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A discrete fourth-order elliptic theory on a one-dimensional interval is constructed. Itis based on ‘Hermitian
derivatives’ and compact higher-order finite difference operators, and is shown to possess the analogues
of the standard elliptic theory such as coercivity and compactness. The discrete version of the fourth-
order Sturm—Liouville problem (%)4 u+ £ (A@)Lu) + B(x)u = f on areal interval is studied in terms
of the functional calculus. The resulting (compact) finite difference scheme constitutes a scale of finite-
dimensional Sturm-Liouville problems. A major difficulty is the presence of boundaries, in contrast to
periodic problems (and analogous to boundary layers in Navier—Stokes simulations). Convergence of the
finite-dimensional solutions to the continuous one is proved in the general case, and optimal (O(h*)) con-
vergence rates are obtained in the constant coefficient case. Numerical examples are given, demonstrating

the optimal rate even in highly oscillatory cases.

Keywords: discrete elliptic operator; fourth order; biharmonic; Sturm-Liouville; optimal convergence;
boundary values.

1. Introduction

In this article, we expound a discrete elliptic theory in the context of fourth-order Sturm-Liouville
problems on the interval £2 = [0, 1]. The discrete finite-difference operators are compact and are derived
from the fundamental concept of the Hermitian derivative. It should be pointed out that the elliptic finite-
difference methodology is entirely developed in the discrete framework, independently of the classical
(continuous) elliptic theory. In particular, the concepts of classical elliptic theory, such as coercivity,
compactness (Rellich’s theorem) and a priori estimates have their equivalents in the discrete case.

One can compare the present study with the development of finite-dimensional finite element methods
for elliptic problems (Brenner & Scott, 2012).

© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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Once the discrete structure is established, it can be applied towards the approximation of the fourth-
order boundary value problem on the interval. The elliptic tools enable us to get ‘optimal’ error estimates,
as will be further explained below in this section.

Our approach is closely related to recently introduced compact schemes in the treatment of two-
dimensional Navier—Stokes equations (Ben-Artzi ez al., 2013), where the pure stream function formulation
involves fourth-order derivatives.

Naturally, the development of the elliptic discrete methodology involves some lengthy proofs. The
reader who is primarily interested in the approximation algorithm can conveniently skip the proofs, as
indicated in the ‘box’ at the end of this section.

Turning to the approximation issue, consider the equation

L (4 4 A ay’ A d B = 2 =10,1 1.1
A,Bu—(a>u+ 0”(3)” “’(a)” (u=f, xe@=[0.1 (I

where A(x), B(x) are real functions, A(x) € C'(£2) and B(x) € C(£2).
The equation is supplemented with homogeneous boundary conditions

d d
u(0) = au(O) =u(l) = au(l) =0. (1.2)

As is well known, nonhomogeneous boundary conditions are accommodated by a modification of the
right-hand side function f (x).

The case of a second-order equation is generally known as the Sturm—Liouville problem. It has been
extensively studied, both from the theoretical point of view (Coddington & Levinson, 1955), dealing with
the issues of spectral structure, behaviour of eigenfunctions and their zeros, and so on, and the numerical
point of view (Iserles, 2008), dealing with discrete aspects of these topics. We mention, in particular, the
very recent article by Ramos & Iserles (2015) and references therein, where group-theoretic tools are
used for the discrete approximation of eigenvalues and eigenfunctions.

Equations such as (1.1), subject to boundary conditions at the two end points, are usually referred to as
higher-order Sturm—Liouville problems. Such problems appear in various applications, such as elasticity
theory, stream function formulation of Navier—Stokes equations or wave propagation problems with high
dispersivity. If restricted to the self-adjoint case, these are actually one-dimensional elliptic boundary
value problems, for which the basic theory is well established. In Section 2, we recall some basic facts
that are relevant to the present article.

The ‘heart of the article’, the elliptic discrete analysis, is developed in Section 3. It is designed not
only to the regular interior elliptic properties (such as coercivity), but also to the handling of boundary
values. This additional aspect complicates the treatment, but it is certainly necessary if approximation of
boundary value problems is desired. Here, we encounter phenomena of ‘discrete boundary layer’, such
as lower regularity and the fact that certain operators do not commute.

In the context of elliptic boundary value problems, in any space dimension, a basic issue is the
continuous dependence of the solutions on the data. For example, how solutions vary as the right-hand
side function f is perturbed. A fundamental tool is the compactness of the solution operator. More
specifically, it is the compact embedding (Rellich’s theorem) of the Sobolev space H*(£2), k > 1 in
L*(£2) (Evans, 1998, Chapter 5). Roughly speaking, it is first established that the inverse of the operator
(if it has no eigenvalue at zero) is bounded (‘stability’). Then, the compactness property is used to show
that, under continuous variation of the data, the corresponding solutions (already shown to belong to a
bounded set) vary continuously.
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In a finite-dimensional space, every linear operator is compact. The discrete approximation method-
ology is based on a sequence of finite-dimensional spaces with increasing dimension. A nice description
of the situation is given in Spence (1975) (in the context of computing discrete approximation of spectra):
‘A suitable error analysis must overcome the difficulty that the solutions are in an infinite dimensional
space, whereas the approximating solutions are finite dimensional vectors’.

