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Abstract

Solving the eigenvalue problem for differential operators is a common problem in many

scientific fields. Classical numerical methods rely on intricate domain discretization,

and yield non-analytic or non-smooth approximations. We introduce a novel Neural

Network (NN) -based solver for the eigenvalue problem of differential self-adjoint op-

erators, where the eigenpairs are learned in an unsupervised end-to-end fashion. We

propose several training procedures for solving increasingly challenging tasks towards

the general eigenvalue problem. The proposed solver is capable of finding theM small-



est eigenpairs for a general differential operator. We demonstrate the method on the

Laplacian operator which is of particular interest in image processing, computer vision

and shape analysis among many other applications. In addition, we solve the Legendre

differential equation. Our proposed method simultaneously solves several eigenpairs

and can be easily used on free-form domains. We exemplify it on L-shape and circular

cut domains. A significant contribution of this work is an analysis of the numerical

error of this method. In particular an upper bound for the (unknown) solution error is

given in terms of the (measured) truncation error of the PDE and the network structure.

1 Introduction

Eigenfunctions and eigenvalues of the Laplacian (among other operators) are important

in various applications ranging, inter alia, from image processing to computer vision,

shape analysis and quantum mechanics. It is also of major importance in various en-

gineering applications where resonance is crucial for design and safety Benouhiba and

Belyacine (2013). Laplacian eigenfunctions allow us to perform spectral analysis of

data measured in more general domains or even on graphs and networks Shi and Malik

(2000). Additionally, the M -smallest eigenvalues of the Laplace-Beltrami operator, are

fundamental features for comparing geometric objects such as 3D shapes, images or

point clouds via the functional maps method in statistical shape analysis Ovsjanikov

et al. (2012). Moreover, in quantum mechanics, the smallest eigenvalues of the Hamil-

tonian and their corresponding eigenfunctions, are of great physical significance Han

et al. (2019). In this paper we present a novel numerical method for the computation
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of these eigenfunctions (efs.) and eigenvalues (evs.), where the efs. are parameter-

ized by neural networks (NNs) with continuous activation functions, and the evs. are

directly calculated via the Rayleigh quotient. The resulting efs. are therefore smooth

functions defined in a parametric way. This is in contrast to the finite element Pradhan

and Chakraverty (2019) and finite difference Saad (2005); Knyazev (2000) methods in

which the efs. are defined on either a grid or as piecewise linear/polynomial functions

with limited smoothness. Direct and iterative matrix-based methods for large eigen-

values problems are reported in the book of Saad (2011). In these matrix-based ap-

proaches, one has to discretize the problem first. In the finite difference method, there

is an inherent problem handling curved boundaries where the boundary conditions are

needed to be cropped by the computational cartesian domain. Moreover, discretization

or truncation error is emerged by the gap between a differential operator and a differ-

ence operator. The error increases as one increases the order of the derivative of the

function to be approximated. As for FEM, the linear system representing a finite el-

ement discretization might be sensitive to the discretizing mesh, especially in curved

domains.

Following and generalizing Bar and Sochen (2019, 2021), we suggest an unsuper-

vised approach to learn the eigenpairs of a differential operator. It is performed on

a specified domain with boundary conditions, where the network simultaneously ap-

proximates one or several eigenfunctions at every entry x. The method is based on a

uniformly distributed point set, which is trained to satisfy three fidelity terms of the

eigenvalue problem formulated as the L1, L2, and L∞-like norms. In addition, the pro-

posed loss function includes boundary conditions, orthogonality constraints and regu-
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larization. There are several advantages to the proposed setting: (i) The framework is

general and can be used for general non linear differential operators with high order

derivatives. (ii) Since we sample the domain using a point cloud, we are not limited

to standard domains. Using this fact may assist when attempting to solve problems on

arbitrary domains. (iii) Different priors and regularization schemes can be easily inte-

grated into the loss function, allowing specific domain adaptivity. (iv) The suggested

framework simultaneously solves for multiple eigenpairs. Our method attains to a fam-

ily of PDEs (one for each eigenvalue and eigenfunction) in one/several network(s) that

solve these multiple PDEs together. (v) From theoretical perspective, we analyze the

error of the PDE’s solution and relate it to the network architecture and the measured

truncation error of the equation. We illustrate the theory, on an example, by relating the

truncation error to the structure of the network.

Let us stress that this work does not address the quality of the optimization that is

done in deep learning literature. We use standard techniques in this domain and the

optimization is not guaranteed to attain the global minimum. Our point in the analysis

presented in this paper, is to bound the approximation error of the eigenfunction given

the empirical error in the equation. Indeed, The truncation error is the main term in our

loss function and is measured empirically. What we proved is that given this truncation

error, we are able to bound the error in the solution of the equation.

We demonstrate the capabilities of the proposed solution for both known and mul-

tiple unknown eigenvalues of Legendre’s equation and the Laplacian operator in 1D

and different 2D domains: rectangular, L-shaped and free-form shape. We additionally

show a quantitative analysis demonstrating the robustness of the method compared with

4



previous works.

2 Related Work

Many recent approaches have shown promise in using the power of NNs to approximate

solutions of differential equations, while classical methods are often prone to weakness

due to the discretization of the domain Ω. Raissi et al. (2017) solved continuous and

discrete time models by NNs which model the solution using both the automatic dif-

ferentiation and boundary conditions. Bar and Sochen (2019, 2021) proposed a solver

for both forward and inverse problems with the additional L∞ norm imposed on the

deviation from the differential equation. In the work of Chen et al. (2018), differential

equation solvers are used as part of the network architecture, and are shown to enhance

the smoothness and convergence of the solutions. In order to properly solve differential

equations, a representation that captures high-order derivatives is desired. Additionally,

Sitzmann et al. (2020), proposed a network architecture that illustrates these require-

ments using periodic activation functions with proper initialization.

The well-known power method and its variants Eastman and Estep (2007) is a clas-

sical method for addressing the eigenvalue problem. It works on specific Linear opera-

tors, L : L2(Rd) → L2(Rk), and can be used only after some discretization procedure,

where the continuous equation is reduced numerically to a matrix eigenpair problem.

This process introduces numerical errors even before the solution of the eigenvalue

problem. The usage of the power method for spectral operators on Hilbert spaces was

shown by Erickson et al. (1995). A recent modified method for non-linear differential
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operators was proposed by Hait-Fraenkel and Gilboa (2019). Most power method vari-

ants for operators, converge to a single eigenpair. Finding the M smallest eigenpairs

can be both computationally and algorithmically challenging.

Advanced methods addressing the eigenvalue problem solve for several eigenpairs

together. One such class of solutions is the Krylov-based methods Stewart (2001);

Lehoucq et al. (1998) that are commonly used in practice such as the eigs command

in MATLAB (2015). Other class of solutions use deep networks were recently in-

troduced. These methods are based on variational Monte Carlo (VMC) and diffusion

Monte Carlo (DMC) methods. VMC relies on leveraging physical knowledge to pro-

pose an ansatz of the eigenfunction and incorporates the essential physics Han et al.

