = F (1)(t) + F (2)(t), where

(3.25)


F (1)(t) = −

[
(QΛ(ρ) Q⊺)D1/2B−1R(t− ρ)

]t
ρ=0

,

F (2)(t) =

∫ t

0

(QΛ(ρ)Q⊺)D1/2B−1
( d
dρ
R(t− ρ)

)
dρ.

The first term is

(3.26)
F (1)(t) = (Q Λ(0) Q⊺)D1/2B−1R(t)− (QΛ(t) Q⊺)D1/2B−1R(0)

= (Q Λ(0) Q⊺)D1/2B−1R(t).

Refer now to Section 6, Corollary 6.6, which shows that PR(t) = [O(h), O(h4), . . . , O(h4), O(h)]⊺ with explicit

representation of each component in terms of x 7→ u(., t), x 7→ ∂k0
t ∂k1

x u(., t), with 0 ≤ k0 ≤ 1, 4 ≤ k ≤ 8. Then, it
will result from Lemma 5.2 that the components of D1/2 B−1 R(t) are O(h4). This gives

(3.27) ∥D1/2 B−1 R(t)∥2 ≤ C1(u, t)h
3.5,

where C1(u, t) can be expressed as

(3.28) C1(u, t) = C ′ max
0≤k0≤1
4≤k1≤8

max
x∈[0,1]

|∂k0
t ∂k1

x u(x, t)|

and C ′ a universal constant. In addition, ∥Q∥2 = ∥Q⊺∥2 = 1 and ∥Λ(ρ)∥2 ≤ 1, for ρ ≥ 0. Thus, we will have

(3.29) ∥F (1)(t)∥2 ≤ ∥D1/2B−1R(t)∥2 ≤ C1(u, t)h
3.5.

We turn now to F (2)(t). We have

(3.30) ∥F (2)(t)∥2 ≤ max
0≤ρ≤t

∥D1/2 B−1 dR

dρ
(ρ)∥2.

By continuity, there exists ρ̄ ∈ [0, t] such that max0≤ρ≤t ∥D1/2 B−1 dR
dρ (ρ)∥2 = ∥D1/2 B−1 dR

dρ (ρ̄)∥2. Therefore

(3.31) ∥F (2)∥2 ≤ C1(∂tu, ρ̄)h
3.5

Combining Equations (3.24), (3.29) and (3.31), we conclude that

(3.32) ∥F (t)∥2 ≤ ∥F (1)(t)∥2 + ∥F (2)(t)∥2 ≤ C(t)h3.5,
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where

(3.33) C(t) = C ′′ max
0≤k0≤2
4≤k1≤8

max
x∈[0,1]

|∂k0
t ∂k1

x u(x, t)|.

Using F (t) = D1/2E(t), we have ∥D1/2E(t)∥2 ≤ C(t)h3.5. Hence we conclude that

(3.34) |(−δ̃2x)1/2e(t)|h ≤ C(t)h4.

This gives (3.2), by taking the maximum over t ∈ [0, tf ].

(ii) The function t ∈ R+ 7→ t1/2 is operator monotone (see [9, chap.5]). This means that for positive definite
matrices A and B, we have

(3.35) A ≻ B ⇒ A1/2 ≻ B1/2,

where ≻ stands for the ordering of positive definite matrices (see [21, chap. 7.7]). By (2.20)

(3.36) D = T̃ +
h2

12
B ≻ T̃ ≻ I.

Thus, using (3.35), we have

(3.37) D1/2 ≻ T̃ 1/2 ≻ I.

We have used that the eigenvalues of T̃ are λ̃k = 4 sin2(kπ/2N)/h2 > 1, 1 ≤ k ≤ N − 1. Therefore,

(3.38) |e(t)|h ≤ |(−δ2x)1/2e(t)|h ≤ |(−δ̃2x)1/2e(t)|h ≤ C(t)h4.

Consider next the bound on the discrete derivative δ̃x. By the definition of δ̃x in (2.7) and by the definitions of
the one-sided discrete first-order derivatives δ+x ej = (ej+1 − ej)/2 and δ−x ej = (ej − ej−1)/2, we have

(3.39) σxδ̃xe(t) = δxe(t) =
1

2

(
δ+x e(t) + δ−x e(t)

)
.

Then,

(3.40)

|σxδ̃xe(t)|2h =
1

4
|δ+x e(t) + δ−x e(t)|2h ≤ 1

2
(|δ+x e(t)|2h + |δ−x e(t)|2h)

= (−δ2xe(t), e(t))h = |(−δ2x)1/2e(t)|2h
≤ C(t)2h8.

In the last inequality we have invoked (3.38). In addition, σ−1
x is a uniformly (with h) bounded operator, hence

(3.41) |δ̃xe(t)|h ≤ |σ−1
x |h|σxδ̃xe(t)|h ≤ C(t)h4.

The inequalities (3.3)-(3.4) are deduced by taking the maximum of all constants of the form C(t) over t ∈ [0, tf ].
■

4. Convergence analysis for the equation ∂t∆u = ∆2u+ f

Consider the time dependent Stokes problem

(4.1)


∂t∆u = ∆2u+ f, (x, y) ∈ [0, 1]× [0, 1], t ≥ 0,

u(0, y, t) = u(1, y, t) = 0, ux(0, y, t) = ux(1, y, t) = 0,

u(x, 0, t) = u(x, 1, t) = 0, uy(x, 0, t) = uy(x, 1, t) = 0,

u(x, y, 0) = g(x, y), 0 ≤ x, y ≤ 1.

As in Section 2, we assume that the functions f(x, y, t), g(x, y) and the solutions u(x, y, t) are regular functions of
their variables (x, y, t) ∈ [0, 1]× [0, 1]× [0, tf ), where 0 < tf is a fixed time.
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Define the grid function t 7→ vj,k(t), j, k = 0, 1, ..., N , which serves as an approximation of u, to be the solution
of

(4.2)


∂t∆̃hvj,k = ∆̃2

hvj,k + fj,k, j, k = 1, ..., N − 1,

v0,k(t) = vN,k(t) = 0, (δ̃xv)0,k(t) = (δ̃xv)N,k(t) = 0, k = 0, ..., N,

vj,0(t) = vj,N (t) = 0, (δ̃yv)j,0(t) = (δ̃yv)j,N (t) = 0, j = 0, ..., N,

vj,k(0) = gj,k, j, k = 0, ..., N.

Here, for 1 ≤ j, k ≤ N − 1,

(4.3)


(δ4xv)j,k =

12

h2
(δxδ̃xv− δ2xv)j,k, (δ4yv)j,k =

12

h2
(δy δ̃yv− δ2yv)j,k,

(σxδ̃xv)j,k = (δxv)j,k, (σy δ̃yv)j,k = (δyv)j,k,

(σxw)j,k =
1

6
(wj−1,k + 4wj,k +wj+1,k), (σyw)j,k =

1

6
(wj,k−1 + 4wj,k +wj,k+1).

In addition,

(4.4) ∆̃2
hv = δ4xv+ δ4yv+ 2

(
δ2xδ

2
y −

h2

12
(δ4xδ

2
y + δ4yδ

2
x)
)
v,

and

(4.5) ∆̃hv = (δ̃2x + δ̃2y)v, δ̃2xv = 2δ2xv− δxδ̃xv, δ̃2yv = 2δ2yv− δy δ̃yv.