An essential feature of our calculus consists of getting operator bounds that are independent of the
mesh size. It is in this context that we need to define the concept of compactness in an increasing sequence
of finite-dimensional spaces. This concept is introduced in Theorem 3.7.

The discrete functional calculus leads to a finite difference scheme for the approximation of (1.1).
In general terms, the scheme produces a sequence of discrete (namely, finitely valued) solutions. As
the underlying mesh is refined, it is expected that the discrete solutions ‘converge’ to the analytical one.
Because these are all finite-dimensional solutions (with increasing dimension as the mesh is refined)—one
needs to clarify the meaning of such convergence.

It turns out that Theorem 3.7, as in the analytical case, is the cornerstone of the convergence proof,
which is expounded in Section 4; we show that, for sufficiently small mesh size A, the finite-difference
scheme (4.1) can be solved (namely, the discrete operator is invertible) and, indeed, the resulting solutions
converge to the solution of the continuous equation as 4 — 0.

Following the general convergence proof, we consider in Section 5 the quantitative error estimates for
the discrete solutions, in the constant coefficient case (A(x) = a, B(x) = b). These are estimates of the
deviation of the discrete solution from the exact one. The latter is represented by its restriction to the grid
and the estimates are expressed in terms of powers of £, the mesh size. The treatment here is a crescendo
process. We first establish the general Theorem 5.2; it is the exact discrete elliptic analogue to the
continuous case, estimating the solution and its derivatives in terms of the right-hand side. When dealing
with periodic boundary conditions, this would have been the ‘end of the story’, leading automatically to
optimal convergence rates. However, the presence of boundary conditions (1.2) entails deterioration of
the truncation error near the boundary. This in turn allows only a ‘suboptimal’ estimate in Theorem 5.3.
Remarkably, the discrete elliptic properties of the operator enable us to recover, in Theorem 5.7, an
optimal O(h*) estimate (but just for the error). In Corollary 5.9, we obtain estimates for the (discrete)
derivatives of the error. As can be expected, such estimates are not quite O(h*), but they are nonetheless
significant, as they ensure that the discrete approximations are indeed close to the analytic solutions, and
do not develop spurious or oscillatory behaviour.

In Section 6, we present numerical test cases that indeed corroborate our claim of optimal error esti-
mates. This is true even for highly oscillatory solutions, such as equation (6.9), with variable coefficients
given by (6.10).

Some of these calculations were carried out in the M.Sc. thesis of Ron Katzir, supervised by M.
Ben-Artzi.

JUST THE ALGORITHM: The reader who is interested primarily in the
numerical algorithm can read only Section 3.1 for the definitions of the
discrete operators and then equation (4.1) for the discrete algorithm.

1.1 Existing literature on approximations to fourth-order boundary value problems

There is a vast literature on the numerical resolution of elliptic partial differential equations (finite-
elements, finite differences, spectral methods, and so on), and it is of course impossible for us
(and beyond the scope of the article) to give a reasonable survey. We mention the recent book by
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Jovanovi¢ & Suli (2014), where Chapter 2 is devoted to elliptic problems. More specifically, Section
2.7 there deals with the error analysis of fourth-order equations in the two-dimensional square, using
Sobolev norms and energy methods.

Numerical studies of the biharmonic equation in a square are more relevant to our interest here,
especially when they deal with issues of high-order accuracy. We refer to Abushama & Bialecki (2006)
(cubic splines collocation), Brown et al. (2000) (finite elements) and references therein.

Finally, we focus on the one-dimensional case, that is the topic of the present article. Generally
speaking, it is fair to state that the numerical treatment for higher-order Sturm—Liouville problems has
attracted little attention in the literature, when compared with the classical second-order problem. The
articles Usmani (1978); Rashidinia & Golbabaee (2005); Kasi Viswanadham et al. (2010); Gupta &
Srivastava (2011) obtain approximate solutions to the fourth-order boundary value problem by Galerkin
methods (based on B-splines). The articles Kalyani et al. (2015) and Siddiki & Akram (2008) use quintic
splines, but claim to get only second-order convergence.

We note that in all the above articles, the equation considered was y* (x) + g(x)y(x) = f(x), and, in
particular, the second-order derivative y” is missing.

Roughly speaking, studies of this problem are motivated, for the most part, by either one of the two
following topics (that are interrelated).

* Determination of eigenvalues of the biharmonic operator and elliptic perturbations thereof by Wieners
(1997); Brown et al. (2000); Greenberg & Marletta (2000); Boumenir (2003); Rattana & Bockmann
(2013) and references therein.

» Convergence analysis of discrete schemes for the approximation of time evolution of partial differen-
tial equations of mathematical physics, involving the biharmonic operator as the principal spatial part.
In this category, we have two-dimensional elasticity theory and the two-dimensional Navier—Stokes
system in stream function formulation.

Even though our convergence analysis is time independent and confined to a one-dimensional
interval, it is inspired by the methods used in Hou & Wetton (1992); Ben-Artzi et al. (2006); Fishelov
et al. (2012), invoking discrete elliptic tools such as coercivity and compact embedding (Rellich’s
theorem).

2. The fourth-order Sturm-Liouville problem on an interval

The basic aspects of the general theory (and in fact, for elliptic operators with constant coefficients in
smooth-bounded domains in any dimension) are well known (Davies, 1995). We briefly recall those
that are relevant to the present study, where the operator L, (1.1) is defined on the closed interval
22 =1[0,1].

