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Abstract We consider the convergence analysis of a compact finite difference
scheme for the equation ut +

∂ 4

∂x4 u = 0. The discrete in space, continuous in time
approximation is vt +δ 4

x v= 0, where δ 4
x is the discrete biharmonic operator (DBO)

operator. The error e(t) = u∗(t)−v(t) is shown to be O(h4) for sufficiently smooth
data . This problem serves as a model to compare an analytic approach, based on
functional analysis and a purely matrix approach. The matrix approach benefits from
tools of matrix theory of linear algebra and from known results for the solution of a
set of ordinary differential equations. The functional analytic approach utilizes the
connection to the continuous problem.

1 Biharmonic time dependent problem, continous and
semidiscrete

The convergence analysis of finite difference schemes attracts the interest of the nu-
merical analysis community for several decades (see for example [10]). A renew of
interest invoking various analytical and discrete frameworks is currently observed,
(see [15, 14, 12, 8]). Here we wish to draw attention to the concurrent ”languages”
(analysis versus algebra oriented) tools, which may be used to establish the same
convergence rate result. We would like to inspect the advantages versus disadvan-
tages for each approach.
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As a model problem we consider the evolution equation (T is a fixed final time),

∂

∂ t
u =−

(
∂

∂x

)4
u, x ∈Ω = [0,1], t ∈ [0,T ], (1)

subject to initial condition and boundary conditions{
u(x,0) = u0(x), x ∈Ω = [0,1],
u(0, t) = ux(0, t) = u(1, t) = ux(1, t) = 0, t ∈ [0,T ].

(2)

When there is no risk of confusion we shall write u(t) for u(x, t). Note that (1)

is well-posed in the space L2(Ω). In other words, the semigroup e−t( ∂

∂x )
4

is a
continuous contraction semigroup in this space. The domain of its generator is
H4(Ω)∩H2

0 (Ω). Moreover, Hs(Ω) is a persistence space for every s ≥ 0, where
Hs is the Sobolev space of order s. This is readily seen by casting the semigroup
e−t( ∂

∂x )
4

in terms of Fourier series. The following finite difference operators are in-
volved 1 (see [5, 2]).

- The standard three point Laplacian is δ 2
x and the centered difference δx are

defined by

(δ 2
x v) j =

v j+1 +v j−1−2v j

h2 , (δxv) j =
v j+1−v j−1

2h
, 1≤ j ≤ N−1. (3)

- The Hermitian derivative is δ̃xv, defined as a function of v by

(σxδ̃xv) j = (δxv) j, j = 1, ...,N−1, (4)

where
(σxw) j =

1
6
(w j−1 +4w j +w j+1), j = 1, ...,N−1. (5)

Equivalently, δ̃x = σ−1
x δx. Here we assume that w0 =wN = (δ̃xv)0 = (δ̃xv)N = 0.

- The Discrete Biharmonic Operator (DBO) δ 4
x is defined by, [4, 13]

(δ 4
x v) j =

12
h2 (δxδ̃xv−δ

2
x v) j, j = 1, ...,N−1. (6)

The equation (1) is approximated in space on a uniform grid x j = jh,h =
1/N, j = 0,1, ...,N by t 7→ v(t) = [v1(t), . . . ,vN−1(t)]T . The gridfunction v(t) is
solution of the discrete analog to Equation (1) is

vt =−δ
4
x v, t ∈ [0,T ], (7)

1 Gridfunctions are denoted by the fraktur font
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The function v(t) depends smoothly on t ∈ [0,T ] and is subject to the initial con-
dition v(0) = u∗0, and boundary condition v0(t) = (vx)0(t) = vN(t) = (vx)N(t) =
0, t ∈ [0,T ] 2 .

