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Abstract

Many phenomena in Physics and Engineering are modeled by Partial Dif-
ferential Equations. Typically, analytical solutions of such problems are un-
known. Hence, numerical schemes are applied for approximating the exact
solutions. In order to accurately approximate the exact solutions, very fine
grids are required. However, the computations become too costly. In this
work, a multiscale iterative approach is utilized for enhancing the accuracy
of coarse grid computations which results from a high-order finite difference
scheme. The main idea is to run the finite difference computations on a
coarse grid until some intermediate time lever. Then, the coarse grid results
are interpolated and extended to a fine grid using Laplacian Pyramids, a mul-
tiscale iterative approach. Finally, the finite difference scheme is employed
on the finer grid until a prescribed final time. Comparing the results to those
obtained on a fine grid, we see that the convergence rates obtained from the
two methods are comparable, while the computational time is significantly
reduced.

A modified multimodal Laplacian Pyramids algorithm for predicting fu-
ture values of the solution is also suggested. The method approximates and
extends a function based on two or more input modalities coded by a se-
ries of multiscale kernels, which are averaged as a convex combination. In
this work, the modalities are the numerical model’s approximations of the
solution of the differential equation and its derivative at previous time steps,
and the goal is to predict the solution at a proceeding time step. It can be
seen that, by adapting the convex combination of the kernels to local regions
of the solution with stronger or weaker gradients, the predicted results are
improved.
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1. Introduction

Many phenomena in Physics and Engineering are modeled by Partial Dif-
ferential Equations (PDEs). Typically, analytical solutions of such problems
are unknown and, therefore, numerical schemes, such as finite difference [1]
and finite element methods [2], are applied for approximating the exact so-
lutions. In order to accurately approximate these exact solutions, in terms
of the solution and its gradient, very fine grids are required. As a conse-
quence, the computations become too costly and different approaches have
been suggested for enhancing the speed of computations, while preserving
highly accurate approximations, which would have been generated via finer
grids.

Several recent approaches have been proposed for enhancing coarse grid
computations. In [3], a Smoothness-Increasing Accuracy-Conserving filter
was applied as a post-processing procedure for enhancing approximate so-
lutions of PDEs. A neural network was proposed in [4] for resolving the
gradients of the solution near the boundaries of the physical domain as,
otherwise, one should apply a very fine grid or finite differences and finite
elements methods in order to resolve the high gradients of the solution inside
the physical domain and close to its boundary. In [5], a numerical method
for approximating the solution of the one-dimensional acoustic wave prob-
lem was investigated, when violating the numerical stability condition. The
authors of [5] used deep learning to create an explicit non-linear scheme
that remains stable for larger time steps. The proposed spatio-temporal
neural-network architecture is additionally enhanced during training with a
physically-informed term, in order to adapt the approximate solution to the
solution of the physical problem. Recovering a scatterer in an underwater
medium was presented in [6]. There, the acoustic wave equation was solved
numerically to create a dataset. Then, several neural networks with different
architectures and parameters were trained, where the goal is to retrieve both,
the location and shape of the unknown scatterer. After training the model,
the inference takes milliseconds and the model can be used for real-time ap-
plications. A new approach called the Finite Volume Neural Network (FINN)
was introduced in [7]. The FINN method adopts the numerical structure of
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the well-known Finite Volume Method for handling partial differential equa-
tions, so that each quantity of interest follows its own adaptable conservation
law, while it concurrently accommodates learnable parameters.

In [8] kernel analog forecasting (KAF) methods were studied from the
perspective of data generated by multiscale dynamical systems. The authors
use multiscale systems to provide a framework in which the fundamental
role of Markovianity in data-driven prediction can be studied. The setting of
KAF is a methodology that has been successful in a number of applications,
which were backed by a mature theory. The studies provide guidance for
the interpretation of data-driven prediction methods when used in practice.
The authors of [9] introduce and implement a framework for systematically
extracting coarse-scale observables from microscopic/fine scale data and for
discovering the underlying governing equations using machine learning tech-
niques (e.g. Gaussian processes and artificial neural networks) enhanced
by feature selection methods. Intrinsic representations of the coarse-scale
behavior via manifold learning techniques (in particular, Diffusion Maps),
generating alternative possible forms of the governing equations is also ex-
plored and discussed. See also [10] for a review on solving PDEs in Physics
using machine learning.