(2019); Hermann et al. (2019); Pfau et al. (2019b); Choo et al. (2019). Recently, Han

et al. (2020) formulated the eigenvalue problem by the stochastic backward equation

using the DMC method, where the loss function optimizes the eigenvalue, eigenfunc-

tion and the scaled gradient of the eigenfunction. The loss function consists of L2

norm of two fidelity terms with additional normalization. Using this method yields the

first eigenpair with an optional second eigenpair given some mild prior estimate of the

eigenvalue. Pfau et al. (2019b), suggested a neural network-based method for learning

the eigenfunctions of linear operator by stochastic optimization. They reformulated the

Rayleigh quotient such that they replaced the operator matrix with a continuous kernel.

The method was demonstrated on the 2D Schrödinger equation, where the Laplacian

operator was discretized using finite differences.

In this suggested work, we formulate the eigenvalue problem in a direct setting with

a flexible number of eigenpairs, where no discretization is applied. The derivatives
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of the differential operator are analytically calculated through the network structure.

Additionally, we use the L∞, L2 and L1 norms for fidelity, and boundary condition

terms to accomplish a strong (pointwise) solution.

3 Preliminaries

Let H be a Hilbert space where the inner product for u, v ∈ H is denoted as 〈u, v〉.

Let A ∈ O(H) be an operator, and A∗ its adjoint operator defined by 〈A∗u, v〉 =

〈u,Av〉 ∀u, v ∈ H. A is then said to be self-adjoint if A = A∗.

Lemma 3.1. LetH be a Hilbert space and A ∈ O(H) a self-adjoint operator. Then all

eigenvalues of A are real Conway (1985).

In this work we focus on self-adjoint operators. An eigenpair of an operator A is

defined as: (u, λ) s.t. λ ∈ R, where u is the eigenfunction of A, and λ is the corre-

sponding eigenvalue. Let A be a self-adjoint operator A : L2(Rd)→ L2(Rk). We wish

to approximate eigenpairs {ui, λi} such that

Aui + λiui = 0 ∀i. (1)

The proposed algorithm approximates the eigenfunction set ui(x) by ũi(x; θũi) via

a neural network (NN), where θũi denotes the network parameters. The NN consists of

a small number of fully connected layers with a smooth activation function ϕ and linear

sum in the final layer. For example, an architecture consisting of four hidden layers is

given by

ũ(x; θũ) = W5ϕ
(
W4ϕ

(
W3ϕ

(
W2ϕ

(
W1x+ b1

)
+ b2

)
+ b3

)
+ b4

)
+ b5. (2)
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In this work we focus on ϕ(·) = tanh(·), sin(·) (SIREN) or GeLU(·) Hendrycks and

Gimpel (2016) as non-linear activations. The input samples are given as x ∈ Rd, with

one input node for each dimension. The network is trained to satisfy the PDE require-

ments with its matching boundary conditions through minimization of a loss function.

We demonstrate our method with few examples: The Laplacian operator in one and

two dimensions for rectangular, free-form and L-shape domains, and the Legendre’s

equation in one dimension.

4 Laplacian Operator

4.1 Single Known Eigenvalue

We first address the problem of finding a single eigenfunction u(x) given its corre-

sponding eigenvalue λ. We approximate u(x) using a NN and optimize the following

loss function:

F1 (ũ(x; θu)) = α‖Lũ‖2
2 +η‖Lũ‖1 +µ‖Lũ‖∞+δ‖ũ−u0‖1,∂Ω +β

∣∣∣‖ũ‖2
2−c

∣∣∣+ρ‖θũ‖2
2,

(3)

where

Lu := Au+ λu,

and the Laplacian operator A = ∆. The NN approximation of u is denoted by ũ and the

network parameters are given by θũ. Boundary conditions are defined as u0 := u|∂Ω.

The constants α, η, µ, δ, β and ρ are positive real scalars.

The first three terms in (3) consist of the L2, L1 and L∞ fidelity terms. The first

term penalizes deviations from the differential equation in the L2 or average sense. The
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second term encourages a robust solution, namely it enforces sparsity of the errors, and

the latter promotes a pointwise solution such that the equation is satisfied for isolated

points as well Bar and Sochen (2019, 2021). The fourth term imposes boundary con-

ditions and the fifth normalizes the squared area of u to c = 1 due to scale invariance

of the eigenfunction (since any (Cu, λ) is a valid eigenpair for C 6= 0). The last term is

the standard weight decay term which stabilizes the network weights.

As a first example, we apply the Laplacian operator in 1D where λ = 4 and u(0) =

u(π/2) = 0. The PDE is then given by,

Lu = u′′(x) + 4u(x).

The normalized analytical solution is therefore

u(x) =
2√
π

sin(2x).

Figure 1 demonstrates the outcome of the algorithm at iterations 1, 100 and 2500. As

can be seen, the predicted outputs approach the sin(·) function with Relative Mean

Square Error (RMSE) = 6.52e−4 and peak signal-to-noise ratio (PSNR) = 28.84.

4.2 Single Eigenpair for the Smallest Eigenvalue

Next, we address the case where the eigenvalue is not known in advance. We therefore

limit ourselves to the smallest nontrivial eigenpair. This approach is analogous to the

power method approach, where only one dominant eigenpair is found. Recall that the

Rayleigh quotient is defined as Miller (2016); Feld et al. (2019)

R(u) := −〈Au, u〉
〈u, u〉

. (4)
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Figure 1: The solution to u′′ + 4u = 0 with u(0) = u(π/2) = 0 at iterations (from left

to right) 1, 100 and 2500. At the last iteration RMSE = 6.52e−4 and PSNR = 28.84.

It can be shown that the eigenfunction u is a critical point of R(u), where R(u) is its

corresponding (nontrivial) eigenvalue λ. Furthermore, if û is a function which is close

to u, then R(û) approximates λ. In the following loss function we replace λ by R(u).

The loss defined in (3) is then rewritten as

F2(ũ(x; θu)) = α‖Lũ‖2
2 + η‖Lũ‖1 + µ‖Lũ‖∞ + δ‖ũ− u0‖1,∂Ω

+ β
∣∣∣‖ũ‖2

2 − c
∣∣∣+ ρ‖θu‖2

2 + γ‖R(ũ)‖2
2,

(5)

where

Lu = Au+R(u)u.

The last term of (5) minimizes R(ũ) and therefore pushes the solution to the lowest

nontrivial eigenvalue. The ground truth eigenpair is given by
(√

2
π
sin(x), 1

)
for Ω =

[0, π]. Figure 2 shows the outcome of the proposed method at three iterations. The

eigenvalue represented as the value of the Rayleigh quotient converges to the true value

λ = 1 with decreasing standard deviation along the mini-batches. Quantitative results

are shown in the first row of Table 1, where PSNR stands for peak signal-to-noise ratio,

RMSE stands for root-mean-square error, AE stands for Absolute Error and RE for
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Figure 2: The solution to u′′ + λu = 0 with u(0) = u(π) = 0 at iterations 1, 500 and

1000. The associated predicted eigenvalues are λ = 70± 53, 5.5± 0.5, 1± 0.03. Note

that the solution is up to a sign.

Relative Error. In the cases of multiple eigenpairs, we calculate the mean values over

M .