(1) The operator L, 5 defined initially on C3°(0, 1) functions can be extended as a self-adjoint operator
in H*(£2), the Sobolev space of functions having derivatives (in the sense of distributions) up to
fourth order in L?(£2).

Its domain in this space (reflecting the homogeneous boundary conditions (1.2)) is H*NH2, where
H{(£2) is the completion of C;°(0, 1) in the H? norm.

4 . . o .
(2) The operator () (obtained from L,5 when A = B = 0) is positive with compact resolvent
-4 . . . . S .
(i) . Therefore, its spectrum consists of an increasing sequence of positive eigenvalues, which
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we designate as

0<A <A <...< ...

(3) The lower order part A(x) (%)2 + A’ (x) (%) + B(x) of L, p is compact with respect to (i){ hence
the spectrum X (L, p) of L, p consists also of an increasing sequence of real eigenvalues of finite
multiplicity.

SPECTRAL ASSUMPTION. We assume that

0¢ X(Lap). (2.1
NOTE: in this case L, , is a compact operator on L*(£2). (2.2)

3. Discrete functional calculus
3.1 Basic set-up and definition of the discrete operators

We equip the interval £2 = [0, 1] with a uniform grid

The approximation is carried out by grid functions v defined on {xj, 0<j<N } The space of these grid

functions is denoted by /;. For their components, we use either v; or v(x;).
For every smooth function f (x), we define its associated grid function

f=f&), 0<j<N. (3.1

The discrete /7 scalar product is defined by

N
(0, 0)y =h Y v,

j=0

and the corresponding norm is
N
oy =h) v, (3.2)
j=0

For linear operators, A : [7 — [? we use |A|, to denote the operator norm.
The discrete sup-norm is

[0loc = max {[oy]}. (33)
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The discrete homogeneous space of grid functions is defined by
l;o = {v, vg = by =0}
Given v € I}, we introduce the basic (central) finite difference operators
(6:0); = i(t’_m —-bi_y), I1<j<N-1,

| 3.4
(870); = ﬁ(njﬂ —20i+v), l=j=N-1

The cornerstone of our approach to finite difference operators is the introduction of the Hermitian
derivative of v € lio, which will replace §,. It will serve not only in approximating (to fourth order
of accuracy) first-order derivatives, but also as a fundamental building block in the construction of
finite-difference approximations to higher-order derivatives.

First, we introduce the ‘Simpson operator’

1 2 1
(O‘XU)]' = ng_l + §Uj + gnﬁ—ls 1<j<N-1 3.5)

Note the operator relation (valid in [ ;)

h2
o, =1+¢8, (3.6)

so that o, is an ‘approximation to identity’ in the following sense.
Let ¥ € C5°(82), then

(0 = DYl < CR 1Y |1 (0)» (3.7

which yields

(0 = DYy < CR 1Y |1 (2)- (3.8)

In the above estimates, the constant C > 0 is independent of A, .
The Hermitian derivative v, is now defined by

(axnx)j = ((SxU)j, 1 S] = N -1 (39)

REMARK 3.1 In the definition (3.9), the values of (v,);, j = 0,N, need to be provided, to make sense
of the left-hand side (for j = 1, N — 1). If not otherwise specified, we shall henceforth assume that, in
accordance with the boundary condition (1.2), v, € 1,2,‘0, namely

(0.)0 = (0)y = 0.

In particular, the linear correspondence l,f,o S0 —> 0, € l,io is well defined, but not onto, because §, has
a nontrivial kernel.
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We next introduce a fourth-order replacement to the operator 8> (see Fishelov ef al., 2012, Equation
(15) and Ben-Artzi et al., 2013, Equation (10.50)(c)),

3%0); = 2(8%0), — (8,0, 1<j<N-1. (3.10)
The biharmonic discrete operator is given by (for v, v, € l,zl,o),

4 12 2
50 = ﬁ[axnx—axn]. (3.11)
Note that, in accordance with Remark 3.1, the operator gf is defined on grid functions v € I}, such that
also v, € [.

The connection between the two difference operators for the second-order derivative is given by
~2 h?
=8, =8+ =6 3.12
: T (3.12)
REMARK 3.2 Clearly, the operators §,, §2, 8% depend on A, but for notational simplicity, this dependence
is not explicitly indicated.

The fact that the biharmonic discrete operator 8¢ is positive (in particular symmetric) is proved

in (Ben-Artzi et al., 2013, Lemmas 10.9, 10.10). Therefore, its inverse (8;‘)71 is also positive.
A fundamental tool (analogous to classical elliptic theory) is the coercivity property (with C > 0
independent of /) (Ben-Artzi et al., 2013, Propositions 10.11, 10.13),

(843300 = C(3ly + 187317 + 18:3.13). (3.13)

valid for any grid function 3 € I}, such that also 3, € I}.

3.2 Uniform boundedness of the discrete operators

We first show that, in ‘operator sense’, the second-order operator 82 is comparable (independently of
h>0)to (8%)2.

_1 _1
LEMMA 3.3 The operators (3¢) > 82 and 82 (§¢) ? are bounded in /; , with bounds that are independent
of h.