The exact solution u satisfies

(4.6) ∂t∆̃hu
∗
j,k = ∆̃2

hu
∗
j,k + fj,k + rj,k.

where r is the truncation error. By Taylor expansions, the components of the truncation error r may be written as
(see [2] Proposition 10.8)

(4.7)


σxrj,k = O(h4), σyrj,k = O(h4) j, k = 2, ..., N − 2,

σxr1,k = O(h), σxrN−1,k = O(h), k = 1, ..., N,

σyrj,1 = O(h), σyrj,N−1 = O(h), j = 1, ..., N.

with explicit representations similar to the ones in Section 3 (dimension 1). Define the error

(4.8) e = v− u∗.

By subtracting (4.6) from (4.2), we have

(4.9) ∂t(−∆̃h)e+ ∆̃2
he = r.

We relate the grid function vj,k, j, k = 1, ..., N − 1 with the column vector V = vec(v) defined by

(4.10) V =
[
v1,1, ..., vN−1,1, v1,2, ...vN−1,2, ..., v1,N−1, ..., vN−1,N−1

]⊺ ∈ R(N−1)2 .

The bottom ordering of the vector V ∈ R(N−1)2 is obtained by letting the index j vary first while keeping k fixed,
then vary the index k 2. Then, we relate the two-dimensional finite difference operators with matrix operators
of size (N − 1) × (N − 1) (for N ≥ 2) acting on a vector V . Most of those operators are obtained as Kronecker
products of (N−1)×(N−1) matrices. Recall that the Kronecker product of the matrices G ∈ Mm,n and H ∈ Mp,q

is the matrix G⊗H ∈ Mmp,nq defined by

(4.11) G⊗H =


g1,1H g1,2H ... g1,nH
...
...

gm,1H gm,2H ... gm,nH

 .
2This is the standard definition of the operator vec, see [22, Ch. 4.2, p. 244]
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Let the matrix B represent the biharmonic discrete operator δ4x in one dimension and the matrix T̃ represent −δ2x
(or −δ2y) in one dimension. Then, I ⊗ B and B ⊗ I represent the biharmonic operators δ4x and δ4y, respectively.

Similarly, I ⊗ T̃ and T̃ ⊗ I represents the operator −δ2x and −δ2y, respectively, in the 2D setting. In addition,

(4.12) R(t) =
[
r1,1, ..., rN−1,1, r1,2, ..., rN−1,2, ..., r1,N−1, ..., rN−1,N−1

]⊺ ∈ R(N−1)2

is related to the truncation error.
As in Section 3, the function t 7→ R(t) = vec(r(t)) is regular, since it is obtained by applying linear operators

to the function t 7→ u(., t) and its derivatives up to order 8, (see Section 6). Invoking Theorem 2.2 we have

Corollary 4.1. Let R(t) = R(1)(t)+R(2)(t) ∈ R(N−1)2 , where R(1) =
[
R

(1)
1 ; ...;R

(1)
N−1

]
and R(2) =

[
R

(2)
1 ; ...;R

(2)
N−1

]
,

respectively. Here

(4.13)

R
(1)
1 = [r1,1, 0, ..., 0, rN−1,1]

⊺,

R
(1)
j = [r1,j , ..., rN−1,j ]

⊺, j = 2, ..., N − 2,

R
(1)
N−1 = [r1,N−1, 0, ..., 0, rN−1,N−1]

⊺,

R
(2)
1 = [0, r2,1, ..., rN−2,1, 0]

⊺,

R
(2)
j = [0, ..., 0]⊺, j = 2, ..., N − 2,

R
(2)
N−1 = [0, r2,N−1, ..., rN−2,N−1, 0]

⊺.

Then,

(4.14) max
1≤m≤(N−1)2

|
(
(I ⊗B−1)R(1)(t)

)
m
| ≤ Ch4, 0 < t < tf ,

where I ⊗B−1 represents the operator δ−4
x , and

(4.15) max
1≤m≤(N−1)2

|
(
(B−1 ⊗ I)R(2)(t)

)
m
| ≤ Ch4, 0 < t < tf ,

where (B−1 ⊗ I) represents the operator δ−4
y .

Proof. Using the definition of a Kronecker product, we have

(4.16) I ⊗B =


B 0 ... ... 0
0 B 0 ... 0
...
0 0 ... 0 B

 , (I ⊗B)−1 =


B−1 0 ... ... 0
0 B−1 0 ... 0
...
0 0 ... 0 B−1

 .

Therefore, (I ⊗ B−1)R(1)(t) =

[
B−1R

(1)
1 (t), B−1R

(1)
2 (t), ..., B−1R

(1)
N−2(t), B

−1R
(1)
N−1(t)

]⊺

. By the optimal conver-

gence Theorem 2.1

(4.17) max
1≤m≤(N−1)2

|
(
(I ⊗B−1)R(1)(t)

)
m
| ≤ Ch4, 0 < t < tf .

Hence (4.14) holds. By a similar proof (4.15) holds. ■

We return now to the error analysis.

Theorem 4.2. Suppose that u, the solution to the system (4.1), has derivatives up to order 8, then the error e is
bounded by

(4.18) max0≤t≤tf |(−∆̃h)
1/2e(t)|h ≤ C(tf )h

4, 0 < t < tf .

Here −∆̃hg(t) = −(δ̃2x+δ̃
2
y)g(t) is a fourth-order approximation to the minus Laplacian operator, and C(tf ) denotes

a constant depending only on ∂k0
t u, ∂k1

x u, ∂k2
y u, t ∈ [0, tf ], (x, y) ∈ [0, 1]× [0, 1], with 0 ≤ k0 ≤ 2, 4 ≤ k1, k2 ≤ 8.

Proof. Let R(t) represents the vector of the truncation error. Define E(t) ≜ vec(e(t)) as the vector containing the
components of the error at time t

(4.19) e =

[
e1,1, ...eN−1,1; e1,2, ...eN−1,2; ...; e1,N−1, ...eN−1,N−1

]⊺

∈ R(N−1)2 .
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The operator ∆̃2
h may be represented by the matrix A of size (N − 1)2 × (N − 1)2 (refer to Section 2.2 for the

matrix notation.)

(4.20) A = I ⊗B +B ⊗ I + 2
[
(T̃ ⊗ I)(I ⊗ T̃ ) +

h2

12
(B ⊗ I)(I ⊗ T̃ ) +

h2

12
(I ⊗B)(T̃ ⊗ I)

]
≻ 0.

We turn now to the matrix representation of the error. The operator −∆̃h may be represented by the matrix M
of size (N − 1)2 × (N − 1)2 (see [7]), where

(4.21) M = I ⊗ T̃ + T̃ ⊗ I +
h2

12
(I ⊗B) +

h2

12
(B ⊗ I).

Therefore, in vector notation, Equation (4.9) may be written as

(4.22) ∂t(ME(t)) +A E(t) = R(t).

Define

(4.23) F (t) =M1/2E,

Proceeding parallel to (3.6-3.12), we obtain that

(4.24) F (t) =

∫ t

0

e−Ãρ M−1/2 R(t− ρ)dρ.