In this work, a multiscale iterative approach is utilized for enhancing the
accuracy of high-order finite difference results, which are applied in coarse
grids. The main idea is to begin the computation of the evolution in time on a
coarse grid, using a finite difference scheme, while switching from a coarse to
a fine grid towards the final time steps of the computations. The coarse grid
results are interpolated and extended to a fine grid using Laplacian Pyramids
(LP), which is a multiscale iterative approach [11, 12].

We will show that comparing the results to those obtained on a fine
grid throughout the computations, the errors and the rates of convergence
obtained from the two methods are comparable, while the computational
time is significantly reduced with this proposal.

A second part of this paper uses a modified LP model for predicting future
values of the solution. The modified LP method approximates and extends
a function based on two or more input modalities. Each modality is coded
by a series of multiscale kernels, which are averaged as a linear combination.
In this work, the modalities are the numerical model’s approximations of
the problems solution and its derivative at past time points, and the goal
is to predict or forecast the solution at a future time. We will show that,
by adapting the linear combination of the kernels to the local regions of the
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solution that have stronger or weaker gradients, the prediction results are
improved.

The outline of this paper is the following. In Section 2 the Laplacian
Pyramids for approximation and extension of functions are introduced. In
addition, a procedure for Forecasting, called the multimodal Laplacian Pyra-
mids is described. In Section 3, we describe the two algorithms used in this
paper. The first is for switching from a coarse to a fine grid in order to save
computational time, while keeping the same convergence rates. The second is
the algorithm for forecasting. In Section 4 the numerical method is described
in more detail for both algorithms. Finally, numerical results are presented in
Section 5. They assess the fourth-order accuracy of the proposed algorithm
and the accuracy of the forecasting algorithm. Conclusions are provided in
Section 6.

2. The Laplacian Pyramids Scheme

Laplacian Pyramids (LP) is a method for approximation and extension
of functions that are defined over a grid type or a scattered dataset. By
convolving the data with Gaussian kernels of decreasing widths, a multi-
scale representation is constructed. In statistics, this approach is known as
the Nadaraya-Watson estimator [13]. The regression model is achieved by
stopping the iterations when the difference between the functions and its ap-
proximation is smaller than a predefined error. When the function is smooth,
such as in the case we are dealing with in this work, the LP iterations are
evoked until the residual is small enough thus, the LP model is an interpo-
lation (rather than a regression) scheme [14]. In what follows, we present
two versions of the LP scheme. The first, is the standard version, which will
be utilized for extending the information from the coarse grid to the fine
grid. In the second version, the LP model is computed based on two input
modalities.

2.1. Laplacian Pyramids for Interpolation and Extension

Let X = {x0, . . . , xn} be a set of data points. Here, this set contains the
grid points that belong to a coarse grid. Let f be a function that is defined
on X. In the present application, f is a numerical approximation to the
physical phenomena that is generated by a high-order numerical scheme. An
interpolation of f at the grid points X is constructed as follows. A series of
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Gaussian kernels of decreasing scales, Gl = (gl(xi, xj))), are defined by

Gl = gl(xi, xj) = e
−∥xi−xj∥

2

σl , (1)

where xi, xj ∈ X. The initial kernel scale σ0 is set to be a large number. The
associated row-normalized kernels ofGl are denoted byKl = kl(xi, xj). Then,
a representation of f is computed using an iterative procedure, by convolving
f with the series of smoothing operators Kl. A first course representation of
f is constructed by

s0(xi) =
∑
x∈X

k0(xi, x)f(x). (2)

We denote the first convolution as f0 = s0. The difference d1 = f − f0 is
averaged by a finer kernelK1 = k1(xi, xj), that has σ1 =

σ0

2
. This results with

a finer representation of f , f1 = f0+ s1, where s1(xi) =
∑

x∈X k1(xi, x)d1(x).
In general, for l = 1, 2, 3 . . ., we have dl = f − fl−1, and

fl(xi) = fl−1(xi) + sl(xi) = fl−1(xi) +
∑
x∈X

kl(xi, x)dl(x). (3)

The iterations are stopped when the difference ∥f − fl∥ is smaller than a
prescribed ϵ.

