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Abstract. An important challenge in Data Mining and Machine Learn-
ing is the proper analysis of a given dataset, especially for understanding
and working with functions defined over it. In this paper we propose
Auto-adaptive Laplacian Pyramids (ALP) for target function smoothing
when the target function can be define on a high-dimensional dataset. The
proposed algorithm automatically selects the optimal function resolution
(stopping time) adapted to the data defined and its noise. We illustrate
its application on a radiation forecasting example.

1 Introduction

Manifold learning algorithms have become a common way for processing and
analyzing high-dimensional data. The so called “diffusion analysis” allows us to
find the most appropriate geometry to study such data and the functions defined
on them [1]. These methods are based on the construction of a diffusion operator
that depends on the local geometry of the data, which is then used to embed the
high-dimensional points into a lower-dimensional space while maintaining their
geometric properties.

However, these low dimensional embeddings are not given by an input-output
function and extending them or, more generally, interpolating a function de-
fined on such an embedding to new points may be challenging. Traditionally,
Nyström based methods such as Geometric Harmonics (GH) [2] have been used
for this purpose. Nonetheless these approaches also require a careful setting of
parameters and, in addition, there does not exist a robust method for select-
ing the correct neighborhood. A first attempt to simplify these approaches was
via Laplacian Pyramids (LP) [3], a multi-scale model that generates a smoothed
version of a function in an iterative manner by using Gaussian kernels of decreas-
ing widths [4]. These kind of models lose the GH property of being maximally
concentrated on X, but they have the gain of its simplicity.

Nevertheless, when we apply a LP model, there is a risk of overfitting if we
try to refine too much the prediction during the training phase, as was shown in
[5]. A usual approach to avoid overfitting is to apply Cross Validation (CV) to
measure a validation error during training and then stop it when this error starts
to increase. The extreme form of CV is Leave One Out CV (LOOCV), which is
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theoretically supported and often yields good results, but with the drawback of
a heavy computational cost.

In this paper we propose Auto-adaptive LP (ALP), which is a modification
in the LP process. It merges model training and an approximate LOOCV esti-
mation in one single phase. To do so we will simply modify the kernel matrix
to have zeros on its diagonal. This change, first, reduces significantly training
complexity but, also, provides an automatic estimate of the CV error that allows
to stop training when overfitting risk may appear. Moreover, even if approxi-
mate LOOCV is achieved, it adds no extra cost compared to other classical
neighbor-based interpolation methods.

This paper is organized as follows. In Section 2 we review the LP model
and in Section 3 we describe the new ALP approach. Then, we will illustrate
it in a radiation forecasting problem in Section 4. The paper ends with some
conclusions in Section 5.

2 Laplacian Pyramids

Laplacian Pyramids (LP) is an iterative model that was introduced by Burt and
Adelson [4] for its application to image processing. In [3] a multi-scale algorithm
was introduced in the spirit of LP to be applied in the setting of high-dimensional
data analysis. We will follow this reference to review the LP procedure.

Let S = {xi}Ni=1 ∈ RM be the sample dataset; the algorithm approximates
a function f defined over S by constructing a series of functions {f̃i} obtained
by several refinements di over the approximation errors. In a slight abuse of
language we will use the same notation f for both the general function f(x) and
also for the vector of its sample values f = (f1 = f(x1), . . . , fN = f(xN )). The
result of this process gives as result a function approximation.

In particular, we define a kernel K0(x, x′) = κ exp (−‖x− x′‖2/σ2), where κ
is the Gaussian kernel normalizing constant. We will use the K0 notation for
both the general continuous kernel K0(x, x′) and for its discrete matrix counter-
part K0

jk = K0(xj , xk) over the sample points. The smoothing operator P 0 is

constructed as the normalized row-stochastic kernel matrix P 0
ij = K0

ij/
∑

kK
0
ik.

A first coarse representation of f is then generated by the convolution f̃0 =
f ∗ P 0 that captures the low-frequencies of the function. For the next steps we
fix a parameter µ > 1, construct at level i a sharper Gaussian kernel P i with
scale σ/µi. Then, the residual di = f − f̃i−1, which captures the error of the
approximation to f at the previous i−1 step, is used to generate a more detailed
representation of f given by f̃i = f̃i−1 + di ∗P i = f̃i−1 + gi−1, with g` = d` ∗P `.
The iterative algorithm stops once the norm of the residual vector di is smaller
than a predefined error. Stopping at iteration L, the final LP model has thus
the form

f̃L = f̃0 +

L∑
`=1

g` = f ∗ P 0 +

L∑
`=1

d` ∗ P `.