1
Proof. We use the coercivity property (3.13) with 3 = (6¢) ? tv and obtain

2

52 (5) (3.14)

() . 6) ) =

h

h

_1
The operator 82 (§2) 2 is therefore bounded, with a bound that is independent of h. The same is
true (with the same bound, by a well-known fact about the norms of adjoints) for its adjoint, namely,

(6472 52, 0
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In the sequel, we shall find it useful to use slightly different (and in fact weaker) boundedness facts
(again uniform with respect to /), which are listed in the following proposition.

PROPOSITION 3.4 The operators (8%)~!, — (5¢)' 32 and —82 ()" are bounded in 2 ., with bounds that
are independent of 4.

Proof. The boundedness of (8?)71 follows directly from the coercivity property (3.13), by an obvious
application of the Cauchy—Schwarz inequality.
In view of (3.12),

h2

T = ()
P L) (3.15)
* 12

It therefore suffices to prove the boundedness of (8?)_1 82. But this simply follows from Lemma 3.3
and

(69) 82 = (52 (59) 7 o2 0

X X

REMARK 3.5 We can actually get explicit bounds for the operators in Proposition 3.4 as follows.
Let 3, 3, € l,fqo. The discrete Poincaré inequality (Ben-Artzi et al., 2013, Equation (9.37)) yields

37 < 162313 (3.16)
and from (Ben-Artzi et al., 2013, Proposition 10.13) we have
182317 < §<8iz,a>h. 3.17)
In view of the Cauchy—Schwarz inequality, the second estimate implies
5230 = 3165304l
and combined with (3.16)
l3ln < §|8;‘5|h. (3.18)

Also, taking 3 = (8}) 't in (3.17) we get

8 8\°
18264 "w]] < 3 (v, (39 '), < <§> o2, (3.19)
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In conjunction with (3.12), this estimate entails

6285 "o, < §+h—2 o] (3.20)
A n=\37 12 h '

The adjoint operator (5)'32 has the same bound.

3.3 Compactness—the discrete version of Rellich’s theorem

In (2.2), we noted the compactness of the inverse L;ll,;. The compactness of the inverse of an elliptic operator
is equivalent (by domain considerations) to the compact embedding of the Sobolev space H*, s > 0 in
L?. This is the celebrated Rellich theorem (Evans, 1998, Chapter 5.7), which is the cornerstone of the
elliptic theory. Its proof requires several tools (for example, in a popular version of the proof, the use of
Fourier transform and the Arzela—Ascoli theorem).

In the discrete framework, we do not have some of the aforementioned analytical tools. Yet we can
ask ourselves the following question.

QUESTION: Is there a suitable ‘compactness’ property of the inverse (6:)'1?

Of course, if we just consider a fixed h > 0, such a question is meaningless, because the underlying
space is finite dimensional. However, we can provide a meaningful answer if all values of h > 0 are
considered. In some sense, the compactness property is related to an ‘increasing sequence of finite-
dimensional spaces’. The proof is, understandably, quite long.

We first introduce some notation, basically relating grid functions to functions defined on the interval
2 = [0, 1] (see Ben-Artzi ef al., 2013, Section 10.2):

For a grid function 3 € Z,ZLO, we define its associated piecewise linear continuous function by

DEFINITION 3.6

. linear in the interval K. 1= (xi,Xiy1), 0<i<N-1,
Zp(x) = 2

3is X = X, OSZSN

THEOREM 3.7 (The discrete Rellich theorem) Let {0 < N; < N, < ...N; < ...} be an increasing
sequence of integers and denote /i, = le, k=1,2,... Let {n(") € l,fk‘o, k=1,2,.. } be a bounded
sequence of vectors so that

sup{|n(k)|hk,k= 1,2,...} < 00, (3.21)
and let
{g(k) = (5" @), k = 1,2,...}.
Let {ghk, vhk}:il be the piecewise linear continuous functions in 2 = [0, 1] corresponding to

{g®, o® }:il , respectively (Definition 3.6).
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In addition, let {g®} " be the sequence of Hermitian derivatives of {g*'},” and let {p;, } - be

the piecewise linear continuous functions in £ = [0, 1] corresponding to {g® }Zl . Then, there exist
subsequences

oo

{gj = 8hys P v= Py Vi 2= Vi, }
J v/ =1

and limit functions g(x), p(x), v(x), such that

lim g;(x) = g(x) in C(£2), (3.22)
j—00
lim p;(x) = p(x) in C(£2), (3.23)
J—>o0
lim v;(x) = v(x) weakly in L*(£2). (3.24)
J—>00

The limit function g(x) is in H*(§2) N H3(§2) and its derivatives satisfy

4
g @) =px), (%) g(x) = v(x). (3.25)

Proof. In view of Proposition 3.4, both sequences of norms

{|g(k) I }:11 > {|83g(k) I }:il

are bounded by a constant C > 0.
We use the discrete Poincaré inequality (Ben-Artzi ef al., 2013, Equation (9.36))

Ni—1

2
dit1 — 3i
82312 > h a9, 3.26
1831, = ?_0( ; ) (3.26)

with 3 = g to conclude that, by the Cauchy—Schwarz inequality,

Ne—1 (Nt 2
Yo led - gl =N {Z(gﬁiﬁ - gﬁk’f} < (N2 162", < C. (3.27)
i=0 i=0
Recall that (see Ben-Artzi et al., 2013, Lemma 10.4) [Ig, ll,2o) < 1|4, and that the total variation
of g, satisfies
Ni—1
V() = Y la —a”l.

i=0

The fact that g® € [} , implies that |gj, |, < TV (gy,) < C.
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For any two indices 1 <p <m < N, — 1, we get as in (3.27)

1

" Ne—1 2

1 2
> it -a1 < -t {3 (ot -5t
i=p

i=0
< [hGm — p)12187g% 1, < Clw — 3,2 (3.28)
Thus, forany 0 <x <y <1,
1
Ign, @) — gn, )| < Cly — x|2, (3.29)

where C > 0 is independent of k.