Multiplying M−1/2R(ρ) from the left by Ã (Ã)−1, we have

(4.25) F (t) =

∫ t

0

[e−Ãρ Ã] [Ã−1 M−1/2 R(t− ρ)]dρ.

where the matrix Ã = M−1/2AM−1/2 is a symmetric positive-definite matrix. Therefore, e−Ãρ Ã is also a
symmetric matrix positive-definite matrix. It may be diagonalized by a a unitary matrix U . Thus,

(4.26) e−Ãρ Ã = U Λ̃(ρ) U⊺,

where

(4.27) Λ̃(ρ) = diag{e−ρλ1λ1, ..., e
−ρλ(N−1)2λ(N−1)2}.

Here, λk, k = 1, ..., (N − 1)2 are the eigenvalues of Ã, which are positive. Therefore,

(4.28) F (t) =

∫ t

0

U Λ̃(ρ) U⊺ [Ã−1 M−1/2 R(t− ρ)]dρ.

Decomposing R(t) into R(t) = R(1)(t) +R(2)(t), where R(1)(t) and R(2)(t) are defined in (4.13)), we have

(4.29) F (t) =

∫ t

0

[U Λ̃(ρ) U⊺] [Ã−1 M−1/2]
[
R(1)(t− ρ) +R(2)(t− ρ)

]
dρ.

Invoking Ã−1 =M1/2A−1M1/2 and decomposing F (t) in the sum F (t) = F (1)(t) + F (2)(t) we have

(4.30)


F (1)(t) =

∫ t

0

[U Λ̃(ρ) U⊺]
[
M1/2A−1 R(1)(t− ρ)

]
dρ,

F (2)(t) =

∫ t

0

[U Λ̃(ρ) U⊺]
[
M1/2A−1 R(2)(t− ρ)

]
dρ.

We show that ∥F (1)(t)∥2 ≤ Ch3. The equality ∥F (2)(t)∥2 ≤ Ch3 follows similarly. Notice that

(4.31) Λ̃(ρ) = − d

dρ
Λ(ρ),

where

(4.32) Λ(ρ) = diag{e−ρλ1 , ..., e−ρλ(N−1)2 }.
Inserting (4.31)-(4.32) into (4.30), we have

(4.33) F (1)(t) = −
∫ t

0

d

dρ
(UΛ(ρ) U⊺)

[
M1/2 A−1 R(1)(t− ρ)

]
dρ.
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Integration by parts yields

(4.34) F (1)(t) = [−(UΛ(ρ) U⊺) M1/2 A−1 R(1)(t− ρ)]t0 +

∫ t

0

(UΛ(ρ) U⊺) M1/2 A−1 d

dρ
R(1)(t− ρ)dρ.

We decompose F (1)(t) to F (1,1)(t) + F (1,2)(t), where

(4.35)


F (1,1)(t) =

[
− (UΛ(ρ) U⊺) M1/2 A−1 R(1)(t− ρ)

]t
ρ=0

F (1,2)(t) =

∫ t

0

(UΛ(ρ) U⊺) M1/2 A−1 d

dρ
R(1)(t− ρ)dρ.

We have

(4.36)
F (1,1)(t) = (UΛ(0) U⊺) M1/2 A−1 R(1)(t)− (UΛ(t) U⊺) M1/2 A−1 R(1)(0)

= (UΛ(0) U⊺) M1/2 A−1 R(1)(t).

We will show in Lemma 5.3 that ∥M1/2 A−1 R(1)(t − ρ)∥2 ≤ C(t)h3. In addition ∥Λ(ρ)∥2 ≤ 1 for ρ ≥ 0 and
∥U∥2 = ∥U⊺∥2 = 1. Therefore,

(4.37) ∥F (1,1)(t)∥2 ≤ C(t)h3.

We turn now to F (1,2)(t). Notice that R(1)(ρ) (and therefore d
dρR

(1)(t − ρ)) contains fifth and eighth-order

derivatives of u with respect to x, y at some intermediate points (x̄, ȳ, ρ), where (x̄, ȳ) ∈ [0, 1] × [0, 1]. Therefore,
the time-derivative d

dρR(t− ρ) contains first order time-derivative of fifth and eighth-order spatial derivatives of u,

where they are all assumed to be bounded.
Since the components of d

dρR
(1)(t− ρ) are of the same order (as powers of h) as the components of R(1)(t− ρ),

we may apply Lemma 5.3 to R̃ = d
dρR(t− ρ) and obtain

∥M1/2 A−1 d

dρ
R(1)(t− ρ)∥2 ≤ C(t)h3.

In addition, since ∥U∥2 = ∥U⊺∥2 = 1 and ∥Λ(ρ)∥2 ≤ 1, for 0 ≤ ρ ≤ t, therefore

(4.38) ∥F (1,2)∥2 ≤ t max
0≤ρ≤t

∥M1/2 A−1 d

dρ
R(1)(ρ)]∥2 ≤ C(t)h3.

From (4.37)-(4.38), we conclude that

(4.39) ∥F (1)(t)∥2 ≤ C(t)h3.

Similarly,

(4.40) ∥F (2)(t)∥2 ≤ C(t)h3.

Therefore, ∥F (t)∥2 ≤ C(t)h3. Noting that F (t) =M−1/2E(t), we conclude that

(4.41) |(−∆̃h)
1/2e(t)|h ≤ C(t)h4.

■

5. Fourth order estimates for the matrices D1/2B−1R and M1/2A−1R̄

In this section we provide fourth-order estimates for T̃ 1/2B−1R , T̃ 1/2B−1R and M1/2A−1R̄, where R and R̄
is the vector which contains the truncation errors in 1D and 2D, respectively. In subsections 5.1, 5.2 and 5.3 we
provide a bounds for T̃ 1/2B−1R, D1/2B−1R and M1/2A−1R̄, respectively.

Consider the grid function r(t) in (2.14) with its components Ri(t). The vector R(t) is the source term in (3.6).
In fact, it appears in the expression D1/2B−1R(t), which is part of the integrand of Equation (3.16) In terms of
grid functions, it consists of estimating

(5.1) (−δ̃2x)1/2(δ4x)−1r

as a function of h. However, Theorem 2.2 provides only the estimate

(5.2) |(δ4x)−1r| ≤ Ch4,
13



which is not sufficient for our purpose. The goal in this section is to prove a sharper estimate

(5.3) |(−δ̃2x)1/2(δ4x)−1r| ≤ Ch4.

5.1. Estimate for T̃ 1/2B−1R. The proof of Theorem 2.3 is based on accurate representations of the vector B−1R.
Here, instead of estimating D1/2B−1R, we consider, as a first step, estimating T̃ 1/2B−1R.

Lemma 5.1. Assume that the vector R ∈ RN−1 satisfies

(5.4) PR = [Ch,Ch4, . . . , Ch4, Ch]⊺,

then all components of (T̃ 1/2B−1)R are O(h4), i.e.,

(5.5) |(T̃ 1/2B−1R)i| ≤ Ch4, 1 ≤ i ≤ N − 1.

Proof. The proof proceeds along the same lines of Theorem 2.2. We replace the matrix B−1 by the matrix T̃ 1/2B−1.
By Equation (2.32)

(5.6) P−1B−1P−1 = HG−1.

For T̃ 1/2B−1 we have

(5.7) P−1T̃ 1/2B−1P−1 = H̃G−1,

where H̃ = T̃ 1/2H ∈ Span(T ), (since T̃ = T/h2). Thus, (see (2.31) for the definition of H)

(5.8) H̃ =
h3

6
P−1T−3/2.

As in [16, 2], we bound the elements of H̃ in terms of h. Similar to Equation (10.140) in [2], we have for H̃

(5.9) H̃i,k =

N−1∑
j=1

h3
2

N

sin( ijπN ) sin( jkπN )

sin3( jπ
2N )(6− 4 sin2( jπ

2N ))
.

