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Abstract In Ben-Artzi et al. (SIAM J Numer Anal 47:3087–3108 (2009), [1]) a

Cartesian embedded finite difference scheme for biharmonic problems has been

introduced. The design of the scheme relies on a 19-dimensional polynomial space.

In this paper, we show how to simplify the implementation by introducing a direc-

tional decomposition of this space. The boundary is handled via a level-set approach.

Numerical results for non convex domains demonstrate the fourth order accuracy of

the scheme.

1 Introduction

Let 𝛺 ⊆ ℝ2
be a convex domain. The problem considered here is the biharmonic

problem subject to Dirichlet boundary conditions:

{
𝛥
2
𝜓(𝐱) = f , 𝐱 ∈ 𝛺,

𝜓 = 𝜕𝜓

𝜕n
= 0, 𝐱 ∈ 𝜕𝛺.

(1)

Our purpose is to calculate a high order accurate approximation to (1), by embedding

𝛺 in a Cartesian grid. The main idea of the scheme was described in [1]. Here we

extend and elaborate on the presentation in [3, Chap. 11].
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We consider the convex domain 𝛺 as embedded in a large uniform grid of mesh

size h. A grid point is a point Qi,j = (ih, jh) for i, j ∈ ℤ. Following common terminol-

ogy, we use the term interior nodes for the grid points that lie inside𝛺. We denote

by 𝛺h the ensemble of these nodes, namely:

𝛺h =
{
Qi,j ∈ 𝛺, i, j ∈ ℤ

}
. (2)

We split the set 𝛺h into two sets, 𝛺h = 𝛺
calc
h ∪𝛺

edge
h , as follows:

∙ 𝛺
calc
h = the set of calculated nodes.

This set consists of those nodes that are located “well within” 𝛺, namely suffi-

ciently far from the boundary 𝜕𝛺. In particular, if all diagonally neighboring nodes

Qi±1,j±1 are in 𝛺h then Qi,j ∈ 𝛺
calc
h . Remark that by convexity all eight neighbor-

ing nodes are then in 𝛺h. However, it should be emphasized that even if not all its

neighboring nodes are in 𝛺h, a node Qi,j can still be considered as “calculated” if

it is not “too close” to the boundary, as we explain below.

The approximate values at the calculated nodes are obtained by the proposed
scheme.

∙ 𝛺
edge
h = the set of edge nodes.

This set consists of those nodes (interior to 𝛺) that are located “too close” to the

boundary 𝜕𝛺. They differ from the calculated nodes in the sense that there are no

approximate values associated with them. Their role is “geometric”; they serve in

the determination of a set 𝛺
bdry
h of boundary nodes that are actually located on

the boundary 𝜕𝛺, and carry the assigned boundary values.

∙ Observe that the set 𝛺
bdry
h consists of selected points on the boundary, and in gen-

eral is not included in the underlying global grid Qi,j, i, j ∈ ℤ.

In Fig. 1 we designate the calculated nodes with black circles, whereas the edge

nodes are designated by white circles.

The proposed scheme is a compact scheme, i.e. all approximate values of high

order derivatives are related to values of a function 𝜓 and its derivatives 𝜓x, 𝜓y at

immediate neighbors. More specifically, given a node 𝐌0 = Qi,j ∈ 𝛺h, we consider

the eight surrounding nodes in the grid:

Fig. 1 Embedding of an

elliptical domain in a

Cartesian grid. Calculated

nodes are represented by

black circles. Exterior points

are represented by black
squares. The points labelled

with white circles represent

edge points, i.e. interior

points close to the boundary
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Fig. 2 Zoom on the neighborhood of point M0 in Fig. 1. The coordinates have been moved such

that M0 is the coordinates center. The 8 neighbors points of M0 are the points 𝐌1, 𝐌2, 𝐌3, 𝐌4,

𝐌𝟓, 𝐌𝟔, 𝐌𝟕 and 𝐌8. The points 𝐌1, 𝐌4, 𝐌6 and 𝐌7 belong to the Cartesian grid. The points 𝐌2,

𝐌3, 𝐌5 and 𝐌8 belong to the boundary of the domain. They are obtained as the intersection of

rays emanating from 𝐌0 and directed towards 𝐌2, 𝐌3, 𝐌5 and 𝐌8 respectively. The points 𝐌3,

𝐌5 and 𝐌8 are outside the domain. The edge point above 𝐌0 is marked with an open circle

�̃�1 = Qi−1,j+1, �̃�2 = Qi,j+1, �̃�3 = Qi+1,j+1, �̃�4 = Qi−1,j,

�̃�5 = Qi+1,j, �̃�6 = Qi−1,j−1, �̃�7 = Qi,j−1, �̃�8 = Qi+1,j−1.