It follows that the sequence { 8y }zil is uniformly bounded and equicontinuous. The Arzela—Ascoli

theorem implies that there exists a subsequence { g = ghk_]
J

in (3.22).
Let g™ be the fourth derivative (in the sense of distributions) of the function g and let ¢ € C5°(0, 1)
be a test function. Denoting by < -, - >, the pairing of distributions and test functions we have

that converges uniformly, as asserted
j=1

1 1
<g¥.¢>= /0 g0 (x) dx = lim /0 g (09 (x) dx. (3.30)

Let ¢;4> x) = qb,(:) (x) be the piecewise linear continuous function corresponding to (¢®)* (on the grid
J

(o]
with mesh size /). Clearly, the sequence {c/>j(4)} converges uniformly to ¢@, so that
j=1

1 1
lim / g9 (x) dx = lim f g (e, (x) dx. (3.31)
J=>% Jo J=% Jo

The integral in the right-hand side, involving only piecewise linear functions, can be expressed as (see
Ben-Artzi et al., 2013, Lemma 10.4)

Ni.—1
: . * by S ap ap *
[ st war=(a2.(6)), =& X (@ -a) (o). - @), 63
0 hkj 6 0 m+1
where (qﬁi(‘” )" e lﬁk,,o is the grid function associated with the function ¢ (x) (with mesh size hkj).
X J
Clearly,
@\ (@)
0525\1}2—1 <¢/ )m+] (¢J )m j—00 0’

so that in view of (3.27) we obtain from (3.32)

1 *
. @ 1 W) (5@
lim fo g9 () dx = tim (99, (/) ) . (3.33)

hy.
kj
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We now invoke the estimate (see Ben-Artzi et al., 2013, Proposition 10.8)

st — (4%)

with a constant C > 0 depending only on ¢. Note that §* acts in the space lﬁk.,o-
It follows that J

3

< Ch,fj,

Iy
k]

tim (9% (6/7) ), = fim (a*-5%9")
J

j—oo hy;

(3.34)
)
and combining equations (3.31)—(3.34), we obtain

1
lim / g ()™ (x) dx = lim (g(kf),éﬁzj)*)hk . (3.35)
J=7 Jo Jj—00 j
In view of equation (3.30) and the symmetry of §? the last equation yields

< g®, ¢ >=lim (g™, 9", = lim (0%, ¢*);, . (3.36)
Jj—00 J J—>0o0 J
We now turn to the sequence {U(k) IS lik,o’ k=1,2,.. } and its associated sequence of piecewise
linear continuous functions vy, .

o0
Since [|vy, [l 12(2) < |n<")|hk,asubsequenceof{vj = th.]
J

converges weakly to afunctionv € L2(£2).
j=1
We retain the notation {k;} for this subsequence.

Denote by ¢;(x) = ¢, (x), the piecewise linear continuous function corresponding to ¢* (with mesh
J
size hkj). As in (3.32), we have

Ni.—1
y ! b & k) ) *
(0%, §"), = /0 e @ dr+ 2 3 (ol o) (@) = (8),). 33D
m=0
By the Cauchy—Schwarz inequality
Ny 1

1
Ni,—1 2
k) o) 1] < k) k)2
Z (Uerl — O ) SNkj Z <0m+l Oy )
m=0

-1

— O < Chk/_ .
m=0

Also, with a constant C > 0 depending only on ¢,

(@)1 — @),| < Chyy, m=1,2,...N,

kjs

J
so the last equation yields,

I
1im(n(k/),¢*)hki = 1im/ Vi (x)¢; (x) dx.
Jj—00 y j=o0 Jo

(3.38)
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Since v;(x) converges weakly to v(x) and ¢;(x) converges uniformly to ¢(x), we get finally from
equation (3.36)

1
<g¥. ¢ >= fo v(x)¢ (x) dx. (3.39)

By standard elliptic theory, we conclude that g € H*(§2), the Sobolev space of order four, and g = v.
The Sobolev embedding theorem now yields

g€ C¥0,1). (3.40)

Our next goal is to obtain the boundary values of g(x). This will be carried out by establishing the
limit (3.23) (taking a further subsequence, if needed).