In particular

(5.10) H̃i,1 =

N−1∑
j=1

2h4
sin( ijπN ) sin( jπN )

sin3( jπ
2N )(6− 4 sin2( jπ

2N ))
.

Since for 0 ≤ x ≤ π/2, we have 2
π |x| ≤ | sinx| ≤ |x| and 2 ≤ 6− 4 sin2( jπ

2N ) ≤ 6. This gives

(5.11) 0 ≤ H̃1,1 = H̃N−1,N−1 ≤ C

N−1∑
j=1

∣∣h4(jh)2
(jh)3

| ≤ Ch3
∣∣ ln(h)|,

and

(5.12) |H̃1,N−1| = |H̃N−1,1| ≤ Ch3| ln(h)|.
In addition,

(5.13) |H̃i,1| ≤ C

N−1∑
j=1

h4jh

(jh)3
≤ Ch2,

and

(5.14) |H̃i,k| ≤ C

N−1∑
j=1

h4

(jh)3
≤ Ch, i, k = 2, ..., N − 2.

Therefore,

(5.15) H̃ =


O(h3| ln(h)|) O(h2) . . . O(h2) O(h3| ln(h)|)

O(h2) O(h) . . . O(h) O(h2)
...

... . . . . . .
...

O(h2) O(h) . . . O(h) O(h2)
O(h3| ln(h))| O(h2) . . . O(h2) O(h3| ln(h)|)

 .
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Invoking the estimates in (10.162), (10.163) in [2] and in [16], we have

(5.16) G−1R(t) = [O(h2), O(h4), ..., O(h4), O(h2)]⊺.

Therefore,

(5.17) H̃G−1R(t) =


O(h3| ln(h)|) O(h2) . . . O(h2 O(h3| ln(h)|)

O(h2) O(h) . . . O(h) O(h2)
...

... . . . . . .
...

O(h2) O(h) . . . O(h) O(h2)
O(h3| ln(h)|) O(h2) . . . O(h2) O(h3| ln(h)|)




O(h2)
O(h4)

...
O(h4)
O(h2)

 =


O(h5 ln(h))
O(h4)

...
O(h4)

O(h5 ln(h))

 .
Thus, the components of the matrix T̃ 1/2B−1R(t) are

(5.18)
(
T̃ 1/2B−1R(t)

)
j
=

(
H̃G−1R̃(t)

)
j
= O(h4), 1 ≤ j ≤ N − 1.

■

5.2. Estimate for D1/2B−1R.

Lemma 5.2. Let D be

(5.19) D = T̃ +
h2

12
B.

Assume that the vector R ∈ RN−1 satisfies

(5.20) PR = [Ch,Ch4, . . . , Ch4, Ch]⊺,

then

(5.21) ∥D1/2B−1R∥2 ≤ Ch3.5.

Proof. Denoting U = D1/2B−1R, U⊺U is expressed as

(5.22) U⊺U = R⊺ B−1 D B−1R.

Using (5.19)-(5.22) gives

(5.23) U⊺U = R⊺ B−1 T̃ B−1R+ (h2/12) R⊺ B−1R.

Define

(5.24)
J = R⊺ B−1 T̃ B−1R,

K =
(
(h2/12) R

)⊺
B−1R.

We look first at the second term K in U⊺T . By Theorem 2.2 B−1R = [O(h4), O(h4), ...., O(h4), O(h4)], we find
that

(5.25)
(h2/12)R = [O(h3), O(h6), ..., O(h6), O(h3)],

B−1R(t) = [O(h4), O(h4), ..., O(h4), O(h4)].

Therefore,

(5.26) K = O(h7).

As for the first term J in U⊺U , denoting by U1

(5.27) U1 = (T̃ )1/2 B−1R,

we have

(5.28) J = U⊺
1 U1 = R⊺ B−1 T̃ B−1R.

It has been shown in (5.18) that

(5.29) U1 = [O(h4), O(h4), ..., O(h4), O(h4)].
15



Therefore,

(5.30) J = U⊺
1 U1 = O(h7).

Combining (5.26) and (5.29) yields

(5.31) U⊺U = J +K = O(h7).

■

5.3. Estimate for M1/2A−1R̃. We prove now that ∥M1/2A−1 R(1)(t− ρ)∥2 ≤ Ch3. To simplify the notation, let

us define R̃ = R(1)(t− ρ) [a similar Lemma is true for R̃ = d
dρR

(1)(t− ρ)].

Lemma 5.3. Let M be (see (4.21))

(5.32) M = I ⊗D +D ⊗ I = I ⊗ T̃ +
h2

12
(I ⊗B) + T̃ ⊗ I +

h2

12
(B ⊗ I)

and let R̃ = R(1), where R(1) is defined in (4.13). Then,

(5.33) ∥M1/2 A−1 R̃∥2 ≤ C(t)h3.

Proof. Consider now

(5.34) (R̃)⊺A−1M A−1 R̃.

Invoking (4.21), we have

(5.35) A−1M A−1 = A−1
[
I ⊗D +D ⊗ I

]
A−1.

Splitting the sum above to two terms I ⊗D and D ⊗ I, we have

(5.36) A−1M A−1 = A−1 (I ⊗D) A−1 +A−1 (D ⊗ I) A−1 = P1 + P2,

where

(5.37)
P1 = A−1 (I ⊗D) A−1,

P2 = A−1 (D ⊗ I) A−1.

First, we consider P1. Since the elements of (I⊗D)1/2 A−1R̃ are smaller or equal in terms of orders of h compared

to (I⊗D)1/2 (I⊗B−1)R̃, we will bound the latter. Thus, we want to bound now R̃⊺ (I⊗B−1)(I⊗D) (I⊗B−1)R̃.
Recall that

(5.38) D = T̃ +
h2

12
B.

We will show that

(5.39) ∥(R̃)⊺ P1 R̃∥2 ≤ C∥(R̃)⊺[(I ⊗B)−1 (I ⊗D) (I ⊗B)−1] R̃∥2 ≤ Ch6.

This is equivalent to showing that

(5.40) ∥ (I ⊗D)1/2 (I ⊗B)−1 R̃∥2 ≤ C(t)h3.

It is shown in Lemma 5.2

∥D1/2B−1R∥2 ≤ Ch3.5,

therefore

(5.41) ∥ (I ⊗D)1/2 (I ⊗B)−1 R̃∥2 ≤ Ch3.

Thus, we conclude that

(5.42) (R̃)⊺P1R̃ ≤ C(t)h6.

Second, we consider P2, defined in (5.37). In Lemma 5.4 we prove that

(5.43) P2 = (R̃)⊺P2R̃ ≤ C(t)h6.
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Therefore, from A−1M A−1 = P1 + P2, we will conclude that

(5.44) ∥M1/2A−1R̃∥2 ≤ Ch3.

■

Lemma 5.4. We show that (R(1))⊺P2R
(1) ≤ Ch6, where P2 is defined

(5.45) P2 = A−1(D ⊗ I)A−1,

and R(1) is defined in (4.13).