If all the nine nodes �̃�i are calculated nodes, namely, in 𝛺
calc
h , or coincide with a

boundary point, which is part of the grid, we set 𝐌i = �̃�i, i = 0,… , 8, and continue

with this regular stencil centered at 𝐌0. Otherwise, our goal is to replace the �̃�′
i s

that are not in 𝛺
calc
h by suitable 𝐌′

i s that are boundary points, namely, in 𝛺
bdry
h . The

values of 𝜓,𝜓x, 𝜓y at these points are all that is needed in order to calculate the

various approximate derivatives at 𝐌0.

To describe this construction, suppose that 𝐌0 ∈ 𝛺
calc
h is a calculated node, while

for some 1 ≤ i ≤ 8, the neighboring node �̃�i is either an edge node or an exterior

node. Consider the calculated node designated by 𝐌𝟎 in Fig. 1. A zoom is shown

on Fig. 2. The 8 points �̃�i are the points in the square (4 corner points and 4 mid-

edge points). Take the ray that emanates from 𝐌0 and goes through �̃�i. This ray

must cross the boundary 𝜕𝛺 at exactly one point since 𝛺 is convex. We define the

intersection point as 𝐌𝐢.
The calculation of the approximate value to 𝛥

2
𝜓(𝐌𝟎) relies on the data at 𝐌𝐢

rather than �̃�i.
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∙ The four neighbors �̃�1, �̃�4, �̃�6 and �̃�7 are other calculated nodes so we keep

them, i.e. �̃�i = 𝐌i, i = 1, 4, 6, 7. In particular, if we shift the coordinates of 𝐌0 to

(0, 0), we have for the coordinates of 𝐌i, i = 1, 4, 6, 7, the values h1 = h4 = h6 =
h7 = h.

∙ The other four neighbors �̃�2, �̃�3, �̃�5 and �̃�8 are either edge or exterior nodes so

they are replaced by points on the boundary as described above.

We thus obtain 𝐌i, the actual points used in the calculation.

Once the 8 points 𝐌i are determined and approximate values 𝜓 , 𝜓x and 𝜓y are

assigned to them, we can proceed to evaluate an approximate value for 𝛥
2
𝜓 at the

point 𝐌0. This is described in Sect. 2.

2 The Discrete Biharmonic 𝜟𝟐
𝐡𝝍 Operator

In this section we present our finite-difference scheme for the approximation of the

biharmonic operator. Figure 2 shows the stencil used for the approximation of 𝛥
2
𝜓 at

𝐌0 = (0, 0). The 8 points𝐌k, 1 ≤ k ≤ 8 form an irregular stencil around𝐌0. Each of

the nine grid points 𝐌k carries three values: 𝜓,𝜓x, 𝜓y. These are calculated values if

𝐌k ∈ 𝛺
calc
h is a calculated node. If 𝐌k ∈ 𝛺

bdry
h , then this point carries boundary data

given by the boundary conditions. In order to approximate 𝛥
2
𝜓 of a given smooth

function 𝜓 at 𝐌𝟎 we interpolate the data 𝜓,𝜓x, 𝜓y on the stencil {𝐌0,… ,𝐌8} by a

certain polynomial P𝐌0
of degree 6. The detailed construction of P𝐌0

(x, y) is carried

out in Sect. 3. To handle the irregular stencil around 𝐌0 we denote by 𝐡 the vector

of the step-sizes around 𝐌0, as in Fig. 2:

𝐡 = [h1,… , h8]T . (3)