By the definition of the inverse operator (5;‘)71, we know that

o =gy = @0 =@ =0, k=12, (341)

and we need to establish similar values for g.
From the uniform convergence (3.22) and the fact that g;(0) = g;(1) =0, j = 1,2, ..., we obtain

8(0) = g(1) = 0. (3.42)

In order to deal with the boundary values of g'(x), we consider the sequence of grid functions { g® }:O P
the Hermitian derivatives of the sequence {g(")} . Let { p,sk) (x)} be the corresponding sequence of

continuous piecewise linear functions (Definition % 6).
In addition to (3.13), we have also the coercivity property (Ben-Artzi et al., 2013, Propositions 10.11),

N1 (k)__(k)l2
(o, ), = @l g¥), = h Y (M) (3.43)

i=0

(Compare (3.26)).
As in (3.28) we have, for any two indices | <p <m < N, — 1,

Ni—1 2
Z 869),,, — @), < (m — p)? {Z[(g“”)l+1 @)1 }
i=0
1 1
< [m — p)1218:g® 12 1gV17 < Clxy — 3,12 (3.44)
Thus, forany 0 <x <y <1,
1
1Pr, ) — pn, )] < Cly — x|2, (3.45)

where C > 0 is independent of k.
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It follows that the sequence { Diy };:1 is uniformly bounded and equicontinuous, so the Arzela—Ascoli
(o]
theorem yields the existence of a subsequence (we retain the notation k; used above) { Dj =D, } that
X 7 1

=
converges uniformly to a continuous function p(x). Remark that p(0) = p(1) = 0, because this is true

for all p;.
We shall now establish the fact that

px) =g' (). (3.46)
Let ¢ € C;°(0,1) be a test function as above, and let ¢;(x) = thkj (x) (resp. ¢;(x) = qb;lk. (x)) be

the piecewise linear continuous function corresponding to ¢* (resp. (¢')*). Clearly, the sequence {¢J’ }Z .

converges uniformly to ¢’.
Asin (3.33), we get

1 1
/P(X)¢(x)dx=jlim/ pi(x)¢ (x) dx
0 > Jo

1
. . *) 4
= lim / pj(x)¢j(x)dx=jhm(gx",¢ i (3.47)
—o0 Jo — 00

Invoking the definition (3.9) of the Hermitian derivative,

&) 4 _ N N
@7, = (016,996, = 6.9%.0.7'9", (3.48)
From (3.26) we infer that
sup {18.0%14} < C sup {I870],} < oo. (3.49)
J=12,... j=12,...

Also g;ld);kj — d’;k, =o! [¢ij — gx¢;fkj], and it is known (Ben-Artzi et al., 2013, Equation (10.87)) that

the operator bound of o' is independent of 4. Thus, noting (3.8), we infer from (3.48)
: &) s 1 (ki) %
jlggc (o, 9 )hkj —jlgglo (0.9, ¢ i,
1 1
—~ lim(@®. 5.9, = im [ ge = [ gwswan 650
—00 —00 Jg 0
With the same arguments as those leading to equation (3.33), we get
! (k)
Jlim / pj(x)¢(x) dx =J,1im (g’ ’¢*)hkj
= Jo — 00
1 1
= —jlim/ ()¢’ (x) dx = —f g(x)¢' (x) dx. (3.51)

Combining this result with (3.47) we conclude that g’(x) = p(x) and in particular ¢g'(0) = g’(1) = 0. O
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In the proof of Theorem 3.7 we have seen that, in addition to the convergence (3.22), the piecewise
linear functions corresponding to the Hermitian derivatives [ gikj ' } converge uniformly to g’(x) (3.23).
j=1

Next, we show that a weaker convergence statement holds for the second-order derivatives.
COROLLARY 3.8 In the setting of Theorem 3.7, let
w® =352g® =3 (3;1)*1 (0%,

Let wy, be the piecewise linear continuous functions in §£2 =[0, 1] corresponding to w® (Defini-
tion 3.6).

o0
Let the sequences { & =8> Vi = Vi, } and limit functions g(x), v(x), be as in theorem 3.7 and
J J 1

j=
[o9)

let {wj = thj}
Then

j=1"
lim w;(x) = g"(x) weakly in L*(£2). (3.52)
J—>0o0

Proof. Let ¢(x) be a test function as in the proof of Theorem 3.7. Then, with the notation used in that
proof and using the definition (3.9) of the Hermitian derivative,

(05, = G2, 6%, = @59,

With the same arguments as in the proof of the theorem (see in particular equation (3.33)) we get
1
.1im[ wi ()¢ (x) dx = lim (w4, ¢*),,,
J=% Jo Jj—00 J
1 1
= lin [ gwe'war= [ gwewar (3.53)
which proves (3.52). [l

3.4 Connection to the continuous case

The fact that the boundedness assumption (3.21) deals with a general sequence of grid functions allowed
us to get only the weak convergence result of Corollary 3.8. However, if we deal with a sequence of grid
functions associated with the same test function, we can obtain a better result.

We first connect the discrete biharmonic operator to the continuous one by the following claim
(Ben-Artzi et al., 2013, Theorem 10.19). In fact, we are using the (stronger) sup-norm estimate that is
included in the proof of that theorem (Ben-Artzi et al., 2013, Equation (10.167)).

CLAaM 3.9 Let f(x) be a smooth function in £2 = [0, 1]. Let u(x) satisfy

d 4
(E) u(x) = f(x),
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subject to homogeneous boundary conditions (1.2). Then
" — (87| = ORY). (3.54)

REMARK 3.10 The ‘O(h*)’ here means that there exists a constant C > 0, depending only on f, such that
for all integers N > 1,

1
*—84_1*M<Ch4, h=—.
" —(5)" [Tl = N

Observe that the grid functions in this estimate are defined on the grid of (the variable) mesh size .
We can now introduce the following improvement to the weak convergence result of Corollary 3.8.