Proof. Here we look at R(1) = R(1,1) +R(1,2), where

R(1,1) =
[
R

(1,1)
1 ; ...;R

(1,1)
N−1

]
and R(1,2) =

[
R

(1,2)
1 ; ...;R

(1,2)
N−1

]
, respectively, where

(5.46)

R
(1,1)
1 = [r1,1, 0, ..., 0, rN−1,1]

⊺,

R
(1,1)
j = [r1,j , 0, ..., 0, rN−1,j ]

⊺, j = 2, ..., N − 2,

R
(1,1)
N−1 = [r1,N−1, 0, ..., 0, rN−1,N−1]

⊺.

R
(1,2)
1 = [0, 0, ..., 0, 0]⊺,

R
(1,2)
j = [0, r2,j , ..., rN−2,j , 0]

⊺, j = 2, ..., N − 2,

R
(1,2)
N−1 = [0, 0, ..., 0, 0]⊺.

First, we consider (R̃)⊺P2R̃, where we take R̃ = R(1,1). Note that P2 = A−1(D ⊗ I)A−1.
Consider now

(5.47) (R̃)⊺P2R̃ = R̃⊺A−1(D ⊗ I)A−1R̃.

We want to determine the order with respect to h of the components of (D1/2⊗ I)A−1R̃. Notice that the elements

in R̃ related to i = 2, ..., N − 2 are zero for j = 1, ..., N − 1. Consider the operator (D1/2 ⊗ I)(I ⊗ B)−1. This

operator approximates ∂y(δ
4
x)

−1. Thus, for i = 2, ..., N − 2, j = 1, ..., N − 1 we have that (D1/2 ⊗ I)A−1R̃

is zero. Consider now i = 1, N − 1. The elements of R̃ which are related to i = 1, N − 1 are O(h) for any

j = 1, .., N − 1. Note that the elements of A−1R̃ are smaller or equal compared to the magnitudes of the elements
of (I ⊗ B)−1R̃, therefore we consider now (I ⊗ B)−1R̃. We have that (I ⊗ B−1) = (I ⊗ H)(I ⊗ G−1). We also

have that G−1
1,1, G

−1
N−1,1, G

−1
1,N−1, G

−1
N−1,N−1 are O(h), therefore the elements of (I ⊗G−1)R̃ related to i = 1, N − 1

are O(h2) for j = 1, ..., N − 1. In addition, we have that H1,1, HN−1,1, H1,N−1, HN−1,N−1 are O(h3). Therefore,

the elements of (I ⊗ B−1)R̃ which are related to i = 1, N − 1 are O(h5) for all j = 1, ..., N − 1. Operating on

(I ⊗B)−1R̃ with (D1/2 ⊗ I) results in elements which are O(h4) for i = 1, N − 1, j = 1, ..., N − 1.

The vector (D1/2 ⊗ I)(I ⊗B)−1R̃ contains only 2(N − 1) non zero terms, which are O(h4). Therefore,

(5.48) ∥(D1/2 ⊗ I)(I ⊗B)−1R̃∥2 = O(h3).

Thus,

(5.49) R̃⊺(I ⊗B)−1(D ⊗ I)(I ⊗B)−1R̃ = O(h6).

Therefore, we have

(5.50) R̃⊺P2R̃ ≤ Ch6.

As for

(5.51) (R̃(1,2))⊺A−1(D ⊗ I) A−1R̃(1,2),

since (D ⊗ I)1/2 A−1 is a bounded operator, and since the non-zero components of R̃(1,2) are O(h4), we conclude
that

(5.52) (R̃(1,2))⊺P2R̃
(1,2) = O(h6).

Combining (5.50)-(5.52), we conclude that

(5.53) (R̃(1))⊺P2R̃
(1) ≤ C h6.

■
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6. Truncation error representation

Let u(x, t) be a regular function with associated grid function u∗(t) = [u(x1, t), u(x2, t), . . . , u(xN−1, t)]. The
truncation error r(u)(t), denoted for simplicity also by r(t), is expressed as

(6.1) r(t) =
(
Lu(., t)

)∗ − Lhu
∗(t),

where L the continuous operator L = −∂txx + ∂4x and Lh the semi-discrete operator Lh = ∂t(−δ̃2x) + δ4x, with
Dirichlet boundary conditions in both cases. Here, our goal is to derive an expression of the form

(6.2) σxr(t) =
[
O(h), O(h4), · · · , O(h4), O(h)

]⊺
,

with an effective representation of the O(hα) components in terms of a spatial multi-point Taylor expansion of the

functions ∂
(k)
x u(x, t) and ∂t∂

(k)
x u(x, t), (with fixed time t). Indeed, such a representation is more explicit than the

formal identity (6.2). This form is used to accurately handling the estimates (3.29) and (3.31) in Section 3.
The analysis hereafter is elementary and relies on the standard Taylor-Lagrange expansions and convex com-

binations of derivatives. The following abbreviation is used for convenience. For a given regular function x ∈
(0, 1) 7→ u(x), we denote

(6.3)

{
uk ≜ ∂(k)x u,

uk,∗ ≜ (∂(k)x u)∗, uk,∗i ≜ (∂(k)x u)(xi).

The parenthesis is omitted when specifying an operation evaluated at a grid point xi. For example, we denote
δxu

∗
i ≜

(
δxu

∗)
i
. The truncation error r(t) is decomposed as r(t) = −ra(t) + rb(t) with

(6.4)

{
ra(t) = δ4x(u(., t)

∗)− u4,∗(t),

rb(t) = δ̃2x(∂tu)
∗(., t)− (∂tu)

2,∗(t).

Concerning the Hermitian derivative, the following upper bound of the truncation error for the Hermitian derivative
has been derived in [2] Lemma 10.1.

(6.5) |δ̃xu∗i − u1,∗i | ≤ Ch4∥u5∥∞,(0,1),

with the constant C = 1/60. In [8], a representation of this truncation is given using the basis Zk in (2.36). In the
following Lemma, we give a simpler representation of the truncation error.

Lemma 6.1. Let u(x) be a regular function. The components of the truncation error τ(u) = δ̃xu
∗ − u1,∗ can be

expressed in the form

(6.6) τ(u)i = δ̃xu
∗
i − u1,∗i = h4

(
γ1i u

5(ξ1i )− γ2i u
5(ξ2i )

)
, 1 ≤ i ≤ N − 1,

where

• The scalar ξ1i , ξ
2
i ∈ (0, 1).

• The scalars γ1i , γ
2
i are fixed positive constants, independent of u(x), and satisfying for all i ∈ J1, N − 1K

and N :

(6.7) γ1i ≤ 0.0547, γ2i ≤ 0.0506.

Remark 6.2. The scalars ξ1i and ξ2i are not necessarily close to xi. This corresponds to the fact that u 7→ δ̃xu is
a ”non local” operator. They depend on u(x).

Proof. The 4th order Hermitian derivative δ̃xuj , 1 ≤ j ≤ N−1, is defined in (2.7). It is a non local finite difference
operator. This non-locality gives that the truncation error results in a multi-point Taylor representation. The
multi-point can be compacted using convex combination of derivatives into a two point representation. The proof
is as follows. In vector form, we have σ−1

x ↪→ [αi,j ] ∈ MN−1 with

(6.8) [αi,j ] =


2
3

1
6 0 . . . 0

1
6

2
3

1
6 . . . 0

...
...

... . . .
...