Once the polynomial P𝐌0
(x, y) is constructed, we replace the smooth function 𝜓 by

a discrete function �̃� , defined only on the set of nodes 𝛺
calc
h ∪𝛺

bdry
h . The discrete

biharmonic operator𝛥
2
𝐡𝜓 for the approximation of𝛥

2
𝜓 at𝐌0 = (0, 0) is then defined

by

𝛥
2
𝐡�̃�(𝐌𝟎) = 𝛥

2P𝐌0
(0, 0), (4)

3 Calculating the Interpolation Polynomial P𝐌𝟎
(x, y)

As mentioned above, our compact scheme for the biharmonic problem relies on an

interpolation polynomial of degree six. Such a polynomial is constructed for every

calculated point 𝐌i,j ∈ 𝛺
calc
h . This sixth-order polynomial is called P𝐌𝟎

(x, y). It is of

the form (where here and below the subscript 𝐌0 is omitted),
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P(x, y) =
19∑
i=1

aili(x, y), (5)

where the polynomials li(x, y) are (x, y) are shifted so that 𝐌0 = (0, 0):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

l1(x, y) = 1, l2(x, y) = x, l3(x, y) = x2, l4(x, y) = x3,
l5(x, y) = x4, l6(x, y) = x5, l7(x, y) = y, l8(x, y) = y2, l9(x, y) = y3,

l10(x, y) = y4, l11(x, y) = y5, l12(x, y) = xy,
l13(x, y) = xy(x + y), l14(x, y) = xy(x − y),
l15(x, y) = xy(x + y)2, l16(x, y) = xy(x − y)2,
l17(x, y) = xy(x + y)3, l18(x, y) = xy(x − y)3,

l19(x, y) = x2y2(x2 + y2).

(6)

The 19 coefficients ai are obtained as follows. We consider the discrete values

depending on �̃� located at the eight points 𝐌k, 1 ≤ k ≤ 8, around the point 𝐌0,

(see Fig. 2). From the discrete data at these points we determine 19 values to be

interpolated by P(x, y) and its derivatives:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛤1(𝜓) = �̃�(𝐌1), 𝛤2(𝜓) = �̃�(𝐌2), 𝛤3(𝜓) = �̃�(𝐌3),

𝛤4(𝜓) = �̃�(𝐌4), 𝛤5(𝜓) = �̃�(𝐌0), 𝛤6(𝜓) = �̃�(𝐌5),

𝛤7(𝜓) = �̃�(𝐌6), 𝛤8(𝜓) = �̃�(𝐌7), 𝛤9(𝜓) = �̃�(𝐌8),

𝛤10(𝜓) = (−𝜕x + 𝜕y)�̃�(𝐌1), 𝛤11(𝜓) = 𝜕y�̃�(𝐌2),

𝛤12(𝜓) = (𝜕x + 𝜕y)�̃�(𝐌3), 𝛤13(𝜓) = −𝜕x�̃�(𝐌4),

𝛤14(𝜓) = 𝜕x�̃�(𝐌0), 𝛤15(𝜓) = 𝜕y�̃�(𝐌0),

𝛤16(𝜓) = 𝜕x�̃�(𝐌5), 𝛤17(𝜓) = (−𝜕x − 𝜕y)�̃�(𝐌6),

𝛤18(𝜓) = −𝜕y�̃�(𝐌7), 𝛤19(𝜓) = (𝜕x − 𝜕y)�̃�(𝐌8).

(7)

Note that the derivatives at any point are taken in the direction of 𝐌0 except that the

full gradient is given at the point 𝐌0.

There is a one-to-one correspondence between the polynomial (5) and the above

set of 19 data. More explicitly, the 19 coefficients ai in (5) are uniquely determined

by the data (7). For the proof of this linear algebraic fact, see [1].