ProposITION 3.11 Let ¢ € C5°(0,1). Let {0 < N; <N, <...N; < ...} be an increasing sequence of

integers and denote h; = NL,{’ k=1,2,...Let

{Uw =g el k= 1,2,...}

be the bounded sequence of grid functions corresponding to ¢ (x) (on the sequence of grids with mesh
sizes hy).
Then, in the setting (and notations) of Corollary 3.8, we have instead of (3.52)

lim w;(x) = g"(x) in C(£2), (3.55)
Jj—00

where g € H*(£2) N H2(£2) satisfies (i)4 g(x) = ¢(x). In fact, as is seen from the proof, the whole
sequence {th }:il converges in the sense of (3.55).

Proof. Let g(x) € H*(£2) N Hg(.Q) (and in fact it is a C* function) satisfy

gY@ =9 ).

(Note that the function ¢ here is clearly the limit function v in (3.25)).
The basic optimal convergence fact in Claim 3.9 yields here

18 = @D 'l < CHY, k=12, (3.56)
where g} € lfk o 1s the grid function corresponding to g and C > 0 is independent of k. Observe that g}
is the grid function corresponding to the continuous solution, and thus not equal to the approximate grid
function g® = (§%)~'¢; of Theorem 3.7.

By the definition (3.4) of §> we get

182gF — 82(8H) Pl loe < CH2, k=1,2,...,
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and in view of (3.12) also
182¢; — 82,89 |0 = 162g] — 0¥ < CHZ, k= 1,2,...,

where to® is as introduced in Corollary 3.8.
Replacing §?g} by (g")} € 1;21,(,0’ the grid function corresponding to g”, the Taylor expansion yields

(¢ — P <Ch, k=1,2,.... (3.57)

Let {(g”)hk (x) }:0: . be the sequence of piecewise linear continuous functions in 2 = [0, 1] corresponding

to {(g”),’; }:il (Definition 3.6). The inequality (3.57) yields a similar one for the corresponding piecewise
linear functions

max |(g"), (x) = Wi ()] < Ch, k=1,2,.... (3.58)

Clearly

max 1g"(0) = (€ )| < Ch;, k=1,2,...,

0<x<

and inserting this in (3.58), we infer

max lg"(x) —wy, ()| < Chy, k=1,2,..., (3.59)
which concludes the proof of the proposition. g

4. A discrete version of the fourth-order Sturm-Liouville equation

Using the finite difference operators introduced in Section 3, and taking 7 = ﬁ, we introduce the discrete
analogue of equation (1.1) by
[Lanig'li = G1g"i + AT Gra"i + AN (@i + B'gl = f, 1<i<N—-1,  @&D

where f*" A*" (A’)*" B*" are the grid functions corresponding, respectively, to f(x), A(x), A’ (x), B(x).
We assume that f(x) is continuous in £2 = [0, 1].
The equation is supplemented with homogeneous boundary conditions

g = (8)0 = gy = (@) = 0.
Thus, we seek solution g" € [, such that also g € ;.
REMARK 4.1 As in Remark 3.1, we assume that all grid functions and their Hermitian derivatives are in

l,io. This amounts simply to extending the grid functions (whose relevant values are at the interior points
{x;, 1 <i <N —1}) as zero at the end points xg, Xy.
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In what follows, we designate,

g”", the Hermitian derivative of g,
g (4.2)
)

The basic result here is that ‘stability’ implies ‘convergence’ as follows.

THEOREM 4.2 (General convergence) Let {0 < Ny < N, < ...N, < ...} be an increasing sequence of

integers and denote /i, = NL;{ k=1,2,...
Let {g(k’ =ghel;,k=12,.. } be a sequence of solutions to equation (4.1) (with h = ;). Let

o® = o™ and assume that v® € Ij ,, k =1,2,...

Assume that

sup {0 [, = 187g® 4, k=1,2,...} < oc0. 4.3)
Let gy, , vy, be the piecewise linear continuous functions in £2 = [0, 1] corresponding to g, v®

(Definition 3.6).
Then, these sequences converge to limit functions g(x), v(x), in the following sense

lim g, () = g(x) in C(£2), (4.4)
lim vy, (x) = v(x) weakly in L*(£2). (4.5)

The limit function g(x) is in H*(£2) N Hé(.Q) and satisfies equation (1.1):

L d4-i-A() dz-{-A/() d +Bx)g=f
=|— x) [ — x) [ — x)g =f.
A,B8 dx 8 dx 8 dx 8 8
Proof. Writing equation (4.1) in terms of the function v® yields
o+ A [E2(8H T 0], 4+ (A (6D ),
+BEH o0 = £, 1<i<N-L (4.6)