0 . . . 1
6

2
3

1
6

0 . . . 0 1
6

2
3


−1

.
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The matrix [αi,j ] is the inverse of a tridiagonal Toeplitz positive definite matrix. According to [29], the coefficients
αi,j are

(6.9) αi,j = (−1)i+jβi,j , βi,j = |αi,j |, 1 ≤ i, j ≤ N − 1,

where

(6.10)

βi,j = 6
(λi − µi)(λN−j − µN−j)

(λ− µ)(λN − µN )
, 1 ≤ i ≤ j ≤ N − 1,

βi,j = βj,i, 1 ≤ i ≤ j ≤ N − 1.

The constants λ and µ are λ = 2 +
√
3 ≃ 3.73, µ = 2−

√
3 ≃ 0.28. The matrix [αi,j ] is full. The βi,j behave as

(6.11) 0 < βi,1 < βi,2 < . . . , βi,i−1 < βi,i > βi,i+1 · · · > βi,N−1 > 0, 1 ≤ i ≤ N − 1,

with

(6.12)



0 < βi,i <
6

λ− µ
=

√
3,

βi,j
βi,j+1

> λ > 1, i ≤ j ≤ N − 1, 1 ≤ i ≤ N − 1,

βi,j
βi,j−1

> λ > 1, 1 ≤ j ≤ i− 1, 1 ≤ i ≤ N − 1.

The truncation error τ of δ̃xu satisfies

(6.13) (σxτ)i = δxu
∗
i − σxu

1,∗
i , 1 ≤ i ≤ N − 1.

Taylor-Lagrange expansions of u∗i+1 and u∗i−1 give that

(6.14) δxu
∗
i = u1,∗i + h2

1

3!
u3,∗i + h4

1

5!
u5(η1i ), η1i ∈ (xi−1, xi+1).

By definition of σx is σxu
1,∗
i = u1,∗i + h2

3! δ
2
xu

1,∗
i . Furthermore, by Taylor expansion

(6.15) δ2xu
1,∗
i = u3,∗i + h2

2

4!
u5(η2i ), η2i ∈ (xi−1, xi+1).

It results from (6.13)-(6.15) that

(6.16)

(σxτ)i = δxui − σxu
1,∗
i

= u1,∗i + h2
1

3!
u3,∗i + h4

1

5!
u5(η1i )−

(
I + h2

1

3!
δ2x

)
u1,∗i

= h4
( 1

5!
u5(η1i )−

1

2 3!2
u5(η2i )

)
.

Multiplying the vector [(σxτ)1, . . . , (σxτ)N−1]
T by the matrix [αi,j ] in (6.8) yields

(6.17) τi = h4
N−1∑
j=1

(−1)i+jβi,j

( 1

5!
u5(η1j )−

1

2 3!2
u5(η2j )

)
.

The sum in (6.17) is the difference of two sums, both with positive coefficients. Defining the two sets of indices
Jeven(i) = {1 ≤ j = i+ 2p ≤ N − 1} and Jodd(i) = {1 ≤ j = i+ 2p+ 1 ≤ N − 1}, p ∈ Z, one has

(6.18)

τi = h4
[ 1
5!

∑
j∈Jeven(i)

βi,ju
5(η1j ) +

1

2 3!2

∑
j∈Jodd(i)

βi,ju
5(η2j )

]
− h4

[ 1
5!

∑
j∈Jodd(i)

βi,ju
5(η1j ) +

1

2 3!2

∑
j∈Jeven(i)

βi,ju
5(η2j )

]
.
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The first and second term can be collected in one single term by convex combination of the derivatives. Define

(6.19)


γ1i =

1

5!

∑
j∈Jeven(i)

βi,j +
1

2 3!2

∑
j∈Jodd(i)

βi,j ,

γ2i =
1

5!

∑
j∈Jodd(i)

βi,j +
1

2 3!2

∑
j∈Jeven(i)

βi,j .

Due to (6.12), the scalars γ1i , γ
2
i are well defined and uniformly bounded (independently of i and N). This gives

that there exists ξ1i , ξ
2
i ∈ (0, 1) such that (6.6) holds. ■

We next derive representation formulas for ra(t) and rb(t) in (6.4) having a form similar to (6.6: they use a set
of points in (0, 1) depending of the function u(x).

Lemma 6.3 (Truncation term τa). For any regular function u(x), consider the truncation error ra(u) defined by

(6.20) ra(u) = δ4xu
∗ − u4,∗.

The components of σx(ra) are of the following orders of h

(6.21) σxra = [O(h), O(h4), . . . O(h4), O(h)]⊺.

The structure of (6.21) is as follows. There exists positive constants βk
i uniformly bounded independently of i and

N , such that

• At the internal points xi, 2 ≤ i ≤ N − 2,

(6.22) (σxra)i = h4
(
β1
i u

8(ξ1i )− β2
i u

8(ξ2i )
)
,

with constants β1
i = 26

7! ≃ 0.0127 and β2
i = 71

7! ≃ 0.0141 and for some ξ1i ∈ (xi−2, xi+2), ξ
2
i ∈ (xi−1, xi+1).

• At the near boundary point x1, we have

(6.23) (σxra)i = h
(
β3
1u

5(ξ3i )− β4
1u

5(ξ4i )
)
+ h2

(
β5
1u

6(ξ5i )− β6
1u

6(ξ6i )
)
,

for some ξ3i , ξ
4
i , ξ

5
i , ξ

6
i ∈ (0, x3). A similar expression holds at the point xN−1.

Remark 6.4. Note that (6.22) and (6.23) contain a finite number of terms, which are uniformly bounded in terms

of derivatives of u(x). The points ξji depend on the function u(x).

Proof. For the truncation analysis at interior points 2 ≤ i ≤ N − 2, we refer to [2, chap. 10.4, pp. 160 sqq]. It is
based on Taylor-Lagrange expansions at point xi of

(6.24) (σxδ
4
x)vi = (δ2x)

2vi =
1

h4
(
vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2

)
, 2 ≤ i ≤ N − 2,

and of

(6.25) σxu
4,∗
i =

1

6
u4,∗i−1 +

2

3
u4,∗i +

1

6
u4,∗i+1, 2 ≤ i ≤ N − 2.

Subtracting these two expansions results in (6.22).
Next consider x1 and x2. We have

(6.26)
(σxra)1 = σxδ

4
xu

∗
1 − σxu

4,∗
1

=
2

3
(δ4xu

∗
1 − u4,∗1 ) +

1

6
(δ4xu

∗
2 − u4,∗2 ).

We have

(6.27) (δ4xu
∗)1 =

12

h2

(
(δxδ̃x)u

∗
1 − δ2xu

∗
1

)
, (δ4xu

∗)2 =
12

h2

(
δxδ̃xu

∗
2 − δ2xu

∗
2

)
.

For all regular functions v(x), the Taylor-Lagrange formula for all 1 ≤ i ≤ N − 1 gives

(6.28) δ2xv
∗
i = v2∗i + h2

2

4!
v4,∗i + h4

2

6!
v6(η9i ), η9i ∈ (xi−1, xi+1).
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In particular, for i = 1,

(6.29) δ2xu
∗
1 = u2,∗1 + h2

2

4!
u4,∗1 + h4

2

6!
u6(η91), η91 ∈ (x0, x2).