In (5), the coefficients ai depend linearly on the data 𝛤k(𝜓), 1 ≤ k ≤ 19. There-

fore, P(x, y) can be rewritten as
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P(x, y) =
19∑
i=1

( 19∑
j=1

Ai,j𝛤j(𝜓)

)
li(x, y). (8)

We need to calculate the geometric coefficients Ai,j, 1 ≤ i, j ≤ 19 in terms of the

vector 𝐡 = [h1, h2, h3, h4, h5, h6, h7, h8]. For this purpose, it is useful to decompose

the polynomial P(x, y) into the sum of four terms

P(x, y) = P(0, 0) + P1(x) + P2(y) + xyQ(x, y). (9)

Looking at (5) and (6), these four terms are expressed as:

a1 = P(0, 0) = 𝜓(𝐌0) (given value), (10)

{P1(x) = a2x + a3x2 + a4x3 + a5x4 + a6x5,

P2(y) = a7y + a8y2 + a9y3 + a10y4 + a11y5.
(11)

The polynomial Q(x, y) in (9) is then defined as

Q(x, y) =
P(x, y) − P(0, 0) − P1(x) − P2(y)

xy
= a12 + a13(x + y) + a14(x − y) + a15(x + y)2 + a16(x − y)2 (12)

+ a17(x + y)3 + a18(x − y)3 + a19xy(x2 + y2). (13)

This decomposition is directional in the following sense:

∙ The polynomial P1(x) ∈ Span{x, x2, x3, x4, x5} corresponds to the “horizontal

data”. It is determined by the 5 data (see Fig. 2):

𝜓(𝐌4), 𝜓(𝐌5), 𝜕x𝜓(𝐌4), 𝜕x𝜓(𝐌0), 𝜕x𝜓(𝐌5). (14)

∙ Similarly, P2(y) ∈ Span{y, y2, y3, y4, y5} corresponds to the “vertical data”. It is

specified by the 5 data

𝜓(𝐌7), 𝜓(𝐌2), 𝜕y𝜓(𝐌7), 𝜕y𝜓(𝐌0), 𝜕y𝜓(𝐌2). (15)

∙ Finally, it can be shown that the polynomial Q(x, y) is determined by the 8 “diag-

onal data” in (7). These data are:

⎧⎪⎨⎪⎩
𝛤1(𝜓) = 𝜓(𝐌𝟏), 𝛤3(𝜓) = 𝜓(𝐌𝟑), 𝛤7(𝜓) = 𝜓(𝐌𝟔), 𝛤9(𝜓) = 𝜓(𝐌𝟖),

𝛤10(𝜓) = (−𝜕x + 𝜕y)𝜓(𝐌𝟏), 𝛤12(𝜓) = (𝜕x + 𝜕y)𝜓(𝐌𝟑),

𝛤17(𝜓) = (−𝜕x − 𝜕y)𝜓(𝐌𝟔), 𝛤19(𝜓) = (𝜕x − 𝜕y)𝜓(𝐌𝟖).
(16)
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4 The Numerical Scheme

4.1 The Embedded Discrete Biharmonic Operator

In this section, we assume given for each point of the Cartesian grid the polyno-

mial P(x, y) (5) in terms of the data 𝛤k(𝜓). As explained in Sect. 3, the polynomial

P𝐌0
(x, y) in (5) is explicitly known by the coefficients ai, given as the analytical

functions: [
𝐡, [𝛤j(𝜓)]

]
j=1,…,19

↦ 𝐚 =
[
a1, a2,… , a18, a19

]T
. (17)

The discrete biharmonic at 𝐌𝟎(𝐱𝟎, 𝐲𝟎) is obtained by:

𝛥
2
𝐡�̃�(𝐌0) =

19∑
k=1

ak𝛥2lk(x0, y0). (18)

There are four nonvanishing terms in the right-hand-side of (18) which are:

{
𝛥
2l5(x0, y0) = 24, 𝛥

2l10(x0, y0) = 24,
𝛥
2l15(x0, y0) = 16, 𝛥

2l16(x0, y0) = −16.
(19)

Therefore the discrete biharmonic at 𝐌0 is given in terms of the coefficients

ak
[
𝐡, [𝛤j(𝜓)]

]
by

𝛥
2
𝐡𝜓(M0) ≜24

(
a5(𝐡, [𝛤k(𝜓)]) + a10(𝐡, [𝛤k(𝜓)])

)
(20)

+ 16
(
a15(𝐡, [𝛤k(𝜓)]) − a16(𝐡, [𝛤k(𝜓)])

)
. (21)

The discrete equation at point 𝐌0 is therefore (see (4)):