Extending this multi-scale representation to a new data point x ∈ RM is now



straightforward because we simply set

f̃L(x) = f ∗ P 0(x) +

L∑
`=1

d` ∗ P `(x) =
∑
j

fjP
0(x, xj) +

L∑
`=1

∑
j

d`;jP
`(x, xj)

where we directly extend the P ` kernels for a new x as P `(x, xj) =
K`(x,xj)∑
k K`(x,xk)

with K`(x, x′) = κ exp (−‖x− x′‖2/σ2
` ), with σ` = σ/µ`.

Note, however, that f̃` = f ∗ P ` + f̃`−1 ∗ (I − P `) and since it can be shown
that P ` → I, the f̃` will overfit the sample points for large `.

3 Auto-adaptive Laplacian Pyramids

k-fold Cross Validation (CV) is usually the standard choice to detect and prevent
overfitting. In k-CV we randomly distribute the sample in k subsets and itera-
tively use k− 1 subsets for training and the remaining one for validation. In the
extreme case when k = N , i.e., we use just one pattern for validation, we arrive
at Leave One Out Cross Validation (LOOCV) and stop the training iterations
when the LOOCV error starts to increase. In our case LOOCV can be easily ap-
plied using for training a N ×N normalized kernel matrix P(p) which is just the
previous matrix P where we set to 0 the p-th rows and columns when xp is held
out of the training sample and used for validation. The most obvious drawback
of LOOCV is its rather high cost, which in our case is N ×O(LN2) = O(LN3).

In our context and to alleviate the LOOCV cost, notice first that when we
remove xp from the training sample, the test value at xp of the f (p) extension
built is defined by

f
(p)
L (xp) =

∑
j 6=p

fjP
0(xp, xj) +

L∑
`=1

∑
j 6=p

d
(p)
`;j P

`(xp, xj)

=
∑
j

fjP̃
0(xp, xj) +

L∑
`=1

∑
j

d
(p)
`;j P̃

`(xp, xj),

where d
(p)
` are the different previously defined errors computed using the P `

(p)

matrices and where P̃ is just the matrix P with its diagonal elements set to 0,
i.e. P̃i,i = 0, P̃i,j = Pi,j when j 6= i.

This observation leads to the modification we propose on the standard LP
algorithm given in [3], and which simply consists of the application of the LP
procedure described in Section 2, while replacing the P matrix by its 0-diagonal
version P̃ , computing then f̃0 = f ∗P̃ 0 at the beginning, and then the d̃` = f−f̃`,
g̃` = d̃` ∗ P̃ ` and f̃` vectors at each iteration. We call this algorithm the Auto-
adaptive Laplacian Pyramid (ALP)1.

1The ALP code is publicly available at http://arantxa.ii.uam.es/~gaa/software.html.

http://arantxa.ii.uam.es/~gaa/software.html


According to the previous formula for the f
(p)
L (xp), we can take the ALP

values f̃L,p = f̃L(xp) given by

f̃L(xp) =
∑
j

fjP̃
0(xp, xj) +

L∑
`=1

∑
j

d̃`;jP̃
`(xp, xj),

as approximations to the LOOCV validation values f
(p)
L (xp). The LOOCV

square error at each iteration can be approximated via∑
p

(f(xp)− f (p)L (xp))2 '
∑
p

(f(xp)− f̃L,p)2 =
∑
p

(d̃L;p)2,

which is just the training error of ALP at the current iteration.
The obvious advantage of ALP is that when we evaluate the training error, we

are actually estimating the LOOCV error after each LP iteration. Therefore, the
evolution of these LOOCV values tells us which is the optimal iteration to stop
the algorithm, i.e., just when the training error approximation to the LOOCV
error starts growing. Thus, we do not only remove the danger of overfitting but
can also use the training error as an approximation to the generalization error.
This can be seen in Figure 1, which illustrates the application of ALP to the
radiation forecasting example described in the next section. Observe how the
optimum stopping time for ALP is exactly the same one that would be given by
a full LOOCV error and how training error stabilizes afterwards.