4.3 Multiple Eigenpairs for the Smallest Eigenvalues

A generalization of Section 4.2 is to find M eigenpairs with the corresponding bottom-

M eigenvalues simultaneously. Following Hait-Fraenkel and Gilboa (2019), and us-

ing the orthogonality property of the eigenfunctions, we optimize the following loss

penalty:

F3(ũ(x; θu)) =
M∑
i=1

(
α‖Lũi‖2

2 + η‖Lũi‖1 + µ‖Lũi‖∞ + δ‖ũi − u0‖1,∂Ω +

β
∣∣∣‖ũi‖2

2 − c
∣∣∣+ γi‖R

(
ũi

)
‖2

2

)
+ ρ‖θu‖2

2 + ν
∑
i<j

|〈ũi, ũj〉| ,
(6)

where the last term is explicitly given by

ν
Ns∑
k=1

M∑
i=1

M∑
j=i+1

|ũi(xk)ũj(xk)| ,
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with point set size Ns. For each eigenfunction ũi we impose the L2, L1 and L∞ terms,

boundary conditions and normalization as before. The weight of the Rayleigh quotient

is multiplied by γi = 1/i as a method to induce monotonic penalty to λi. The last term

enforces the orthogonality of distinct eigenfunctions.

4.3.1 One Dimensional Case

Figure 3 demonstrates the outcome of the algorithm in 1D. In this case we have one

network with M output values, one for every eigenfunctuion. The ground truth eigen-

functions of the Laplacian with u(0) = u(π) = 0 are given by

un(x) =

√
2

π
sin(nx), λn = n2, n = 1, 2, 3, . . . .

The left panel of Figure 3 shows the results forM = 3 and in the right forM = 4, where

every color stands for a different eigenfunction. The right figure in the right panel shows

the convergence of the four eigenvalues (epoch stands for iteration) which as expected

have the values 1, 4, 9 and 16. Quantitative results are summarized in Table 1.

4.3.2 Two Dimensional Case

Next, we tested the method in two-dimensions where we trained M different networks

simultaneously, each with a single output, one for each eigenfunction. We found this

architecture adequate for the multiple eigenpairs problem in the 2D case. The ground

truth solution is then

unm(x, y) =
2

π
sin(nx) sin(my), λnm = n2 +m2, n,m = 1, 2, 3 . . .

for Ω = [0, π]2 and u(x, 0) = u(x, π) = u(0, y) = u(π, y) = 0. Figure 4 shows the

results at different iterations forM = 1. The expected eigenvalue is the lowest one (n =
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Figure 3: Left panel: eigenfunctions for M = 3 where every eigenfunction has a dif-

ferent color. Right panel: eigenfunctions for M = 4 are shown on the left and the

convergence of the eigenvalues are shown on the right. Clearly the convergence of the

functions are un(x) =
√

2
π

sin(nx), λn = n2. un(x) is up to a sign.

Table 1: Eigenpairs of the 1D Laplacian operator for different values of M . The ground

truth eigenvalues are given by (1, 4, 9, 16). Performance measures are averaged over

M .

λ Mean over efs. Mean over evs.

M GT = (1, 4, 9, 16) PSNR RMSE AE RE

1 1.02 43.49 4.50e-5 0.02 0.02

2 1.11, 4.09 56.58 2.21e-6 0.10 0.07

3 1.08, 8.93, 4.13 52.21 8.54e-6 0.09 0.04

4 1.12, 4.09, 9.03, 15.95 48.78 2.05e-5 0.07 0.04

13



Figure 4: The solution to the 2D Laplacian eigevalue problem, with M = 1 at iterations

(from left to right) 1, 100 and 1000.

1,m = 1). As the algorithm converges, the expected eigenfunction is clearly seen (right

image). We further tested our performance for M = 4, see Figure 5. The figures from

left to right stand for the four eigenfunctions. The rows from top to bottom are iterations

1, 100 and 1000 respectively. As can be easily shown, these results are with accordance

with the theoretical eigenfunctions (n,m) = (1, 1), (1, 2), (2, 1), (2, 2). Quantitative

results are summed up in Table 2.

4.4 Free-Form Domain

As the proposed method does not depend on the discretization of the domain, it can

be easily adapted to free-form domains. We demonstrate it with the following two

examples.
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Figure 5: The solution to the 2D Laplacian eigenvalue problem for M = 4. The itera-

tions 1, 100, 1000 are shown from top to bottom for each of the 4 eigenfunctions.

Table 2: Eigenpairs of the 2D Laplacian operator for different values of M . The ground

truth eigenvalues are given by (2, 5, 5, 8). Performance measures are averaged over M .

λ Mean over efs. Mean over evs.

M GT = (2, 5, 5, 8) PSNR RMSE AE RE

1 2.01 34.87 3.2e-4 0.01 0.005

2 1.99, 4.91 32.15 9.1e-4 0.05 0.01

3 1.94, 5.08, 4.93 28.49 0.002 0.07 0.02

4 1.98, 4.93, 4.96, 7.91 31.69 0.001 0.05 0.01
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4.4.1 Circular Cut

For M = 1, we used the same square domain, with a circular piece removed. We tested

three different sizes of circles as can be seen in Figure 6. The left column is the outcome

of the algorithm inferred at the whole rectangle. The ground truth is on the right column

and is as for the full shape. The error is depicted in the central column. It is easy to

see that the error concentrates on the missing regions, and is extrapolated in a smooth

fashion.

4.4.2 L-shaped Domain

In the next example, we obtained the 2D Laplacian eigenpairs with Dirichlet boundary

conditions applied on an L-shape domain. Our results were compared to the Finite Ele-

ment method using the Partial Differential Equation toolbox MATLAB (2015). We used

a fine mesh such that the maximum edge size was 0.05. The first four eigenvalues were

compared to a tight approximation as presented by Yuan and He (2009), see Table 3.

As can be shown, our results are comparable (even though slight lower) to the desired

values. The eigenfunctions are depicted in Figure 7, and quantitative comparisons are

summarized in Table 4, where the FEM was referred to as the ground truth.

5 Legendre’s Differential Equation

We now demonstrate how the proposed method can be used to solve the well-known

Legendre’s differential equation:

d

dx

[(
1− x2

) dPn(x)

dx

]
+ n(n+ 1)Pn(x) = 0,
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Figure 6: Free-form domain results for M = 1 excluding points in the right half circles.

Left: The outcome of the proposed algorithm inferred in the full rectangle. The solution

in the missing domain seems to be a smooth extrapolation. Middle: error from the full

ground truth |u − full(ugt)|. The color bar is referred only to this column. Right:

Ground Truth. It is clear that the error is condensed into the missing domain, where the

information is missing.
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Table 3: Eigenvalues of the Laplacian operator with L-shaped domain. The first column

is a tight approximation of the ground truth. The second column is the outcome of the

FEM method with maximum edge size of 0.05. The third column is the outcome of the

proposed method.

λ Yuan and He (2009) FEM MATLAB (2015) proposed

9.639 9.649 8.626

15.739 15.202 14.711

19.739 19.746 19.288

29.522 29.538 28.901

Table 4: Comparison of the Eigenfunctions of the Laplacian operator with an L-shaped

domain where the Finite Element method is referred to as ground truth.

MSE PSNR

1 0.002 26.267

2 0.002 27.233

3 0.003 25.247

4 0.003 25.323
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FEM model output error

Figure 7: Eigenfunctions of the Laplacian operator of an L-shaped domain. Left: Finite

Element Method, Middle: proposed method, right: The difference between them
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which can be written as the following eigenvalue problem

T Pn := BPn + λnPn,

where

B :=
d

dx

[(
1− x2

) d

dx

]
and

λn = n(n+ 1).