𝛥
2
𝐡�̃�(𝐌𝟎) = f (𝐌𝟎). (22)

Equation (22) has to be supplemented by some additional relation connecting the

derivatives 𝜓x,i,j, 𝜓y,i,j and the values 𝜓i,j. Our choice [1, 3] is to use an Hermitian
relation in the x- and the y-direction. In the x-direction we have:

𝛼1,i𝜓x,i−1,j + 𝜓x,i,j + 𝛼2,i𝜓x,i+1,j = 𝛽1,i𝜓i−1,j + 𝛽2,i𝜓i,j + 𝛽3,i𝜓i+1,j. (23)

The five coefficients 𝛼1,i, 𝛼2,i, 𝛽1,i, 𝛽2,i and 𝛽3,i are defined as follows. Let 𝐌𝟎 =
Qi,j(xi, yj) and let the two neighbor points 𝐌𝟒 and 𝐌𝟓 be (see Fig. 2):

𝐌𝟒(xi − hi, yj), 𝐌𝟓(xi + hi+1, yj). (24)



18 M. Ben-Artzi et al.

Then

⎧⎪⎨⎪⎩
𝛼1,i =

h2i+1
(hi+1+hi)2

, 𝛼2,i =
h2i

(hi+1+hi)2
, 𝛽2,i =

2h4i+1+4h
3
i+1hi−4hi+1h

3
i −2h

4
i

hi+1(hi+1+hi)3hi
,

𝛽1,i = − 2h4i+1+4h
3
i+1hi

hi+1(hi+1+hi)3hi
, 𝛽3,i =

2h4i +4hi+1h
3
i

hi+1(hi+1+hi)3hi
.

(25)

In the y-direction we have

𝛾1,j𝜓y,i,j−1 + 𝜓y,i,j + 𝛾2,j𝜓y,i,j+1 = 𝛿1,j𝜓i,j−1 + 𝛿2,j𝜓i,j + 𝛿3,j𝜓i,j+1. (26)

with values of the five coefficients 𝛾1,j, 𝛾2,j, 𝛿1,j, 𝛿2,j and 𝛿3,j deduced from the points

𝐌𝟕 and𝐌𝟐 in a way similar to (25). We refer to [1, 3] for an analysis of the Hermitian

relations (23) and (26).

4.2 Assembling the Global Linear System

To each point (i, j) corresponds the discrete biharmonic relation (22) together with

the horizontal and vertical Hermitian relations for the discrete gradient (23) and (26).

All these relations form a linear system

A𝛹 = F. (27)

Assembling the matrix A using the relations (22), (23), (26) is analogous to assem-

bling the global matrix in the finite element method.

According to Sect. 1, each point 𝐌i,j of the Cartesian grid belongs to one of the

five categories:

1. interior regular calculated point

2. interior irregular calculated point

3. interior edge point

4. boundary point

5. exterior point.

In our computation, this classification is performed using a so-called level set model

for the boundary 𝜕𝛺. Assume that (x, y) ↦ 𝜑(x, y) is a smooth function such that, at

least locally

𝜑(x, y)
⎧⎪⎨⎪⎩
< 0 if (x, y) ∈ 𝛺, (interior point),

> 0 if (x, y) ∈ 𝛺
c
, (exterior point),

= 0 if (x, y) ∈ 𝜕𝛺, (boundary point).

(28)



An Embedded Compact Scheme for Biharmonic Problems . . . 19

Following [4], the interior point𝐌0 = 𝐌i,j is declared close to 𝜕𝛺 if𝜑min,i,j𝜑max,i,j <

0 where {
𝜑min,i,j = min(𝜑i−1,j, 𝜑i+1,j, 𝜑i,j+1, 𝜑i,j−1, 𝜑i,j),
𝜑max,i,j = max(𝜑i−1,j, 𝜑i+1,j, 𝜑i,j+1, 𝜑i,j−1, 𝜑i,j).