The error e(t) = v(t)−u∗(t) satisfies

∂te+δ
4
x e= τ, (8)

where τ(t) is the truncation error. We adopt the notation µ ↪→ M to express that
the gridfunction (resp. finite difference operator) µ corresponds to the vector (resp.
matrix) M. Here e(t) ↪→ E(t) ∈ RN−1, δ 4

x ↪→ B ∈ R(N−1)×(N−1) and τ(t) ↪→ R(t) ∈
RN−1. The vector form of (8) is

∂tE(t)+BE(t) = R(t). (9)

We now consider the convergence of v(t) to u(t) as N→ ∞. In the rest of the paper,
we establish the convergence to 0 of the error e(t), or equivalently of E(t), for t ∈
[0,T ] when h→ 0. We will need the following

Claim 1 Let (
∂

∂x

)4
u = f , x ∈Ω = [0,1],

and assume that f ∈C4(Ω). Then operating on the grid function u∗ by the discrete
operator δ 4

x leads to the following truncation errors.

(δ 4
x u∗) j = f ∗j +O(h4), ∀ j ∈ {2, ...,N−2}, (10)

and on near-boundary points

(δ 4
x u∗)1 = f ∗1 +O(h), (δ 4

x u∗)N−1 = f ∗N−1 +O(h). (11)

2 Error analysis for the Discrete Biharmonic Operator (DBO)

We consider the equation (
∂

∂x

)4
u = f , x ∈Ω = [0,1]. (12)

It is well-known that the kernel of
(

∂

∂x

)−4
is given by the following claim [4, Claim

5.1].

Claim 2 The solution of (12) is given by

u(x) =
∫ 1

0
K(x,y) f (y)dy, (13)

2 For u(x) a given function, u∗ is the gridfunction defined by u∗ = [u(x1), . . .u(xN−1)]
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where

K(x,y) =

{
1
6 (1− x)2y2[2x(1− y)+ x− y], y < x
1
6 x2(1− y)2[2y(1− x)+ y− x], x < y

. (14)

Now consider the discrete analog

δ
4
x v= f ∗. (15)

We wish to estimate the difference of grid functions v− u∗. Corollary 5.2 in [4]
gives the explicit form for the kernel of the inverse discrete operator (δ 4

x )
−1 : l2

h,0→
l2
h,0 :

Claim 3 The discrete operator (δ 4
x )
−1 : l2

h,0 → l2
h,0 is represented by a matrix{

Kh
i, j

}
1≤i, j≤N−1

, explicitly given by

Kh
i, j = hK(xi,x j), 1≤ i, j ≤ N−1, (16)

where K(x,y) is the resolvent kernel of
(

∂

∂x

)−4
, as in Equation (14).

Note that the matrix Kh can be written as

Kh
i, j = Kh

j,i =
h
6

ψ(xi) ·θ(x j), 1≤ i≤ j ≤ N−1, (17)

where the product in the right-hand side is the scalar product in R2 of the two vector
functions:

ψ(x) = x2
(
− x,3

)
,

θ(y) = (1− y)2
(

2y+1,y
)
.

Thus, the matrix Kh is quasi-separable of rank 2 [6, Section 4.2]. It simplifies (com-
putationally) the evaluation of the matrix. Based on these facts, we can prove a con-
vergence theorem for a general continuous function f (x).

Theorem 1 Let f ∈C[0,1]. Let u(x) be the solution to (12) and let v be the solution
to the discrete equation (15). Then

lim
h→0
|v−u∗|∞ = 0. (18)

Proof In view of Claim 2 and Claim 3 we have

vi−u∗i =
N−1

∑
j=1

hK(xi,x j) f ∗j −
∫ 1

0
K(xi,y) f (y)dy, i = 1,2, . . . ,N−1. (19)

The first term in the right hand side is the Riemann sum of the second term, so that

max{|vi−u∗i |, i = 1,2, . . . ,N−1} ≤Cω(h), (20)
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where ω(h) is the supremum (over x∈ [0,1]) of the oscillation functions K(x,y) f (y)
as functions of y ∈ [0,1]. �

We can now state our optimal convergence estimate, in the case where the function
f is sufficiently smooth. This estimate was first obtained in [7] by using a detailed
analysis of the matrix associated with the inverse of the DBO. The proof presented
here is much shorter and gives a better insight into the analytical character of the
DBO.