To find the M smallest eigenpairs, we deploy the same method as before, where in

this case a different operator is used. Our network consists of 5-layers with SIREN

activations, with a training set of 10,000 points on the interval [−1, 1]. The boundary

conditions consist of a single point: (1, 1). We add a regularization term of ‖∇Pn(x)‖2

to promote smoothness. Since in this case, each eigenfunction has a different energy,

we use the following relation:

∫ 1

−1

Pm(x)Pn(x)dx =
2

2n+ 1
δmn

to arrive at

En :=

∫ 1

−1

|Pn(x)|2dx =
2

2n+ 1
.

Therefore, given the fact that the Rayleigh quotient R(Pn) approximates the sought

eigenvalue, R(Pn) ∼ n(n+ 1), we have:

En = ||Pn||2 ∼
2√

1 + 4R(Pn)
.
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The loss function then takes the form

F4(P̃(x; θp)) =
M∑
n=1

(
α‖T P̃n‖2

2 + η‖T P̃n‖1 + µ‖T P̃n‖∞ + ξ‖∇P̃n(x)‖2
2

+ δ|P̃n(1)− 1|+ β

∣∣∣∣∣∣‖P̃n‖2
2 −

2√
1 + 4R(P̃n)

∣∣∣∣∣∣+ γn‖R(P̃n)‖2
2

)

+ ρ‖θp‖2
2 + ν

∑
n<m

∣∣∣〈P̃n, P̃m〉∣∣∣ .
(7)

We report the results for M = 3, . . . , 6 in Table 5. Some examples of eigenpairs are

shown in Figure 8.

Neural Networks have a tendency of instability, especially when encountered with

noise. Improving network robustness is an active area of research Zheng et al. (2016).

Monte-Carlo Dropout(MC-DO) Gal and Ghahramani (2015) was recently introduced

to quantify network confidence, by adding dropout Srivastava et al. (2014) during infer-

ence and running the model for many iterations. We run MC-DO on the model trained

for M = 6 with 5,000 iterations and dropout rate q = 0.01, and show the confidence

intervals in Figure 9 as the std of the outputs. The outputs are computed for eigenvalues:

λ = 0, 12, 20. From this analysis, we can see that the model is robust to the proposed

noise, as the mean prediction across the iterations does not vary largely from the ground

truth. It is also apparent that for λ = 0, and near the boundary, the model is more cer-

tain. The mean std for λ = 0, 12, 20 are 0.0022, 0.0136 and 0.0141 respectively. This

suggests that for functions of higher frequencies, the model will be less confident. For

each eigenfunction, we also show the points with the highest variance (larger than the

65th percentile. We see that these points concentrate around the highest frequencies of

the eigenfunctions. Future work might leverage such methods to sample difficult areas

during training Kendall et al. (2018).
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Figure 8: Learned solutions to Legendre’s differential equation using the proposed

eigenvalue method. Left: Approximated eigenfunctions for M = 4, Middle: Approxi-

mated eigenfunctions for M = 6. Right: convergence of the eigenvalues based on the

Rayleigh value.

22



Table 5: Eigenpairs of Legendre’s equation for different values of M . The ground truth

eigenvalues are given by (0, 2, 6, 12, 20, 30). Performance measures are averaged over

M .

λ Mean over efs. Mean over evs.

M GT = (0, 2, 6, 12, 20, 30) PSNR RMSE AE RE

3 5.13e-05 1.96 5.86 33.48 8.7e-4 0.09 0.02

4 -3.96e-05 1.96 5.84 34.34 7.1e-4 0.19 0.03

11.63

5 7.62e-05 1.97 5.89 31.42 3.2e-3 0.1 0.01

11.74 20.00

6 3.94e-06 1.97 5.89 33.74 9.4e-4 0.41 0.02

11.71 19.48 28.98
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Figure 9: The eigenfunctions associated with λ = 0, 12, 20 obtained by Monte-Carlo

Dropout with Dropout probability of q = 0.01 and 5, 000 MC-iterations.

6 Comparison to Other Methods

Before getting to the details of the comparison to other methods, few remarks should be

made. Note that most methods in numerical solutions to PDEs start by a discretization

of the differential operator and the eigenfunctions, transforming thus the problem to

that of eigenvalues and eigenvecors of a matrix. There is an inherent error in the dis-

cretization of the problem which our proposed method overcome. The output of most

methods is the eigenvalues and the corresponding eigenvectors which are supposed to

be a discretized version of the eigenfunctions. In our proposed method, the operator is

not discretized. The derivatives are analytically computed with no approximation and

the solution is a set of eigenvalues and their corresponding (non-discretized) eigenfunc-

tions.
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The only method, to date, that provides eigenfunctions as the output of a learned

Neural Network is the Spectral Inference Network (SpIN) Pfau et al. (2019a). The com-

parison details are presented in this Section. We also compare to the more traditional

methods like the Krylov-Schur method. Both methods calculate multiple eigenpairs.

For completeness, we added a comparison of the proposed method with the inverse

power method in the Appendix. In this method we calculate only the dominant eigen-

function and the eigenvalue is given by the corresponding Rayleigh quotient.

6.1 Krylov-Schur Method

The first comparison consists of the Krylov-Schur algorithm for finding few eigenpairs

of a large matrix Stewart (2001); Lehoucq et al. (1998). By this method the continuous

operator was approximated by a finite differences scheme to form the 2D Laplacian

and 1D Legendre matrices with spacing h. The approximation of the continuous op-

erator, therefore, may yield significant numerical errors Knyazev (2000). In addition,

the incorporation of the boundary condition is not straightforward since the boundary

conditions may affect the construction of the matrix approximation of the operator. As

in the inverse power method, we had to manually normalize the Krylov-Schur eigen-

functions. The eigenpairs were calculated by MATLAB (2015) solver with different

spacing h = 0.1, 0.05, 0.025 and 0.017. Quantitative results of the 2D Laplacian are

shown in lines 1-4 in Table 6. Note that grid refinement (h < 0.025) does not improve

the results anymore. Eigenpairs of the 1D Legendre’s equation are summarized in Ta-

ble 7. As can be seen, the results are getting better as h decreases (number of grid points

N increases). The proposed algorithm outperforms in eigenfunctions measures of the
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2D Laplacian operator. The Krylov-Schur method works better for the 1D Legendre’s

case.

6.2 Spectral Inference Networks

Spectral Inference Networks (SpIN) Pfau et al. (2019a) is a framework for learning

multiple eigenfunctions of linear operators by stochastic optimization. In this method,

the function u is parameterized by a Neural Network. To find the bottom-M eigenpairs,

the Rayleigh quotient is rewritten in a special matrix form and minimized by a bilevel

optimization. Unlike our approach, the differential operator in SpIN is approximated

in a discrete fashion. Additionally, like in Krylov-based methods, integrating boundary

conditions is not straightforward. In the solution of of the Schrödinger equation, the

network output was multiplied by some function f(x) such that the boundary conditions

will be satisfied (Appendix C.1 of Pfau et al. (2019a)). We tested the eigenpairs of

the Laplacian operator with 16000 sampling points where this number was manually

optimized. The results are shown in line 5 of Table 6. Our method outperformed in

eigenfunctions accuracy, while the Krylov-Schur method with h = 0.025 gave the best

eigenvalues.