(29)

In this case, the following quadratic model for 𝜑 is defined around 𝐌0 by:

𝜑(𝐱) = 𝜑0 + (∇𝜑0)T .(𝐱 − 𝐱0) +
1
2
(𝐱 − 𝐱0)T (D2

𝜑0)(𝐱 − 𝐱0). (30)

In (30), ∇𝜑0 and D2
𝜑0 stand for approximate values of the gradient and the Hessian

of 𝜑(𝐱) at 𝐌0. In the computations, centered differences for ∇𝜑0 and D2
𝜑0 are used.

Using the model (30) allows to determine the approximate projection 𝐌∗
0 of the

interior point 𝐌0 on 𝜕𝛺, [4]. This gives

𝐌0 =

{
calculated point if dist(𝐌0,𝐌∗

0) ≥ 𝜀edge,

edge point if dist(𝐌0,𝐌∗
0) < 𝜀edge.

(31)

where 𝜀edge is a fixed parameter. For each calculated point 𝐌0, the length vector

𝐡 ∈ ℝ8
and the elementary matrix Ai,j(𝐡) ∈ 𝕄19(ℝ) are evaluated according to the

preceding classification into regular/irregular calculated points. Finally the elements

of each matrix Ai,j(𝐡) are collected in the global matrix A. In a second step, for each

point 𝐌i,j, the submatrix of A corresponding to the Hermitian relations for the deriv-

atives 𝜓x and 𝜓y in (23) is calculated. The global linear system A𝜓 = b is the discrete

version of the problem (1). Note that it is solved by a direct solver. Fast solvers issues

in the fashion of [2, 4] will be addressed in a future work.

5 Numerical Results

We present several numerical results for the biharmonic problem with additional

Laplacian term: {
𝛼𝛥

2
𝜓(𝐱) − 𝛽𝛥𝜓(𝐱) = f , 𝐱 ∈ 𝛺,

𝜓 = g1(𝐱),
𝜕𝜓

𝜕n
= g2(𝐱), 𝐱 ∈ 𝜕𝛺.

(32)

In each case, the domain 𝛺 and the solution 𝜓(𝐱) are specified. The right-hand side

f (𝐱) and the two boundary functions g1(𝐱) and g2(𝐱) are determined accordingly.

The numerical scheme is then used to obtain an approximation for 𝜓 based on the

discrete values of f .
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Table 1 Compact scheme for 𝛥
2
𝜓 = f . The solution is 𝜓(x, y) = (1 − x2)2(1 − y2)2 in the ellipse

x2∕12 + y2∕22 ≤ 1. The ellipse parameters are (a = 1, b = 2, r = 1). The ellipse is embedded in the

square [−2, 2] × [−2, 2]. We present e and ex, the l2 errors for the stream function and for 𝜕x𝜓 . The

parameter for points labelled as edge points is 𝜀edge = 5.10−3h
mesh 9 × 9 Rate 17 × 17 Rate 33 × 33 Rate 65 × 65
e∞ 1.1175(−2) 4.40 5.3108(−4) 3.94 3.4538(−5) 3.45 3.1596(−6)
(ex)∞ 2.3270(−2) 4.35 1.1419(−3) 3.61 9.3285(−5) 4.24 4.9262(−6)
e2 1.7466(−2) 4.85 6.0551(−4) 4.08 3.5825(−5) 3.59 2.9702(−6)
(ex)2 3.1922(−2) 4.81 1.1402(−3) 3.79 8.2220(−5) 3.81 5.8612(−6)

Table 2 Compact scheme for ( 1
2
𝛥 − 𝛥

2)𝜓 = f . The solution is 𝜓(x, y) = 100(x3 ln(1 + y)) +
y

1+x
in the ellipse (x − 0.5)2∕(0.5)2 + (y − 0.5)2∕0.32 ≤ 1. The ellipse parameters are (a = 0.5,

b = 0.3, r = 1) with center (xc, yc) = (0.5, 0.5). The ellipse is embedded in the square [0, 1] × [0, 1].
We present e and ex, the l2 errors for the stream function and for 𝜕x𝜓 . The parameter for points

labelled as edge points is 𝜀edge = 5.10−3h
mesh 17 × 17 Rate 33 × 33 Rate 65 × 65 Rate 129 × 129
e∞ 6.9555(−6) 3.53 6.0000(−7) 4.43 2.7790(−8) 3.29 2.8334(-9)