Proposition 1 Suppose that f ∈ C4[0,1] and let u(x) be the solution to (12). Let
v be the solution to the discrete equation (15). Then there exists a constant C > 0
depending on f but not on h, j such that

|v j−u∗j | ≤Ch4, j = 1,2, . . . ,N−1. (21)

Proof Let e= v−u∗ and r= δ 4
x e. In view of Claim 1

r j = O(h4), ∀ j ∈ {2, ...,N−2}, r1 = O(h), rN−1 = O(h). (22)

In view of Claim 3 we have

ei =
N−1

∑
j=1

hK(xi,x j)r j, i = 1,2, . . . ,N−1. (23)

By Equation (14) we have (uniformly in i ∈ {1,2, . . . ,N−1})

K(xi,x j) =

{
O(h2), j = 1,N−1,
O(1), j ∈ {2,3, . . . ,N−2} .

(24)

Combining (22) and (24) we conclude

|ei| ≤Ch4 +C
N−2

∑
j=2

h ·h4 ≤Ch4, i = 1,2, . . . ,N−1. (25)

which gives (30). �

3 Convergence of the discrete time-evolution solution by purely
matrix method

Here we prove optimal convergence in the error e(t) (Equation (8)). For this we
invoke a slightly different version of Proposition 1, (see [7, 2]).

Proposition 2 (Optimal convergence theorem for the DBO)
Assume that the vector r, which contains the truncation errors, satisfy the follow-

ing estimates:
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|(σxr) j| ≤Ch4, j = 2, ...,N−2,
|(σxr)1| ≤Ch, |(σxr)N−1| ≤Ch.

(26)

The DBO operator δ 4
x is invertible and its inverse is denoted by δ−4

x = (δ 4
x )
−1. Then,

the vector δ−4
x r= [δ−4

x r1, . . . ,δ
−4
x rN−1]

T satisfies

|(δ−4
x r) j| ≤Ch4, j = 1, ...,N−1. (27)

The following Lemma results from the optimal theorem above (see also [2, 9, 8]).

Claim 4 (Vector form of the optimal convergence theorem for the DBO)
Assume that R ∈ RN−1 satisfies

PR = [O(h),O(h4), . . . ,O(h4),O(h)]T , (28)

then the vector B−1R satisfies

|(B−1R) j| ≤Ch4, j = 1, . . . ,N−1. (29)

We state and prove now the following theorem.

Theorem 2 Suppose that u is a solution to the problem (1) so that u(t) ∈ C8(R)
continuously in t, then the error e(t), satisfying Equation (7) is bounded by

max
0<t<T

|e(t)|h ≤C(T )h4, (30)

where |g(t)|h =
√

∑
N−1
j=1 h|g j(t)|2 and C is depends only on u0 and T .

Proof Here we consider a proof by a matrix approach. Consider (9). Since E(0)= 0,
the Duhamel formula gives

E(t) =
∫ t

0
e−(t−ρ)BR(ρ)dρ =

∫ t

0
e−ρBR(t−ρ)dρ. (31)

The goal is to obtain an error estimate of the form

‖E(t)‖2 ≤C(T )h3.5 (32)

This is implied by the point-wise estimate E j(t) = O(h4), j = 1, ...,N−1. Rewriting
the integrand in (31) as e−ρBR(t−ρ) = e−ρBBB−1R(t−ρ), the error E(t) may be
expressed as

E(t) =
∫ t

0

(
e−ρBB

)(
B−1R(t−ρ)

)
dρ. (33)

We denote the eigenvalues of B by

0 < λ1 < · · ·< λN−1, (34)

and denote Λ̃(ρ) = diag{e−ρλ1λ1, ...,e−ρλN−1λN−1}. Let Q ∈ R(N−1)×(N−1) be or-
thogonal such that B = Qdiag{λ1, . . . ,λN−1}QT . Then,
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e−ρBB = Q Λ̃(ρ) QT . (35)

Inserting Equation (35) in (33), we have

E(t) =
∫ t

0
Q Λ̃(ρ) QT B−1R(t−ρ)dρ. (36)

Denoting Λ(ρ) = diag{e−ρλ1 , ...,e−ρλN−1}, we have

Λ̃(ρ) =− d
dρ

Λ(ρ). (37)

Inserting (37) into (36), and integrating by parts, yields

E(t) =−
∫ t

0

d
dρ

(QΛ(ρ) QT )B−1R(t−ρ)dρ

=
[
− (QΛ(ρ) QT )B−1R(t−ρ)

]t
0︸ ︷︷ ︸

E(1)(t)

+
∫ t

0
(QΛ(ρ) QT )B−1(

d
dρ

R(t−ρ))dρ︸ ︷︷ ︸
E(2)(t)

.