Extension of the model to new points is straightforward. Given a new
point x̃, which is in the present application a grid point that belongs to the
fine grid, the multiscale representations f0, f1, . . . , fl are extended to evaluate
fl(x̃). First, s0 is extended by

s0(x̃) =
∑
x∈X

k0(x̃, x)f(x). (4)

Similarly, the kernels that form the finer resolutions s1, . . . , sl are extended,
resulting with

fl(x̃) = fl−1(x̃) + sl(x̃) = fl−1(x̃) +
∑
x∈X

kl(x̃, x)dl(x). (5)

2.2. Multimodal Laplacian Pyramids

We describe a general modification of LP for multimodal input. Later,
this model is adapted for forecasting by considering input points that are

5



time-trajectories and a function that is the value of these trajectories at a
future time.

LetX(A) = {xA
0 , . . . , x

A
n} andX(B) = {xB

0 , . . . , x
B
n } be two aligned datasets,

here two datasets that are defined on the n+1 grid points. The function f is
defined over X(A) and X(B), on each grid point, such that f(xA

i ) = f(xB
i ) =

f(i).

We construct a series of coarse kernels G
(A)
l and G

(B)
l based on X(A)

and X(B) with initial coarse scales σ
(A)
0 and σ

(B)
0 . Denote the associated row-

normalised kernels by K
(A)
l and K

(B)
l . Consider a new series of kernels, which

is a convex combination of two kernels at a given scale, defined by

αK
(A)
l + (1− α)K

(B)
l . (6)

A first coarse approximation of f , f0 = s0, is then defined by

s0(i) = α

 ∑
xA
j ∈X(A)

k
(A)
0 (xA

i , x
A
j )f(j)

+(1−α)

 ∑
xB
j ∈X(B)

k
(B)
0 (xB

i , x
B
j )f(j)

 .

(7)
The parameter α, 0 ≤ α ≤ 1, defines the weight assigned to each input

modality. Then, the residual d1 = f − f0 is smoothed by the linear combina-
tions of the kernels at level l = 1, as defined in Eq. (6). The iterations are
defined by

fl(i) = fl−1(i) + sl(i), (8)

where,

sl(i) = α

 ∑
xA
j ∈X(A)

k
(A)
l (xA

i , x
A
j )dl(j)

+(1−α)

 ∑
xB
j ∈X(B)

k
(B)
l (xB

i , x
B
j )dl(j)

 .

(9)
Here, dl(i) = f(i)− fl−1(i).

Given a new pair of input points that belong to X(A) and X(B), exten-
sion of the kernels K

(A)
l and K

(B)
l , is carried out in a similar manner as in

Equations (4) and (5).

2.3. Error Analysis for the LP Scheme

For analyzing the LP error, the previously defined kernel is considered.
First, notice that, when working in the continuous kernel setting, the sum-
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mation becomes an integral. Therefore, we have kl(x, x
′) for a Gaussian

function.
Furthermore, for all l, writing now pl (x) = kl(x, 0), is an approximation

to a delta function satisfying∫
pl (x) dx = 1,

∫
xpl (x) dx = 0,∫

∥x∥22 pl (x) dx ≤ 2C,
(10)

where C is a constant. Assume that f is in L2, then (see [12, 15])

∥fl − f∥L2 ≤ Cσ2
(

σ2

µ(l+1)

)l

∥f∥2l+2,2, (11)

where ∥f∥m,2 denotes the Sobolev norm of a function with up to m deriva-
tives in L2. Thus, the L2 norm of the LP error decays at a very fast rate.

Applying the previous result to the kernel αk
(A)
l +(1−α)k

(B)
l and defining

f − fl = dl−1 (see Equation (9)), we have for the convex combinations of the
two kernels the same bound for the error as in Equation (11).

3. The Proposed Algorithms

In this work the LP is utilized in two algorithms. The first algorithm is
the extension of the numerical results from a coarse to a fine grid, for which
the results are invoked for the application of the scheme in the proceeding
time interval. The second algorithm for which the LP algorithm is invoked is
for forecasting future values of the solution of the differential equation, using
regression of the resulting numerical results for previous time steps.

3.1. Extending coarse grid approximations

The LP is utilized for enhancing the accuracy of high-order finite differ-
ence results, which are applied to the resulting approximation of the differ-
ential equation on a coarse grid. In more detail, we begin the computation
of the evolution in time of the differential equation on a coarse grid, using
a high order finite difference scheme, while switching from a coarse to a fine
grid in the proceeding time interval.