Notice that the cost of running L steps of ALP is just O(LN2) and, thus,
we gain the advantage of the exhaustive LOOCV without any additional cost.
Moreover, ALP achieves an automatic selection of the width of the Gaussian
kernel which makes this version of LP to be auto-adaptive, as it does not require
costly parameter selection procedures. In fact, choosing µ = 2, the only required
parameter would be the initial σ but provided it is wide enough, its σ/2` scalings
will yield an adequate final kernel width.

4 ALP for Radiation Forecasting

ALP can be used in manifold learning for extending coordinates but it can
also be seen as an interpolation method and thus used for regression. In fact,
both applications can be combined to, first, extend manifold learning embedding
coordinates, such as Diffusion Maps (DM), to new, unseen, test patterns and,
second, to derive predictions over these extended coordinates. We will illustrate
its application in one such problem, the prediction of actual solar radiation
from Numerical Weather Predictions (NWP). This is directly related with the
prediction of solar and, more generally, renewable energy, an area that is getting
a growing attention from the Machine Learning community.

We will work with data from the AMS 2013-2014 Solar Energy Prediction
Contest hosted by the Kaggle company 2 where the goal was the prediction of

2American Meteorological Society 2013-2014 Solar Energy Prediction Contest (https://
www.kaggle.com/c/ams-2014-solar-energy-prediction-contest).

https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest
https://www.kaggle.com/c/ams-2014-solar-energy-prediction-contest


the total daily incoming solar energy in a series of meteorological stations located
in Oklahoma.

The complete input data of the contest are, on one hand, an ensemble of 11
NWP from the NOAA/ESRL Global Ensemble Forecast System (GEFS), and on
the other hand, the daily aggregated radiation from 98 stations in Oklahoma.
For this experiment, we have just used the main NWP ensemble. Therefore,
our input patterns contain five time-steps (from 12 to 24 UTC-hours in 3 hour
increments) with 15 variables per time-step for all points in a 16× 9 grid. The
daily NWP forecasts from 1994–2004 yield the training patterns, and the years
2005, 2006 and 2007 are used for testing.

Before applying ALP for radiation forecasting, we have reduced the very
large dimension of the NWP training variables using DM [6], that are able to
maintain the essential information contained in the original data, while enabling
the embedding coordinates to retain enough information for our predicting pur-
poses. We then apply ALP over the DM coordinates obtained to extend them
for the testing subset.

Recall that the main advantage of ALP is that its training error after each
LP iteration also gives an approximate estimate of the LOOCV error, and we
should stop when this training error starts growing. This can be observed for
the radiation in Figure 1. The solid blue and dashed green lines represent the
LP training error and the true LOOCV error per iteration respectively, and the
dashed red line represents the error for our proposed method. As it can be
seen, the ALP model requires 16 iterations to attains its minimum, about the
same number of iterations that would be suggested by applying full LOOCV
to standard LP. The figure also demonstrates the robustness of the ALP model
against overfitting.

kALP = kLOOCV = 15
0

0.2

0.4

0.6

0.8

1

Iterations

M
A
E

ALP

LP

LOOCV

Fig. 1: Training errors for ALP, LP and LOOCV.

In Figure 2, left, we have depicted in red the result of applying this methodol-
ogy for the second test year and the real radiation in blue. Although the winning
models in the Kaggle competition followed different, better approaches, it can
be seen that ALP captures radiation’s seasonality. In the right plot we zoom
in and it can be appreciated how ALP tracks the daily radiation variations and



yields a reasonably good approximation to actual radiation values.
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Fig. 2: Solar energy prediction over the second test year and over 100 days.

5 Conclusions

The classical and widely studied Laplacian Pyramid (LP) scheme of Burt and
Adelson has been applied to many problems, particularly in image processing.
However, it has a considerable overfitting risk and, thus, requires the use of rather
costly techniques such as CV to prevent it. In this work we have presented Auto-
adaptive Laplacian Pyramids (ALP), a modified, adaptive version of LP training
that yields at no extra cost an estimate of the LOOCV value at each iteration,
allowing thus to automatically decide when to stop in order to avoid overfitting.
We have illustrated the robustness of the ALP method on a radiation forecasting
example, where a two step ALP procedure has been applied to build a regression
model over a DM embedding on the training set and then to apply it over the
ALP estimation of the DM coordinates of the test samples. Further work will
concentrate on other applications of ALP to manifold learning problems.
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