Consider in (6.27) the term (δxδ̃x)u
∗
1. By Lemma 6.1 and by (6.14) (recalling that u1,∗0 = δ̃xu

∗
0 = 0), we have

(6.30)
(δxδ̃x)u

∗
1 =

1

2h
(δ̃xu

∗
2 − δ̃xu

∗
0) =

1

2h
δ̃xu

∗
2 =

1

2h

(
u1,∗2 − u1,∗0 + h4

(
γ12u

5(ξ12)− γ22u
5(ξ22)

))
= u2,∗1 + h2

1

3!
u4,∗1 + h3

1

2

(
γ12u

5(ξ12)− γ22u
5(ξ22)

)
+ h4

1

5!
u6(η101 ), ξ12 , ξ

2
2 ∈ (0, 1), η101 ∈ (x0, x2).

By (6.27), it results that

(6.31) δ4xu
∗
1 − u4,∗1 = 6h

(
γ12u

5(ξ12)− γ22u
5(ξ22)

)
+ h2

(12
5!
u6(η101 )− 24

6!
u6(η91)

)
.

For i = 2, we have for some η112 ∈ (x1, x3), δ
2
xu

∗
2 = u2,∗2 + h2 2

4!u
4,∗
2 + h4 2

6!u
6(η112 ) and for some η122 ∈ (x1, x3),

(6.32) (δxδ̃x)u
∗
2 = u2,∗2 + h2

1

3!
u4,∗2 + h3

1

2

(
(γ13u

5(ξ13) + γ11u
5(ξ11))− (γ23u

5(ξ23) + γ21u
5(ξ21))

)
+ h4

1

5!
u6(η122 ).

Thus, by (6.27)

(6.33) δ4xu
∗
2 − u4,∗2 = 6h

(
(γ11u

5(ξ11) + γ13u
5(ξ13))− (γ21u

5(ξ21) + γ23u
5(ξ23))

)
+ h2

(12
5!
u6(η122 )− 24

6!
u6(η112 )

)
.

It results from (6.31) and (6.33) that (σxra)1, given in (6.26), satisfies (6.23) with β3
1 = γ11 + 4γ12 + γ13 , β

4
1 =

γ21 + 4γ22 + γ23 , β
5
1 = 1/12 , β6

1 = 1/36. The proof for i = N − 1 is similar. ■

Consider now the term rb(t) in (6.4). Denoting v(x) = ∂tu(x, t), we have

(6.34) rb(t) = δ̃2xv
∗(t)− v2,∗(t).

Lemma 6.5 (Truncation term τb). For fixed t > 0, the truncation error rb(t) satisfies

(6.35) σxrb = [O(h2), O(h4), . . . O(h4), O(h2)]⊺.

There exists positive constants β′,k
i uniformly bounded with respect to N such that the components of σxrb are

represented as follows.

• At internal points xi, i.e., at xi, for 2 ≤ i ≤ N − 2,

(6.36) σxrb,i = h4
(
β′,1
i v6(ξ′,1i )

)
+ h6

(
β′,2
i v8(ξ′,2i )− β′,3

i v8(ξ′,3i )
))
,

for some ξ′,1i , ξ′,22 ∈ (xi−2, xi+2), ξ
′,3
i ∈ (xi−1, xi+1).

• At near boundary points xi with at i = 1 or i = N − 1, we have

(6.37) σxrb,i = h2
(
β′,4
i v4(ξ′,4i )

)
+ h3

(
β′,5
i v5(ξ′,5i )− β′,6

i v5(ξ′,6i )
)
+ h4

(
β′,7
i v6(ξ′,7i )− β′,8

i v6(ξ′,8i )
)

for some ξ′,4i , ξ′,5i , ξ′,6i , ξ′,7i ∈ (0, 1).

We skip the proof of Lemma 6.5. Note that in (6.36) and (6.37), the points ξ′,ji depend on v(x).
Consider now a regular function u(x, t) and v(x, t) = ∂tu(x, t). Consider a fixed time t̄ > 0, and the truncation

r(t̄) ≜ r(u(x, t̄)). It results from Lemma 6.3 and Lemma 6.5 that σxr(t̄) can be expressed as follows.

Corollary 6.6. Suppose that u is a solution to the problem (2.1) such that x 7→ uk(., t), (∂tu)
k(., t) are continuous

for 0 ≤ k ≤ 8, then the truncation error r(t) satisfies an identity of the form

(6.38) σxr(t̄) = [O(h), O(h4), . . . O(h4), O(h)]⊺
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with Taylor representation expressed as

(6.39)

(σxr(t̄))i = h4
[ 2∑
j=0

Ci,ju
8(yi,j , t̄) +Di,jv

6(zi,j , t̄)
]
+ h6

[ 2∑
j=0

C ′
i,jv

8(z′i,j , t̄)
]
= O(h4), i = 2, ..., N − 2,

(σxr(t̄))1 = h
[ 2∑
j=0

C1,ju
5(y1,j , t̄)

]
+ h2

[ 2∑
j=0

C ′
1,ju

6(y′1,j , t̄) +D′
1,jv

4(z′1,j , t̄)
]

+ h3
[ 2∑
j=0

D′′
1,jv

5(z′′1,j , t̄)
]
+ h4

[ 2∑
j=0

D′′′
1,jv

6(z′′′1,j , t̄)
]
= O(h),

with a similar expression for (σxr(t̄))N−1. All the constants Ci,j , Di,j , ... are fixed. The points yi,j , y
′
i,j , ... belong

to the interval (0, 1). They a priori depend on the function x 7→ u(x, t̄).

Coming back to (3.26), we consider the particular case where u(x, t) is the solution of (2.1). The vector R(t) in
(3.26) satisfies PR(t̄) ↪→ σxr(t̄) with components given in (6.39) with t̄ = t. From Corollary 6.6, we conclude that
the vector PR(t) satisfies the hypothesis (5.20) of Lemma 5.1.

Similarly, we have

(6.40) P
d

dt
R(t̄) = [O(h), O(h4), . . . , O(h4), O(h)].

with an analog explicit representation.

Remark 6.7. The truncation analysis for the 2D case proceeds in a similar fashion.

7. Numerical Examples

In the previous sections we have considered compact approximations in space of the equations (2.1) and (4.1).
In this section we display numerical results for the equations above, using the fourth-order discrete operators for
the approximation in the spatial direction. The temporal integration of these equations is carried out via the
method of lines. We invoke an IMEX2 scheme of Crank-Nicolson type. For example, for the two-dimensional
time-dependent Stokes equation ∂t∆u = ∆2u+ f we invoke the following IMEX scheme

(7.1) (∆̃hui,j)
n+1/2−(∆̃hui,j)

n

∆t/2 = 1
2

(
∆̃2

hu
n+1/2
i,j + ∆̃2

hu
n
i,j

)
+ f

n+1/4
i,j ,

(7.2) (∆̃hui,j)
n+1−(∆̃hui,j)

n

∆t = + 1
2

(
∆̃2

hu
n+1
i,j + ∆̃2

hu
n
i,j

)
+ f

n+1/2
i,j .

This scheme is if second order in time, therefore in order to achieve fourth-order overall accuracy in time and
space, we pick ∆t = Ch2.

7.1. Example 1. Consider the solution u(x, t) = e−t sin(πx)/π2 of the problem

(7.3)


∂xxtu = ∂4xu+ f(x, t), 0 < x < 1, t > 0,
u(0, t) = 0, ux(0, t) = e−t/π, t > 0,
u(1, t) = 0, ux(1, t) = −e−t/π, t > 0,
u(x, 0) = sin(πx)/π2, 0 ≤ x ≤ 1.