(ex)∞ 4.0042(−4) 3.64 3.2033(−5) 4.07 1.9102(−6) 2.98 2.4215(−7)
e2 1.1759(−6) 3.15 1.3240(−7) 4.26 6.9034(−9) 3.44 6.3715(−10)
(ex)2 7.4850(−5) 3.79 5.3933(−6) 3.98 3.4163(−7) 3.90 2.2865(−8)

5.1 Test Cases in an Ellipse

We first consider two test cases where the computational domain is an ellipse. A

similar test case has already been considered in [1]. The observed accuracy is very

good. The order of convergence is located approximately in the interval I = [3, 4]
(Tables 1 and 2).

5.2 Test Cases in Non Convex Domains

5.2.1 Star Shaped Domains

We consider first the biharmonic problem (see Example 4.3 in [4])

{
𝛥
2
𝜓(𝐱) = 0 𝐱 ∈ 𝛺,

𝜓 = g1(𝐱),
𝜕𝜓

𝜕n
= g2(𝐱), 𝐱 ∈ 𝜕𝛺.

(33)
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Fig. 3 Seven branches star shaped domain embedded in a 33 × 33 grid. ∙ Left domain and grid.

The boundary points are marked with black triangles. The edge points are marked with open circles.
∙ Right approximate solution corresponding to 𝜓ex(x, y) = x2 + y2 + ex cos(y)

Fig. 4 Star shaped domain: linear regression of the convergence rate for ‖𝛹 − (̃𝜓ex)‖∞ and‖𝛹x − (̃𝜓x,ex)‖∞ where the exact solution is 𝜓ex(x, y) = x2 + y2 + ex cos(y). ∙ Left domain with 7
branches, (kp = 7). ∙ Right domain with 9 branches, (kp = 9). On each regression line, the six points

correspond to the six grids 10 × 10, 20 × 20, 30 × 30, 40 × 40, 50 × 50 and 60 × 60

The boundary of the domain is given in polar coordinates by

x(𝜃) = R(𝜃) cos(𝜃), y(𝜃) = R(𝜃) sin(𝜃), 0 ≤ 𝜃 < 2𝜋, (34)

with R(𝜃) = 0.6 + 0.25 sin(kp𝜃). The domain is represented in Fig. 3 for kp = 7,

(seven branches case). The exact solution is𝜓(x, y) = x2 + y2 + ex cos(y). The numer-

ical results are reported in Fig. 4 where the least square slope is represented, based

on six grids. They show excellent accuracy, even for very coarse grids. Observe in

addition the low error level for 𝜓 and 𝜕x𝜓 .
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5.2.2 A Double Circle Shaped Domain

Finally we consider the domain which consists of the interior of two disks partially

overlapping. The boundary is given in polar coordinates by

x(𝜃) = R(𝜃) cos(𝜃), y(𝜃) = R(𝜃) sin(𝜃), 0 ≤ 𝜃 < 2𝜋. (35)

with R(𝜃) = d| cos(𝜃)| +√
R2 − d2 sin(𝜃)2. We consider the case R = 0.5 and

d = 0.4. The domain is represented in Fig. 5. The exact solution is 𝜓(x, y) = exp(x +
y). The numerical results are reported in Fig. 6. Again, the accuracy is very good.

But the levels of error are higher than in the flower case. This can be attributed to

the non regular boundary.

Fig. 5 Double circle shaped domain embedded in a 41 × 41 grid. Left domain and grid. The bound-

ary points are marked with black triangles. The edge points are marked with open cicles. Right
approximate solution 𝜓(x, y) = exp(x + y)

Fig. 6 Double circle shaped domain: linear regression and convergence rate for ‖𝛹 − (̃𝜓ex)‖∞ and‖𝛹x − (̃𝜓x,ex)‖∞ with ∙ Left 𝜓ex(x, y) = exp(x + y) ∙ Right 𝜓ex(x, y) = 10(x5 sin(4𝜋y) + y4

1+x2
). For

each regression line, the six points correspond to the six grids 10 × 10, 20 × 20, 30 × 30, 40 × 40,

50 × 50 and 60 × 60
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