(38)
Since R(0) = 0, we have

E(1)(t) = (Q Λ(0) QT )B−1R(t). (39)

Using Claim 4 and [9, 8], we have that

‖B−1 R(t)‖2 ≤C1‖B−1 R(t)‖2 ≤C(t)h3.5.

In addition, ‖Q‖2 = ‖QT‖2 = 1 and ‖Λ(ρ)‖2 ≤ 1, for ρ ≥ 0. Thus, we will have

‖E(1)(t)‖2 ≤C(t)h3.5. (40)

We turn now to E(2)(t). The components of P d
dρ

R(t−ρ) are of the same order (as
powers of h) as the components of PR(ρ). This will yield (using Claim 4) that

‖B−1 d
dρ

R(t−ρ)‖2 ≤C(t)h3.5. (41)

Using again ‖Q‖2 = ‖QT‖2 = 1 and ‖Λ(ρ)‖2 ≤ 1, for 0≤ ρ ≤ t, we have for some
ρ̄ ∈ [0, t],

‖E(2)(t)‖2 =C(t) max
0≤ρ≤t

‖ B−1 dR
dρ

(ρ)‖2 =C(t)‖ B−1 dR
dρ

(ρ̄)‖2

≤C1(t)‖ B−1 dR
dρ

(ρ̄)‖2

(42)

Therefore,
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‖E(2)(t)‖2 ≤C(t)h3.5. (43)

Combining Equations (38), (40) and (43), we conclude that

‖E(t)‖2 ≤C(t)h3.5 or equivalently |e(t)|h ≤C(t)h4. (44)

We comment now how (30) can be extended to the case of a nonlinear perturbation.
Consider the equation

∂

∂ t
u =−

(
∂

∂x

)4
u−α(u) x ∈Ω = [0,1], t ∈ [0,T ], (45)

together with zero boundary conditions on u,∂xu. Here we assume that the perturba-
tion α(u) is such that (45) has a regular solution u(x, t) on Ω× [0,T ]. The numerical
scheme is

vt =−δ
4
x v−α(v), t ∈ [0,T ], t ≥ 0. (46)

It is assumed that t 7→ v(t) is a regular function of time existing on [0,T ] for all
value of h. The error e(t) = v(t)−u∗(t) evolves for t ∈ [0,T ] as

∂te+δ
4
x e= τ1 + τ2, (47)

where (the time dependence is dropped) τ1 = (∂ 4
x u)∗−δ 4

x u∗ and τ2 = α(u∗)−α(v).
In matrix/vector form, (9) becomes

∂tE(t)+BE(t) = R1(t)+R2(t), (48)

where τ1,2 ↪→ R1,2. The term R1 represents the truncation error of δ 4
x . It depends

only on u∗. The term R2 involves u∗ and v. The Duhamel formula is expressed as

E(t) =
∫ t

0
e−ρBR1(t−ρ)dρ︸ ︷︷ ︸

Ea(t)

+
∫ t

0
e−ρBR2(t−ρ)dρ︸ ︷︷ ︸

Eb(t)

. (49)

so that
‖E(t)‖2 ≤ ‖Ea(t)‖2 +

∫ t

0
‖e−(t−ρ)B‖2‖R2(ρ)‖2dρ (50)

We next proceed along the lines of [11, 1]. Fix h > 0. Using E(0) = 0 and the
continuity of t 7→ E(t), define t0(h) by

t0(h) = sup{t > 0 s.t. ‖E(t)‖2 < 1}. (51)