In particular, we aim to reach an approximation at time t = T0. The
simulation is executed on a coarse grid until t⋆ = βT0, where 0.5 ≤ β ≤ 0.75.
Here, we set β = 0.5. Then, the coarse grid results are interpolated and
extended to a finer grid, using the LP scheme (Section 2.1). The simulation
is executed on the fine grid until we reach t = T0.
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3.2. Forecasting future values with the multimodal LP scheme

In this part, the multimodal LP scheme is applied for prediction of future
values of the solution based on historic time trajectories that were generated
by the numerical scheme. Concretely, given the numerical approximations
for f(i) and fx(i) at times t−k to t on all grid points, 0 ≤ i ≤ n , we forecast
the values of the numeric approximation at a future time t̃, where t̃ > t.

The input dataset X(A) holds trajectories of length k of the numerical
approximation of f(i) at each grid point. The second dataset X(B) holds
concatenated trajectories of f(i) and fx(i) at each grid point (the concate-
nated trajectories are of length 2k). We note that the concatenation of the
trajectories of f to fx improves the results compared to taking just the tra-
jectories of fx.

4. Numerical Methods

Our test problem is the Kuramoto-Sivashinsky equation

∂u
∂t

+ ∂4
xu+ ∂2

xu+ u ∂xu = f(x, t), −30 < x < 30, t > 0,

u(−30, t) = ∂xu(30, t) = 0, t ≥ 0

u(30, t) = ∂xu(30, t) = 0, t ≥ 0

u(x, 0) = u0(x), −30 ≤ x ≤ 30.

(12)

The right-hand side f(x, t) is chosen so that the exact solution for the problem
is

u(x, t) = c+ (15/19)
√

11/19[−9 tanh(k(x− ct− x0))
+11 tanh3(k(x− ct− x0))],

(13)

where x ∈ [−30, 30]. In this case one may show that f(x, t) = 0. We picked
c = −0.1, k = 0.5

√
11/19 and x0 = −10.

4.1. The numerical finite-difference scheme

We equip the interval Ω = [0, 1] with a uniform grid

xj = jh, 0 ≤ j ≤ N, h =
1

N
.

The approximation is carried out by grid functions v defined on {xj, 0 ≤ j ≤
N}. The space of these grid functions is denoted by l2h.
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The Hermitian derivative of v ∈ l2h,0, approximates ∂xu. It will serve not
only in approximating (to fourth-order of accuracy) first-order derivatives,
but also as a fundamental building block in the construction of finite dif-
ference approximations to higher-order derivatives. First, we introduce the
“Simpson operator”

(σxv)j =
1

6
vj−1 +

2

3
vj +

1

6
vj+1, 1 ≤ j ≤ N − 1. (14)

The Hermitian derivative vx is now defined by

(σxvx)j = (δxv)j, 1 ≤ j ≤ N − 1, (15)

where δxv =
vj+1−vj−1

2h
.

Remark. In definition (15), the values of (vx)j, j = 0, N, need to be pro-
vided, so that the left-hand side of the equation is well defined for j = 1, N−1.
If not otherwise specified, we shall henceforth assume that these values are
given by the boundary conditions vx ∈ l2h,0, namely

(vx)0 = (vx)N = 0.

In particular, the linear correspondence l2h,0 ∋ v → vx ∈ l2h,0 is well defined,
but not onto, since δx has a non-trivial kernel.

We define now δ2x, which is a second-order approximation to ∂2
xu:

(δ2xv)j =
vj+1 − 2vj + vj−1

h2
, 1 ≤ j ≤ N − 1. (16)

The biharmonic discrete operator is given by (for v, vx ∈ l2h,0)

δ4xv =
12

h2
[δxvx − δ2xv]. (17)

We next introduce a fourth-order replacement to the operator δ2x:

(δ̃2xv)j = 2(δ2xv)j − (δxvx)j, 1 ≤ j ≤ N − 1. (18)