Here u and ux are given at the two boundary points and f(x, t) is chosen such that u(x, t) = e−t sin(πx)/π2 is the
exact solution of the problem above. The numerical results are shown in Table 1. They calibrate the fourth-order
accuracy of the scheme.

mesh 9 Rate 17 Rate 33 Rate 65
|e|h 4.9254(-6) 4.02 3.0327(-7) 4.01 1.8884(-8) 4.00 1.1791(-9)
|ex|h 3.2671(-6) 4.01 2.0308(-7) 4.00 1.2671(-8) 4.00 7.9157(-10)

Table 1. Compact scheme for ∂xxtu = ∂4xu+ f with exact solution: u(x, t) = e−t sin(πx)/π2 on
x ∈ [0, 1], t > 0. We display e and ex, the l2 errors for the u and for ux. Here ∆t = h2 and t = 0.5.
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7.2. Example 2. Consider the solution u(x, t) = 16x2(1− x)2 sin(1/((x− 0.5)2 + ε) sin(2πt), with ε = 0.05 of the
problem

(7.4)


∂xxtu = ∂4xu+ f(x, t), 0 < x < 1, t > 0,
u(0, t) = 0, ux(0, t) = 0, t > 0,
u(1, t) = 0, ux(1, t) = 0, t > 0,
u(x, 0) = 0, 0 ≤ x ≤ 1.

Here u and ux are given at the two boundary points and f(x, t) is chosen such that 16x2(1−x)2 sin(1/((x−0.5)2+
ε) sin(2πt) is the exact solution of the problem above. Notice that the solution is very oscillatory near the center
of the interval [0, 1]. The numerical results are shown in Table 2. They calibrate the fourth-order accuracy of the
scheme.

mesh 33 Rate 65 Rate 129 Rate 257
|e|h 0.0523(0) 7.03 3.997(-4) 4.28 2.0579(-5) 4.07 1.2255(-6)
|ex|h 1.4598(0) 4.41 0.0683(0) 4.03 0.0040(0) 4.04 2.4242(-4)

Table 2. Compact scheme for ∂xxtu = ∂4xu + f with exact solution: 16x2(1 − x)2 sin(1/((x −
0.5)2 + ε) sin(2πt) with ε = 0.05 on x ∈ [0, 1], t > 0. We display e and ex, the l2 errors for the u
and for ux. Here ∆t = h2 and t = 0.25.

Figure 1. Example 2. Left: Approximation for u(x, t). Right: Approximation for ∂xu(x, t)

7.3. Example 3. Consider the solution u(x, y, t) = (1− x2)2(1− y2)2e−t of the problem

(7.5)


∂t(∆u) = ∆2u+ f(x, y, t), −1 < x, y < 1, t > 0,
u(−1, y, t) = u(1, y, t) = 0, ux(−1, y, t) = ux(1, y, t), t > 0,
u(x,−1, t) = u(x, 1, t) = 0, uy(x,−1, t) = uy(x, 1, t) = 0, t > 0,
u(x, 0) = (1− x2)2(1− y2)2, −1 ≤ x, y ≤ 1.

Here u and ux are given at the two boundary points and f(x, t) is chosen such that u(x, y, t) = (1−x2)2(1−y2)2e−t

is the exact solution of the problem above. The numerical results are shown in Table 3. They assess the fourth-order
accuracy of the scheme.

mesh 9× 9 Rate 17× 17 Rate 33× 33 Rate 65× 65
|e|h 1.2386(-4) 4.00 7.7408(-6) 4.00 4.8376(-7) 4.00 3.0235(-8)
|ex|h 2.0259(-4) 3.99 1.2750(-5) 4.00 7.9731(-7) 4.00 4.9834(-8)

Table 3. Compact scheme for ∂t(∆u) = ∆2u+ f with exact solution: u(x, y, t) = (1− x2)2(1−
y2)2e−t on (x, y) ∈ [−1, 1]× [−1, 1], t > 0. We display e and ex, the l2 errors for the u and for ux.
Here ∆t = h2 and t = 0.25.
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7.4. Example 4. Consider the solution u(x, y, t) = −0.5e−2t sin2 x · sin2 y of the problem

(7.6)


∂t(∆u) = ∆2u+ f(x, y, t), 0 < x, y < π t > 0,
u(0, y, t) = u(π, y, t) = 0, ux(0, y, t) = ux(π, y, t), t > 0,
u(x, 0, t) = u(x, π, t) = 0, uy(x, 0, t) = uy(x, π, t) = 0, t > 0,
u(x, 0) = −0.5 sin2 x · sin2 y, 0 ≤ x, y ≤ π.

Here u and ux are given at the two boundary points and f(x, t) is chosen such that u(x, y, t) = −0.5e−2t sin2 x·sin2 y
is the exact solution of the problem above. The numerical results are shown in Table 4. They calibrate the fourth-
order accuracy of the scheme.

mesh 9× 9 Rate 17× 17 Rate 33× 33 Rate 65× 65
|e|h 1.9508(-3) 3.96 1.2527(-4) 3.99 7.9061(-6) 4.00 4.9542(-7)
|ex|h 2.6996(-3) 3.98 1.7134(-4) 3.99 1.0775(-5) 4.00 6.7459(-7)

Table 4. Compact scheme for ∂t(∆u) = ∆2u+f with exact solution: u(x, y, t) = −0.5e−2t sin2 x·
sin2 y on (x, y) ∈ [0, π]× [0, π], t > 0. We present e and ex, the l2 errors for the u and for ux. Here
∆t = h2 and t = 0.6168.

Figure 2. Example 4. Left: Error for u(x, y, t). Right: Error for ∂xu(x, y, t)

7.5. Example 5. Consider the solution u(x, y, t) = (1−x2)3(1−y2)3e−t of the NS problem in the square [−1, 1]×
[−1, 1].

(7.7) ∂t∆u+ C(u) = ν∆2u+ f(x, y, t), [−1, 1]× [−1, 1], t > 0,

where C(u) = ∇⊥u.∇∆u is the convective term of the NS equations. The boundary and initial data deduced from
the exact solution. The viscosity is ν = 1. The final time is tf = 1. The numerical results are shown in Table 5.

mesh 9× 9 Rate 17× 17 Rate 33× 33 Rate 65× 65
|e|h 1.9373(-3) 4.00 1.2072(-4) 4.00 7.5424(-6) 4.00 4.7138(-7)
|ex|h 1.9886(-3) 4.02 1.2255(-4) 4.00 7.6527(-6) 4.00 4.7827(-7)

Table 5. Compact scheme for ∂t(∆u) = −C(ψ) + ν∆2u + f with exact solution: u(x, y, t) =
(1− x2)3(1− y2)3e−t in the square [−1, 1]× [−1, 1]. We present e and ex, the l2 errors for the u
and for ux. Here ∆t = Ch2 and tf = 1.
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8. Conclusion

In [17], a O(h3.5) error estimate was proved for (1.3) using energy methods. Here we establish that the error
is in fact O(h4), for (1.3) and (1.1), despite the fact the the truncation error drops at interior points from O(h4)
to O(h) at near boundary points. Note also that in [3] we have proved second order convergence for a compact
second order scheme for the linear equation close to (1.1) was established. In [4] we have proved that the error for
the second order compact scheme for the full nonlinear Navier-Stokes equations is O(h1.5). Our goal in a future
research is to prove that fourth-order convergence can be extended to the Navier-Stokes system.
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