This implies |u∗j(t)−v j(t)|< 1 for 1≤ j ≤ N−1, 0≤ t < t0(h) and

max
ξ∈[u∗j (t),v j(t)]

|α ′(ξ )| ≤ max
|ξ−u∗j (t)|<1

|α ′(ξ )| ≤C′(T ). (52)

where C′(T ) depends only on u(x, t). Therefore, for 0≤ t < t0(h),
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|R2, j(t)|= |α(u∗j(t))−α(v j(t))| ≤C′(T )|E j(t)|, 1≤ j ≤ N−1. (53)

The spectrum of B satisfies spec(B) ⊂ [λmin,λmax]. We have with λmin = O(1) and
λmax = O(1/h4). It results from [4, Theorem 7.7] that λmin > b, with some constant
b > 0 uniform in h . By (44), ‖Ea(t)‖2 ≤C(T )h3.5. This gives in (50),

‖E(t)‖2 ≤C(T )h3.5 +C′(T )
∫ t

0
e−b(t−ρ)‖E(ρ)‖2dρ. (54)

Using Gronwall’s inequality, we obtain that for 0≤ t < t0(h),

‖E(t)‖2 ≤C(T )h3.5 exp
(∫ t

0
e−b(t−ρ)dρ

)
≤C′′(T )h3.5. (55)

where C′′(T ) depends only on u(x, t). It results from (55) that there exists h0 small
enough such that C′′(T )h3.5

0 < 1/2. Thus, for all h < h0, we have that t0(h) > T
(proceed by contradiction). Therefore for h small enough, max0≤t≤T ‖E(t)‖2 ≤
C′′(T )h3.5 and (30) holds for (45).

4 Convergence of the discrete time-evolution solution by kernel
analysis

As in the elliptic case discussed in the previous sections we can study this issue
either under “minimal regularity” assumptions or “high regularity” leading to “op-
timal” fourth-order convergence. We begin with the latter case, analogous to Propo-
sition 1. The “minimal regularity” case is postponed to Theorem 3. The following
proposition improves the “almost optimal” estimate obtained in [3]. The same re-
sult has been obtained in [7] using matrix techniques. We recall that H9(Ω) is the
Sobolev space of order 9.

Proposition 3 Assume that u0(x) ∈C9(Ω) and

u0(0) = u′0(0) = u0(1) = u′0(1) = 0.

Let u(t) be the solution to (1), and v(t) the solution to (7). There exists a constant
C > 0 depending on u0, T but not on h, j such that

|v j(t)−u∗j(t)| ≤Ch4, j = 1,2, . . . ,N−1, t ∈ [0,T ]. (56)

Proof As observed in Section 1, the Sobolev space H9 is a persistence space for the
solution. Thus for u0 ∈ C9(Ω) ⊆ H9(Ω) the function u(t) is continuous on [0,T ]
into H9. The Sobolev embedding theorem implies that it is also continuous into
C8(Ω). Thus, let e(t) = v(t)−u∗(t) be the error function and

r(t) =
[
(

∂

∂x
)4u
]∗
−δ

4
x u∗(t).
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The error function satisfies the equation

et(t)+δ
4
x e(t) = r(t). (57)

Since the function t→ u(x, t) ∈C8(Ω) is continuous the family {u(t), t ∈ [0,T ]} ⊆
C8(Ω) is compact and Claim 1 can be applied uniformly to this family. It follows
that, uniformly in t ∈ [0,T ],

r j(t) = O(h4), ∀ j ∈ {2, ...,N−2}, r1(t) = O(h), rN−1(t) = O(h). (58)

Equation (57) can be rewritten as

d
dt

[
(δ 4

x )
−1e(t)

]
+ e(t) = (δ 4

x )
−1r(t). (59)

In light of (25) we have

w(t) := (δ 4
x )
−1r(t) = O(h4) (60)

uniformly in t ∈ [0,T ].
Let

Λh =
{

λ1,h < λ2,h < .. . < λN−1,h
}

(61)

be the eigenvalues 3 of δ 4
x with corresponding normalized eigenvectors

{
c1

h, . . . ,c
N−1
h

}
.