All the approximations in space for ∂4
xu and ∂2

xu are fourth-order and com-
pact (it uses only nearest grid neighbors). To step the differential equation
in time we have used a Crank-Nicolson scheme. It is an implicit trapezoidal
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rule for the linear terms ∂4
xu and ∂2

xu and it is an explicit scheme for the
non-linear term u ∂xu. Since this is a second order scheme in time, we have
picked the time step ∆t to be O(h2):


v
n+1/2
j − vnj
∆t/2

+
1

2
(δ4xv

n+1/2
j + δ̃2xv

n+1/2
j ) = −1

2
(δ4xv

n
j + δ̃2xv

n
j )− vnj v

n
x,j + f ∗,n

j ,

vn+1
j − vnj
∆t

+
1

2
(δ4xv

n+1
j + δ̃2xv

n+1
j ) = −1

2
(δ4xv

n
j + δ̃2xv

n
j ) + v

n+1/2
j v

n+1/2
x,j + f

∗,n+1/2
j ,

(19)

5. Numerical results

Recall that our test problem is the Kuramoto-Sivashinsky equation

∂u
∂t

+ ∂4
xu+ ∂2

xu+ u ∂xu = w(x, t), x ∈ (−30, 30), t > 0,

u(−30, t) = ∂xu(30, t) = 0, t ≥ 0,

u(30, t) = ∂xu(30, t) = 0, t ≥ 0,

u(x, 0) = u0(x), x ∈ [−30, 30].

(20)

The right-hand side w(x, t) is chosen so that the exact solution for the prob-
lem is

u(x, t) = c+ (15/19)
√

11/19[−9 tanh(k(x− ct− x0))
+11 tanh3(k(x− ct− x0))],

(21)

where x ∈ [−30, 30].
In this case f(x, t) = 0. We picked c = −0.1, k = 0.5

√
11/19 and x0 =

−10. The discrete solution v is again obtained by the scheme (19).
In Figure 1 we have a plot of the solution and its numerical approximation

at t = 1 and N = 121 (left) and for N = 961 (right) in order to show the
gradients in the exact and numerical solution cases.

5.1. Extending Coarse Grid Approximations for the Kuramoto-Sivashinsky
Equation

We display results when we combine the finite-difference scheme with
kernel extensions, as explained in Section 3.1. First, the fourth-order compact
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Figure 1: KS numerical example: Exact solution (solid line) and computed solution (cir-
cles) for N = 121 (left) and N = 961 (right).

scheme was ran to final times T = 1 and T = 2 with meshes of N = 241,
N = 481 and N = 961. In Table 1 we display numerical results for the
equation (20) for the fourth-order scheme. We have picked ∆t = h2, where
h = 1/N , and the final time is t = 1. Observe in the right panel that
fourth-order accuracy is achieved for u and ∂u

∂x
.

Mesh N = 241 Rate N = 481 Rate N = 961
T = 1, |e|h 3.2873(-4) 3.99 2.0752(-5) 4.00 1.2984(-6)
T = 1, |ex|h 2.9822(-4) 3.95 1.9332(-5) 3.98 1.2246(-6)
T = 2, |e|h 3.8205(-4) 3.97 2.4315(-5) 3.99 1.5265(-6)
T = 2, |ex|h 3.6001(-4) 3.92 2.3719(-5) 3.98 1.5048(-6)

Table 1: Compact scheme for KS equation (12) with exact solution u = u(x, t) = c +
(15/19)

√
(11/19)(−9 tanh(k(x− ct− x0)) + 11 tanh3(k(x− ct− x0)). We display |e|h and

|ex|h, the errors in u, and ux, respectively at t = 1. The time step is ∆t = h2.

On the other hand, the scheme was ran with N = 241 up to T = 1, then
extended the discrete solution to N = 481. Subsequently, the scheme was
ran with N = 481 from T = 1 to T = 2. In a similar test we first ran the
scheme with N = 481 up to T = 1, then extended the function to N = 961
and then ran the scheme with N = 961 from T = 1 to T = 2. The results
are displayed in Table 2.