7 Implementation Details

Our network was constructed as a dense fully connected network with 5-7 hidden layers

architecture, each with a varying number of neurons, from 26-100. Our code was imple-

mented in PyTorch. Each of our models was trained for 5000 iterations on GeForce RTX
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Table 6: Eigenpairs of the 2D Laplacian operator. The ground truth eigenvalues are

(2, 5, 5, 8). N stands for the number of points. In the Krylov-based method we specify

the discretization spacing by h. Performance measures are averaged over M .

λ Mean (efs.) Mean (evs.)

Method h N GT = (2, 5, 5, 8) PSNR RMSE AE RE

Krylov 0.1 1K 1.92, 4.81, 4.81, 7.68 15.17 0.12 0.19 0.038

0.05 4K 1.98, 4.96, 4.96, 7.95 18.10 0.12 0.03 0.006

0.025 16K 1.98, 4.97, 4.97, 7.95 21.09 0.12 0.03 0.005

0.017 34K 1.97, 4.93, 4.93, 7.89 22.77 0.12 0.065 0.013

SpIN 16K 2.06, 5.69, 5.86, 8.32 21.46 0.04 0.488 0.097

Proposed 40K 1.98, 4.93, 4.96, 7.91 22.88 0.024 0.05 0.011

3080 Graphics card. In the 2D case all the networks were trained simultaneously. For

the activation function, since we are modeling smooth functions, we found that ReLU

is less suitable both theoretically and experimentally. The activations functions used

were SIREN Sitzmann et al. (2020), tanh, and GeLU Hendrycks and Gimpel (2016).

The SIREN activation has been shown to excel in modeling complex signals, and their

higher-order derivatives. We used an Adam optimizer Kingma and Ba (2014) with

default parameters. We found that the weight initialization Katanforoosh and Kunin

(2019) was important for convergence. In our 1D experiments a Gaussian initialization

with 0.0 mean and 1.0 std was used. When using the SIREN activation, we used the

standard initialization proposed in Sitzmann et al. (2020). For the L-shape experiments,

we used a Gaussian initialization with 0.0 mean and 0.7 std. For all experiments our
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Table 7: Eigenpairs of the Legendre’s equation. The ground truth eigenvalues are

(0, 2, 6, 12, 20, 30). N stands for the number of points. In the Krylov-based method

we specify the discretization spacing by h. Performance measures are averaged over

M . The Eigenpair (λ = 0, u = 1) was excluded from the calculation.

λ Mean (efs.) Mean (evs.)

Method h N GT = (0,2,6,12,20,30) PSNR RMSE AE RE

Krylov 0.05 40 4.96e-14 1.94 5.54 20.83 0.011 1.10 0.07

10.86 18.25 27.91

0.01 200 4.57e-13 1.98 5.90 30.82 0.0018 0.54 0.03

11.66 19.21 28.55

0.005 400 7.07e-13 1.99 5.95 36.69 0.00406 0.28 0.01

11.83 19.60 29.23

0.002 1000 6.47e-12 1.99 5.98 44.83 8.0e-5 0.11 0.01

11.93 19.84 29.70

Proposed 1000 3.94e-6 1.9 5.89 33.74 9.0e-4 0.41 0.02

11.71 19.48 28.98
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weight decay used was ρ = 1e−8. The weighing between the different eigenvalues was

set to γi = 1
i
. The remaining coefficients and hyperparameters used are given in tables 8

and 9. In the one-dimensional case, the boundary conditions had two actual points. In

the two-dimensional case, points were taken along the boundary of the square. Instead

of using an exact ‖Lu‖∞, we used a relaxed approximation: µ
K

∑
k∈topK(|Li|) |Lk|, with

K as a coefficient for broader effect of the L∞ fidelity term.

Table 8: Hyper parameters used for each of the experiments. The columns describe:

Learning Rate, Batch-Size, Number of neurons at every layer, Number of points inside

the domain, Number of boundary points, Number of layers, and Activation Function

used.

Task lr BS N |Ω| |∂Ω| #Layers Activation

1D Example 3e-3 2048 50 42K 1K 5 Tanh

Rayleigh 1 3e-3 2048 50 42K 1K 5 Tanh

2D 1 3e-3 256 100 5K 500 7 SIREN

2D 2 3e-3 256 100 5K 500 7 SIREN

2D 3 3e-3 256 100 5K 500 7 SIREN

2D 4 3e-3 256 100 5K 500 7 SIREN

L-Shaped 8e-4 64 26 42K 1K 5 GeLU

Legendre 3e-3 512 26 10K 100 5 SIREN

29



Table 9: Loss coefficients using parameters defined in the loss functions along the paper.

Task Name K η α µ β δ γ ξ

1D Example 40 0 0.1 0.1 1.5 0.5 0.003 0.0

Rayleigh 1 40 0 0.3 0.3 1.5 1 0.003 0.0

2D 1 10 0.5 0.5 0.5 10 10 0.01 0.0

2D 2 10 0.5 0.5 0.5 10 10 0.01 0.0

2D 3 10 0.5 0.5 0.5 10 10 0.01 0.0

2D 4 10 0.5 0.5 0.5 10 10 0.01 0.0

L-Shaped 40 0.5 5 5 35 15 3e-05 0.0

Legendre 40 0 1 1 20 20 0.003 0.2

8 Convergence Analysis

In this section we analyze the error in the Neural Network approximation of the differen-

tial equation. Neural Network (NN) is a graphic representation of a specific parametric

function. For smooth / ReLU activation function, the network is an embedding of a

finite dimensional class of smooth / piecewise linear (PL) functions in the infinite di-

mensional functional space of smooth / PL functions. Given a fully connected network

with a given depth, any function in the space of all smooth / PL functions can be ap-

proximated by a NN which is wide enough. In fact, one layer with an infinite width is a

universal approximator (see Hornik et al. (1989)) which is analogous to the space of all

polynomials. Nevertheless, the large dimension of the weight space together with the

non-convexity of the loss function, makes the global optimization of the problem non

attainable and only local minima can be guaranteed. For review on these issues please
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refer to Ding et al. (2020). In view of this situation, we concentrate first on a slightly

different issue, the apparent error. Indeed, whenever the network is converging, one has

a direct access to the value of the various terms in the loss function. In particular to the

first two terms where the error in the equation in the L2 sense and in the L∞ sense are

given empirically. While these values may be the outcome of a local minimum, it is still

very useful to provide a bound on the error in the approximation of the eigenfunctions

(or eigenpairs), given the empirical error of the equation i.e. the truncation error. We

apply this idea to several classes of the forthcoming equations. After analyzing the error

of the eigenfunction approximation, we attempt to link this analysis to other works Ohn

and Kim (2019); Gühring and Raslan (2021), where the architecture of the network is

related to the approximation error of the function.

Definition 8.1. The operator

Lu =
∑
i,j

ai,j(x)
∂2u

∂xi∂xj
+
∑
i

bi(x)
∂u

∂xi
+ c(x)u (8)

is elliptic at a point x ∈ Ω if there exists λ(x) > 0 and Λ(x), such that

0 < λ(x)
∑
i

|ξi|2 ≤
∑
i,j

ai,j(x)ξiξj ≤ Λ(x)
∑
i

|ξi|2, (9)

for (ξ1, ξ2, . . . , ξn) ∈Rn \ (0).

If λ(x) ≥ λ > 0, for all x ∈ Ω, then the operator is called strictly elliptic. We

quote Theorem 3.7 form Gilbarg and Trudinger (1998).