We can expand

e(t) =
N−1

∑
k=1

ak,h(t)ck
h, w(t) =

N−1

∑
k=1

bk,h(t)ck
h (62)

and projecting Equation (59) on the k− th eigenvector yields

λ
−1
k,h

d
dt

ak,h(t)+ak,h(t) = bk,h(t), k = 1,2, . . . ,N−1. (63)

From (60) we get, for a constant C > 0 depending only on T (and not on N)

|bk,h(t)| ≤Ch4, k = 1,2, . . . ,N−1, t ∈ [0,T ].

We obtain (since e(0) = 0)

ak,h(t)eλk,ht =
∫ t

0
λk,heλk,hsbk,h(s)ds, t ∈ [0,T ].

In view of the estimate for bk,h(s) the right-hand side can be estimated by∣∣∣∫ t

0
λkeλk,hsbk,h(s)ds

∣∣∣≤Ch4eλk,ht ,

hence also

3 The eigenvalues λk,h are identical to the λk in (34).
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|ak,h(t)| ≤Ch4, k = 1,2, . . . ,N−1, t ∈ [0,T ].

We now proceed to study the convergence of the discrete solution to the continuous
one, when the initial data is just continuous. Of course, such convergence is not
expected to be “optimal” as in Proposition 3.

As pointed out already in the beginning of this section, Equation (1) is not well-
posed in C(Ω), due to the lack of a maximum principle. On the other hand the space
H1(Ω) is a persistence space for the solution. Recall that H1(Ω) is the Sobolev
space of L2 functions whose distributional derivatives are also in L2. The domain
of the generator is H4(Ω)∩H2

0 (Ω). In particular, this space contains all continuous
piecewise linear (“zigzag”) functions. By the Sobolev embedding theorem H1(Ω)⊆
C(Ω).

For the discrete semigroup we use the operator notation e−tδ 4
x . We first state the

following coercivity property.

(δ 4
x z,z)h ≥C

(
|z|2h + |δ 2

x z|2h + |δxδ̃xz|2h
)
, (64)

valid for any grid function z ∈ l2
h,0 such that also δ̃xz ∈ l2

h,0.

Theorem 3 Let u0(x) ∈C1(Ω)⊆ H1(Ω) and u(x, t) the solution to (1). Let v(t) =
e−tδ 4

x u∗0 be the corresponding discrete solution. Then, uniformly in t ∈ [0,T ],

lim
h→0
|v(t)−u∗(t)|h = 0, t ∈ [0,T ]. (65)

Proof Pick ε > 0. Let ũ(x, t) be solution to (1) with initial data ũ0 ∈ C9(Ω). For
notational simplicity we occasionally designate ũ(t) for ũ(x, t) and u(t) for u(x, t).
Due to the continuity of the solution of (1) in H1 we can assume that ũ(t) ∈H9(Ω)
satisfies

‖ũ(t)−u(t)‖H1 < ε, t ∈ [0,T ]. (66)

The Sobolev embedding theorem implies

sup
t∈[0,T ]

‖ũ(t)−u(t)‖C(Ω) < ε. (67)

Since ũ(x, t) is sufficiently regular, Proposition 3 can be invoked. Let ṽ(t) =
e−tδ 4

x ũ0
∗ be the corresponding discrete solution. There exists h0 > 0 such that

sup
t∈[0,T ]

|ṽ(t)− ũ(t)∗|∞ < ε, 0 < h < h0. (68)

Finally, the positivity of δ 4
x (see (64)) implies that the semigroup e−tδ 4

x is contractive
on l2

h,0 hence
|ṽ(t)−v(t)|h ≤ |ũ0

∗−u∗0|h < ε. (69)

Combining (67), (68) and (69) we obtain (65). �
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5 Comments and perspectives

In summary, the matrix approach benefits from tools consisting of matrix theory of
linear algebra and from known results of the solution of a set of ordinary differen-
tial equations. It may be extended to nonlinear (see Section 3) and multidimensional
problems [8]. In particular, there is no need to derive the appropriate kernel of the
discrete problem, which is in general a difficult task. On the contrary, the functional
approach utilizes the connection between the discrete and the continuous problem.
It may require the knowledge of the discrete kernel. An important aspect of the func-
tional approach is its ability to deal with low regularity data (see Theorem 1). Note
finally that an important topic for convergence analysis is the notion of consistency
(see also [14]). In our context, this notion requires further studies.
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