We see that although we ran the scheme on the finer mesh only from
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Mesh N = 241 ext. to N = 481 Rate N = 481 ext. to N = 961
T = 2, |e|h 2.0853(-4) 4.22 1.1136(-5)
T = 2, |ex|h 7.1261(-4) 4.40 3.3690(-5)

Table 2: Compact scheme for KS equation (20) with exact solution u = u(x, t) = c +
(15/19)

√
(11/19)(−9 tanh(k(x− ct− x0)) + 11 tanh3(k(x− ct− x0)). We display |e|h and

|ex|h, the errors in u, ux, respectively at t = 2. The time step is ∆t = h2. Here we first
ran the scheme with a coarse mesh to T = 1, then extended it to a finer mesh, and then
ran on the finer mesh to T = 2

T = 1 to T = 2, instead of running it through all the time-interval from
T = 0 to T = 2, the rate of convergence in 2 is around 4, as it is in 1. So,
we have saved computational time for half of the time interval, while keeping
the same convergence rate.

5.2. Forecasting Future Values of the Kuramoto-Sivashinsky Equation with
Multimodal LP

In this experiment, the input for the regression model is taken from the
results of the numerical scheme executed on a fine grid, with 961 grid points.
Here, the high-order numerical scheme, which was described in Section 4,
was carried out starting with T = 0 until T = 1. The time step was picked
as ∆t = (∆x)2, where ∆x = 1/960 is the mesh size. The number of the time
steps needed to reach T = 1 is therefore 256, and the intermediate temporal
steps are tn = n∆t, n = 1, 2, ..., 256. Thus, f(x) = v(x, 1), where v(x, t) is
the finite-difference approximation to the solution u(x, t) of the Kuramoto-
Sivashinsky equation.

The model was trained on data from the temporal interval t = 231 to
t = 250 in order to approximate f(i) = f(x) at the time step t = 255, for all
grid points 0 ≤ i ≤ n. Then, by extending the multimodal LP to new time
intervals that hold data from time steps t = 232 to t = 251, we forecast the
values of f(x) at time step t = 256.The data which we have used forX(A) and
X(B) is the numerical approximations to the Kuramoto-Sivashinsky equation
and its derivative, as described in Section 3.2.

Since the solution of the Kuramoto-Sivashinsky equation has strong gra-
dients in some regions and smooth in others, the forecasting was split into 3
sub-regions, based on the smoothness of the solution. Figure 2 plots the 3
sub-regions (they were detected automatically by performing a k-means clus-
tering on f(x) at time step t = 255). Region 1 (in blue) spans the interval
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−30 ≤ x ≤ −10, region 2 (in green) is the interval −10 < x ≤ 10 and region
3 (in yellow) is the interval 10 < x ≤ 30.

-30 -20 -10 0 10 20 30

x

-2

-1

0

1

2

v
(x

,1
)

Figure 2: f(x) split into 3 regions based on the gradients of the function.

Multimodal LP was used to forecast the values of the numeric approx-
imation after t = 256 time steps (v(x, 1)) in each of the regions. Three
values of the parameter α (see Eqs. (8) and (9)) were tested, specifically
α = 1, 0.5, 0. Note that as α decreases from 1 to 0, more weight is given
to the kernels K

(B)
l , which hold information on fx = vx. When α = 1, in

practice, we evoke the regular single modality LP scheme.
Table 3 plots the forecasting errors in terms of Root Mean Square Error

(RMSE). It may be seen that adding the information for X(B) significantly
reduces the errors in the second region. On the other hand, in the smooth
regions, this information is not needed. Moreover, splitting the region to
local sub-regions, improves the overall accuracy.

Region α = 1 α = 0.5 α = 0
Reg. 1 (−30 ≤ x ≤ −10) 7.09(-7) 8.11(-7) 8.89(-7)
Reg. 2 (−10 < x ≤ 10) 3.98(-4) 2.61(-5) 1.53(-6)
Reg. 3 (10 < x ≤ 30) 7.08(-7) 8.15(-7) 8.94(-7)

Regs. 1,2,3 (−30 ≤ x ≤ 30) 4.02(-4) 4.12(-5) 2.7(-6)

Table 3: Forecasting errors for f(x) = v(x, 1) in terms of RMSE in three regions for
different and modalities combinations (different values of α).
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6. Conclusions

This work presents an efficient and easy-to-implement method for en-
hancing computation on a coarse grid to a finer grid, while keeping the fine
grid’s convergence rate. Extending the information from the coarse to fine
grid is done via the Laplacian Pyramids algorithm, which interpolates and
extends the data with high accuracy. Moreover, an adaptation of the Lapla-
cian Pyramid scheme that takes several modalities as its input was introduced
and applied for forecasting.
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