Theorem 8.1. Let Lu = F in a bounded domain Ω, where L is elliptic, c ≤ 0 and

u ∈ C0(Ω̄) ∩ C2(Ω). Here Ω̄ = Ω ∪ ∂Ω. Then

sup
Ω
|u| ≤ sup

∂Ω
|u|+ C sup

Ω

|F |
λ
, (10)
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where C = C(Ω, β) is a constant, depending strictly on the diameter of Ω and on

β = sup
Ω

|b|
λ
,

where |b| =
√∑

i |bi|2 (see Definition (8.1)).

Remark 8.2. In particular, if Ω lies between two parallel planes at distant ` apart, then

(10) is satisfied with C = e(β+1)` − 1.

When the condition c ≤ 0 is not satisfied, it is still possible to assert an apriori

bound analogous to (10) provided the domain Ω lies between sufficiently close parallel

planes. We quote Corollary 3.8 form Gilbarg and Trudinger (1998).

Corollary 8.3. Let Lu = F in a bounded domain Ω, where L is elliptic and u ∈

C0(Ω̄) ∩ C2(Ω). Let C be the constant of Theorem 8.1, c+ := max(c, 0), and suppose

that

C1 = 1− C sup
Ω

c+

λ
> 0. (11)

Then

sup
Ω
|u| ≤ 1

C1

(
sup
∂Ω
|u|+ C sup

Ω

|F |
λ

)
. (12)

We also quote the following remark.

Remark 8.4. Since C = e(β+1)` − 1 is a possible value of the constant in (10), where `

is the width of any slab containing Ω, condition (11) will be satisfied in any sufficiently

narrow domain in which the quantities |b|/λ and c/λ are bounded from above.

We turn now the deriving a bound on the error u−ũ for two differential problems. In

Section 8.1 we consider the Divergence-form equation and in Section 8.2 we consider

the Helmholz Equation.
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8.1 Bounds for Divergence-Form Equation

Let u is a solution of the divergence-form problem Bar and Sochen (2021)

L1u = F (x), x ∈ Ω ⊂ Rn, (13)

where

L1u = ∇ · (G(x)∇u)

satisfying the boundary condition

u(x) = u0, x ∈ ∂Ω. (14)

Let ũ be its approximation. Then the error eu = u− ũ satisfies

L1eu = τL, x ∈ Ω ⊂ Rn, (15)

where τL is the truncation error. The boundary condition for eu is

eu(x) = 0, x ∈ ∂Ω. (16)

Here Ω is a bounded domain with smooth boundary ∂Ω and G(x) is a smooth function

satisfying

|G(x)| ≥ lb > 0, |G(x)| ≤ lu, |∇G(x)| ≤ C2, ∀x ∈ Ω. (17)

Lemma 8.5. The operator L1 is strictly elliptic in Ω.

Proof. Here

ai,i = G(x), i = 1, . . . , n

ai,j = 0, i, j = 1, . . . , n, i 6= j,

bi = ∂G(x)
∂xi

, c = 0.

(18)
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Therefore, ∑
i,j

ai,j(x)ξiξj = G(x)
∑
i

|ξi|2. (19)

Using our assumptions, we have that 0 < lb ≤ |G(x)| ≤ lu in Ω. Thus,

0 < lb
∑
i

|ξi|2 ≤
∑
i,j

ai,j(x)ξiξj ≤ lu
∑
i

|ξi|2, (20)

for (ξi, ξj) in Rn \ (0) and x ∈ Ω. Therefore

λ ≥ lb = min
Ω
|G(x)|, Λ ≤ lu = max

Ω
|G(x)|. (21)

Now, we apply Theorem 8.1 for the error eu = u− ũ.

Theorem 8.6. Let Ω be a bounded domain with smooth boundary ∂Ω. Assume that

u ∈ C0(Ω̄) ∩ C2(Ω) is the solution of

∇ · (G(x)∇u) = F (x), x ∈ Ω, (22)

satisfying the boundary condition

ũ(x) = u(x) = u0, x ∈ ∂Ω. (23)

Assume that G(x) is smooth function satisfying

|G(x)| ≥ lb > 0, |G(x)| ≤ lu, |∇G(x1, x2)| ≤ C2 ∀x ∈ Ω. (24)

Assume also that the truncation error defined as τL := L(u− ũ) satisfies

|τL| ≤ ε0, ∀x ∈ Ω. (25)

Then,

sup
Ω
|eu| ≤ C

ε0

lb
, (26)

where C = C
(
Ω, supΩ |∇G|/lb

)
is a constant, depending only on Ω and supΩ |∇G|/lb.
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Proof. We have to show that our problem satisfies the assumption in Theorem 8.1. In

Lemma 8.5 we have shown that the operator Lu = ∇ · (G(x)∇u), with the conditions

(24) is strictly elliptic, thus elliptic. In addition, in our case c = 0, thus satisfies the

condition c ≤ 0. We have assumed that the solution u of the problem (22)-(23)-(24) is

in C0(Ω̄) ∩ C2(Ω). Then, using Theorem 8.1 for eu = u− ũ, we may conclude that

sup
Ω
|eu| ≤ sup

∂Ω
|eu|+ C sup

Ω

|τL|
λ
. (27)

Since eu = 0 on ∂Ω, then the first term in (27) vanishes. As for the second term in (27),

we have from assumption (24) that λ ≥ lb > 0 and |b| =
√∑

i |bi|2 = |∇G|. Thus,

β = sup
Ω

|b|
λ

= sup
Ω

|∇G|
λ

=
C2

lb
. (28)

Therefore, C, appearing in Theorem 8.1 depends only of Ω and β = C2/lb. By assump-

tion (25)

sup
Ω
|τL| ≤ ε0, (29)

we conclude that

sup
Ω
|eu| ≤ C

(
Ω, C2/lb

)
ε0, (30)

where C2 = supΩ |∇G|.

8.2 Bounds for the Helmholtz Equation

The Helmholtz equation which is eigenvalue problem of the Laplacian operator is given

by

L2u = F (x), x ∈ Ω

where

L2u = ∇2u+ k2u, k > 0. (31)
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Lemma 8.7. The operator L2 is strictly elliptic.

Proof. Here

ai,i = 1, ai,j = 0, i 6= j

bi = 0, c = k2.

(32)

Therefore, ∑
i,j

ai,j(x)ξiξj =
∑
i

|ξi|2. (33)

Thus,

0 <
∑
i

|ξi|2 =
∑
i,j

ai,j(x)ξiξj =
∑
i

|ξi|2, (34)

for (ξi, ξj) in Rn \ (0) and (x) ∈ Ω. Therefore,

λ = 1, Λ = 1. (35)

Consider now the Helmholtz problem, for which we derive a bound for eu = u− ũ.

Theorem 8.8. Let Ω be a bounded domain with a smooth boundary ∂Ω. Assume that

u ∈ C0(Ω̄) ∩ C2(Ω) is the solution of

∇2u+ k2u = F (x), x ∈ Ω, (36)

satisfying the boundary condition

u(x) = u0, x ∈ ∂Ω. (37)

Suppose that τL = L2(u− ũ) satisfies

|τL| ≤ ε0, ∀x ∈ Ω. (38)
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Assume that the domain Ω lies between two parallel planes a distant ` apart, such that

` < ln

(
1 +

1

k2

)
. (39)

Then,

sup
Ω
|eu| ≤ C2 ε0 . (40)

Proof. We have to show that our problem satisfies the assumption in Corollary 8.3. In

Lemma 8.7 we have shown that the operator L2u = ∇2u + k2u is strictly elliptic, thus

elliptic. Note that in our case c = k2 > 0.

Using Remark 8.4, where in our case β = 0, we may choose C = e` − 1 as a

possible value of the constant in (10), where ` is the width of any slab containing Ω.

Then condition (11) will be satisfied in any sufficiently narrow domain in which the

quantities |b|/λ and c/λ are bounded from above. In our case |b|/λ = 0 and c/λ = k2,

which are both bounded from above.

In particular, in order to satisfy condition (11), since C = e` − 1 and supΩ c
+/λ =

k2, we need to require that

1− (e` − 1)k2 > 0, (41)

thus we have to require that

` < ln

(
1 +

1

k2

)
. (42)

Then, we conclude that

sup
Ω
|eu| ≤ C2 ε0 =

C

C1

ε0 =
e` − 1

1− k2
ε0, (43)

where C1 = 1− supΩ c
+/λ = 1− k2.
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Inversly we can learn from this result that given a domain Ω such that the minimal

slab in which it can be embedded has distance ` then the maximal eigenfunction that

one can hope to recover corresponds to |k| ≤ 1√
e`−1

.

8.3 Relation to the Network’s Structure

In this subsection we relate the empirical truncation error to the network structure and

parameters. For this aim we bound the truncation by the network approximation error

and bound the latter in terms of the network’s structure.

Let v ∈ W s,p(Ω) be a function, with continuous derivatives up to order s, and ṽ, the

approximation of v due to the neural network. First, we state a theorem, which relates

the architecture of the network with the error v − ṽ in the Sobolev space W s,p(Ω).

Let the network approximation error of a function v be defined as

ev := v − ṽ.

This error was addressed by Shen et al. (2020, 2021); Lu et al. (2020), where they

presented an optimal error characterization of deep ReLU and floor-ReLU networks

for smooth and Hölder functions in terms of network architecture (network depth and

length). Ohn and Kim (2019) derived the required depth, width and sparsity of deep

neural networks to approximate any Hölder smooth function up to a given approxima-

tion error. They address two classes of activation functions, which include most of the

commonly used activation functions. The first class is the piecewise linear activation

functions which includes ReLU and Leaky ReLU. The second class includes locally

quadratic activation functions, where there is an interval on which the activation func-

tion has nonzero curvature, e.g. sigmoid, tanh, soft clipping, soft plus, and Exponential
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linear unit.

Gühring and Raslan (2021) recently introduced necessary and sufficient complexity

of neural networks to approximate functions in Sobolev spaces for a wide class of acti-

vation functions: leaky ReLU, ELU, softsign, sigmoid, tanh, arctan, softplus, swish and

RepU. Jiao et al. (2021) provided a rigorous numerical analysis on deep Ritz methods

for second order elliptic equations with Dirichlet, Neumann and Robin boundary con-

ditions, respectively. They also provided a corollary for the main result of Gühring and

Raslan (2021) which we use below.

Theorem 8.9. Let Ω := [0, 1]d,Fs,p,d = {v ∈ W s,p(Ω) : ‖v‖W s,p(Ω) ≤ 1}. Let p ≥ 1,

s, k, d ∈ N+, s ≥ k + 1 and µ > 0 a small scalar. Let ϕ be logistic or tanh activation

functions. Assume that ṽ is the approximation of v by the neural network. For any

ε0 > 0 and v ∈ Fs,p,d, there exists a neural network with depth C log(d + s) and

N = C(d, s, p, k)ε
−d/(s−k−µk)
0 , where N is the number of non-zero weights, such that

‖v − ṽ‖W s,p(Ω) ≤ ε0.

Proof. Proposition 4.8 in Gühring and Raslan (2021) and Remark 4.1 in Jiao et al.

(2021).

Next, we relate the error ‖v− ṽ‖W s,p(Ω) to the truncation error in a linear differential

operator L, with bounded coefficients, operating on a smooth function v. We define the

norm of the truncation error by

TL(v) := ‖τL(v)‖.
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Corollary 8.10. Let ṽ ∈ W s,p(Ω) be an approximation of v ∈ W s,p(Ω) such that

‖v − ṽ‖W s,p(Ω) ≤ ε0 then the truncation error of the operator L satisfies

TL(v) = ‖L(v − ṽ)‖∞ ≤ C0ε0, (44)

where C0 depends on the coefficients of the derivatives of v appearing in the differential

operator L.

Proof. By the general Sobolev inequality (Theorem 6 in Evans (2010)), in the case that

sp > d, if one chooses p = d = 2, then, as a result of Theorem 6, we have

(v − ṽ) ∈ Cs−2,γ(Ω)

where 0 < γ < 1, for s > 2, and

‖v − ṽ‖Cs−2,γ ≤ C0‖v − ṽ‖W s,2(Ω).

Therefore for s > 4,

‖v(m) − ṽ(m)‖∞ ≤ C‖v − ṽ‖W s,2(Ω) ≤ Cε0,

for m = 0, 1, . . . , s − 3. Therefore, all derivatives up to order s − 3, appearing in the

differential equations of order s − 3, are approximated with errors which are bounded

by ε0 in the infinity norm. Since the coefficients are bounded as well, it follows that the

truncation error in the operator L, defined by TL, satisfies

TL(v) = ‖L(v − ṽ)‖∞ ≤ C0ε0. (45)

The result of this section and the previous one is that the approximation error and

the truncation error are linearly dependent. It follows that given the network’s structure
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and the empirical truncation error, we can bound the behavior of the approximation

error.

8.3.1 Practical Architecture Analysis

In this subsection we display the truncation error TL = ‖L(u − ũ)‖∞ with respect to

the network structure. In our problems Lu = 0, therefore

TL = ‖Lũ‖∞.

We solve the 1D Laplacian eigenproblem with M = 1 for different architectures: the

number of layers were set to (2, 3, 4) with (15, 20, 25, 30, 50) neurons per layer (width).

Given that neural networks are stochastic processes, the optimization plays an integral

role in the results. As such, we ran each experiment with 5 different initialization seeds,

and took the average scores. We do not include in the plot the runs which had a loss

over a certain threshold of 10.0 as to not include experiments which did not converge.

As expected, the error generally decreases as the number of weights increases. Of note,

for each depth, we see a general decrease in the error as the width increases.

The Laplacian operator is a special case of a Divergence-form equation, and there-

fore, by (26), if ‖Lũ‖∞ ≤ C0ε0, then ‖u − ũ‖∞ ≤ Cε0. Figure 10 shows the relation

between the total number of weights N , and the truncation error TL = ‖Lũ‖∞, both

in a log scale. We fit the results to a linear curve using least squares. This curve is in

accordance to Theorem 8.9 and (26), where

N = C0ε
−τ
0 ,

which yields

logN = −τ log ε0 + C,
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Figure 10: Empirical dependency between the truncation error ‖Lũ‖∞ and the total

number of weights. The marker size represents the layer width: (15, 20, 25, 30, 50).

The relation is in accordance with Theorem 8.9, where logN = −τ log ε0 + C. In our

case, τ = 1.56 and C = 2.66.

with τ = d/(s− k(1 + µ)). In our case d = 1. Since the solution is given as a

sin(·) function, then s = 5, k = 4, and µ may be chosen as 0.09. Note, that we have

picked s = 5, which satisfy our theoretical requirement s > 4. For these values,

τ = 1/(5 − 4(1 + 0.09)) = 1.56. Notice that as the smoothness s of the function

increases, then the number of total weights decreases. The convergence rate is then

given by

ε0 = C1N
−1/τ ≈ C1N

−0.64.
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Figure 11: Empirical dependency between the approximation performance and the

dataset size on the 1D Laplacian eigenvalue problem with M = 1, as discussed in Sec-

tion 4.2. For each dataset size we analyze over 6 different initialization seeds, and av-

erage the results. The results are given in a log− log plot. Formally: MAE = ‖u− ũ‖1,

Inf. Error = ‖Lu− Lũ‖∞, Boundary Error = ‖u0 − ũ‖1, Squared Error = ‖Lu− Lũ‖2,

Energy Error = |‖ũ‖2
2 − c|.
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8.4 Dependence on Dataset Size

Classical methods such as FEM Pradhan and Chakraverty (2019), are based on a mesh

with interval h. Generally speaking, the number of points N ∼ VΩ/h
d where VΩ is the

volume of Ω, and d is the dimension. We give an example of the 1D Laplace equation,

and test different dataset sizes N in Figure 11 in log-log scale. Each dataset size is

averaged across 6 initialization seeds. For each N , we show the different forms of loss

functions. We see that generally, all errors decrease as more samples are used.

9 Conclusion

In this work we introduced a NN-based method for the eigevalue problem. We have

shown that a NN can be devised to solve several PDEs of the same class simultane-

ously, and demonstrated our approach for the class of eigenfunctions of a given elliptic

operator. We have further verified that we can approximate the eigenfunctions and the

eigenvalues (eigenpairs) at the same time. We proposed a novel method to exploit these

new innovations, along with specific constraints that exist in the mathematical nature of

such problems that shed some light on the well-known eigenvalue problem.

Our method is applicable for solving eigenvalue problem on complex domains, not

necessarily on standard domains like rectangles or circles. Furthermore, the proposed

method may be used on higher order, non-linear operators and on higher dimensional

manifolds. When using the Rayleigh quotient to learn both the eigenfunction and its

corresponding eigenvalue, the end-to-end learning process seems to accelerate the con-

vergence. This suggests that the orthogonality term serves as a regularizer on each
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eigenpair in the course of the training process. The method produces smooth solutions,

due to the fact that the networks are composed of linear layers and smooth activation

functions (namely tanh, SIREN and GeLU). Since these solutions are deterministic and

parameterized by the learned weights, they are infinitely differentiable. The fact that

the solution is given in an explicit form, enables an exact analytical differentiation, and

therefore is applicable for high order PDEs.

The suggested approach can be further generalized and optimized. The computation

time is still slower than classical methods like FEM. This optimization is a significant

task for future work. Another research direction might refer the boundary conditions as

an input to the network. With this generalization, new training is not necessary for a new

boundary condition. Further directions include high dimensional problems, non-linear

differential operators, and non-uniform point set sampling.
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Appendix

A Inverse Power Method

The power iteration method or power method, is a well known iterative algorithm where

given a diagonalizable matrix A, finds the maximal eigenvalue and its corresponding

eigenvector Bronson et al. (2014). Given a diagonalizable matrix A, the algorithm

produces a number λ , which is the greatest (in absolute value) eigenvalue of A, and a

nonzero vector v, which is the corresponding eigenvector of λ , that is, Av = λv. The
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power iteration algorithm starts with a vector b0, which may be an approximation to the

dominant eigenvector or a random vector. Then at iteration k,

bk+1 =
Abk
‖Abk‖

.

If we assume A has an eigenvalue that is strictly greater in magnitude than its other

eigenvalues, then bk convergence to an eigenvector associated with the dominant eigen-

value. Ideally, one should use the Rayleigh quotient in order to get the associated eigen-

value,

λ =
bTkAbk
bTk bk

.

The inverse power method is the power method applied to the inverse of a matrix A.

In general, the inverse power method converges to the smallest eigenvalue in absolute

value of A, where

bk+1 =
A−1bk
‖A−1bk‖

.

We adopted the inverse power method to our problem following Bozorgnia (2016). The

discrete 2D Laplacian operator was formulated as a convolution kernel

k =


0 −1 0

−1 4 −1

0 −1 0

 ,

where the convolution operation was constructed as a N2 × N2 block Toeplitz ma-

trix, with N = π/h, where h is the discretization spacing. The approximation of the

continuous operator, therefore, may yield significant numerical errors Knyazev (2000).

Figure 12 shows the outcome of the inverse power method regarding the Laplacian op-

erator implemented in Matlab MATLAB (2015) with h = 0.05 and initial eigenvalue
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Figure 12: Inverse power method for the Laplacian operator. Left: Approximated eigen-

function, Middle: error |ugt − u|. Right: convergence of the eigenvalue. λ = 2.18,

RMSE=1.60e−4, PSNR=37.95

Table 10: Laplacian operator: comparison to the Inverse Power Method. The ground

truth eigenvalue is 2. PSNR and MSE are referred to the eigenfunctions.

λ (GT=2) PSNR RMSE

Inverse power method 2.18 37.95 1.6e-4

Proposed (our) 2.01 34.87 3.2e-4

λ0 = 1 in two dimensions. On the left is the estimated eigenfunction which corresponds

to the lowest eigenvalue (m = 1, n = 1). In the middle is the error |ugt(x, y)− u(x, y)|

and on the right is the convergence plot of the eigenvalue which was converged to 2.18.

Table 10 shows the performance of the proposed algorithm compared with the inverse

power method.

The discrete operator of the Legendre’s equation was built as a multiplications of

three matrices of size N × N with N = 2/h: the first is the forward difference oper-

ator matrix, the second is a diagonal matrix of vector of length N stands for 1 − x2,

x ∈ (−1, 1), and the third is the backward difference operator. The convergence of
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Figure 13: Inverse power method for the Legendre’s equation. Left: Ground truth

(solid line) and approximated (dashed line) eigenfunctions. Right: convergence of the

eigenvalue with λ = 29.12, RMSE=1.77e-2, PSNR=17.51.

the algorithm required a normalization of the eigenfunctions such that the L2 norm was

2/(2n + 1). We provided this prior manually. We also added the boundary condition

constraint. Note that in our method the normalization is automatic. We set h = 0.03

and initial eigenvalue λ0 = 1. The results are shown in Figure 13 and Table 11. In

our experiments, the inverse power method seemed to be sensitive to discretization and

initialization. In particular, in the Legendre’s equation, different values of h brought

out different eigenpairs, where for h = 0.03 we received the fifth eigenvalue which

converged to λ = 29.12. Our algorithm outperforms in part of the quantitative mea-

sures. Furthermore, the inverse power method finds only a single eigenpair, while the

proposed method outputs theM smallest eigenpairs. Although it is possible to calculate

more eigenpairs based on the previous one via orthogonality constraints, an undesired

accumulated error may emerge.
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Table 11: Legendre’s equation: comparison to the Inverse Power Method where the

true eigenvalue is 30. Note that in this method there was a manual normalization of the

eigenfunctions, while in the proposed method the normalization was automatic. PSNR

and MSE are referred to the eigenfunctions.

λ (GT=30) PSNR RMSE

Inverse power method 29.12 17.51 1.77e-2

Proposed (ours) 28.98 24.83 3.28e-3
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