The boundedness assumption (4.3) enables us to invoke Theorem 3.7 and Corollary 3.8. Thus, there exist

subsequences {gj =gy, V= th.} and limit functions g(x), v(x), such that
J J =1

lim g;(x) = g(x) in C($2),
j—00

. . 4.7
lim v;(x) = v(x) weakly in L*($2).
j—00

The limit function g(x) is in H*(£2) N H3($2) and (%)4 g=n.
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Denote by py,, wy, the piecewise linear continuous functions in §£2 = [0,1] corresponding,
o0

respectively, to g® , w® (Definition 3.6). Let {pj = Phy» Wi 1= th,} .
j 5 ) j=1
From (3.23) and (3.52) we obtain,

lim p;(x) = g'(x) in C(£2),
j—o0

. . 4.8)
lim w;(x) = g"(x) weakly in L*(£2).
j—00

Inserting these limits in (4.6), we conclude that the following equation is satisfied in the weak sense.

d\* d\? d
(&) g+ARX) (a) g+A(x) (a) g+Bx)g=f. (4.9)

However, in view of the Assumption (2.1), there is a unique solution to this equation, so all subsequences
[e ] . . .
of { 8hes Vi } 4 converge to the same limit. This concludes the proof of the theorem. O

In the proof of Theorem 5.2, we shall need a variant of Theorem 4.2, keeping all the assumptions of
the latter, but allowing the right-hand side in equation (4.1) to be a general decaying sequence of vectors.
In the following corollary, we use the notation introduced in Theorem 4.2.

COROLLARY 4.3 Suppose that we have a sequence of grid functions {g”k };il with i, | 0 as k — oo,
satisfying the equation

[Lagag®l = (8*g™); + A (02g™); + A ("), + B Mgl =%, 1<i<N—1, (4.10)

where
lim [t%], = 0. 4.11)
Assume that (4.3) holds. Then,
lim g, (x) = g(x) in C(£2), (4.12)

where the limit function g(x) is in H*(£2) N Hg(.Q) and satisfies the equation

d\* d\? d
(&) g+A®X) <E> g+ A () (a>g+3(x)g =0.

Proof. The proof follows verbatim the proof of Theorem 4.2 and, in getting equation (4.9) for the limit,
the right-hand side is zero due to the assumption (4.11). 0
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5. Error estimates of the discrete approximation

In Theorem 4.2, we have established the convergence of the discrete solutions of (4.1) (extended as
piecewise linear continuous functions) to the solutions of the differential equation (1.1).
The purpose of this section is to provide a more quantitative rate of convergence.

REMARK 5.1 It is fundamentally important to note that our estimates become complicated due to the
presence of boundary conditions. If instead of the (homogeneous) boundary conditions, we impose
periodicity conditions (namely, the equation is solved on a circle), then the whole issue of estimating
the error is reduced to the determination of the fruncation error, which in our scheme is ‘optimal’ (of
fourth-order) as will be discussed in detail below.

We shall carry the study under the simplifying assumption that the coefficients in (1.1) are constant,
namely, there are constants a, b € R so that

Ax)=a, Bx)=b, xe£22=][01].
Equation (1.1) now takes the simplified form

d

4 d\?
(a) u—I—a(a) u+bu=f, xe£2=I[0,1]. 5.1

In this case, equation (4.1) takes the simpler form
&g +a@g") +bg' =f", 1<i<N-—L (5.2)
The equation is supplemented with homogeneous boundary conditions
g = (@) =gy = (@) =0.

Thus, we seek solution g" € [}, such that also g € 7.
Observe that

1
sk,h
su My <00, h=—.
N:l,lz),m Il N
5.1 Elliptic estimates—up to the boundary
We shall first look at the general discrete elliptic equation,
Sho" + ad’! + " =", e 2, (5.3)

subject to the homogeneous boundary conditions.

Note that equation (5.2) is a special case, with the right-hand side equal to f*.

The following theorem states that all three terms in the left-hand side of (5.3) are uniformly bounded
for sufficiently small % and, in particular, guarantees the bounded invertibility of the operator

L, =68+ ad? +bl, (5.4)

acting on grid functions v € [;; such that also v, € [} .
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The theorem to be proved is the precise analogue of the global regularity estimates for elliptic operators
in the continuous case (Friedman, 1969, Section 1.17).

THEOREM 5.2 (Fundamental discrete Sobolev estimates) Let w" be the solution to (5.3). Then, there
exists an integer Ny > 1 and a constant C > 0 (depending only on Ny) such that

~ 1
870" ], + 821", + [w"[, < Clt"|,, No <N, h= i (5.5)

Proof. We first show the estimate for the fourth-order discrete derivative §¢to”. The estimates for the
lower-order terms will easily follow from that.

o0
Suppose to the contrary that there exist sequences #; — 0 and {thk € l,zlk 0} such that |t h, =1
k=1

while
lim [8{ro" 1), = +o0. (5.6)
From equation (5.3), it follows that
|0 2 < [lal (30 [y, + 16100, + ¢ 5, ] 5.7

The coercivity property (3.13) (note also (3.10)) implies that

1+ |al
2

~ 1
62mhk 2 < 64mhk 2
Oy = 2y

|mhk |121k .
Plugging this estimate into (5.7) and recalling that [¢"|, = 1, we get

|5i" 3 < CI1+ ™31, k=12,..., (5.8)

where C > 0 is a constant depending on a, b, but not on /.
Let 3" = 8}’ . We normalize by setting

o’k 3

|37 |1,

Note in particular that [3%|, = 1. Equation (5.3) can be rewritten as

~ - hi
R a4 = ;' , k=12 (5.9)
5 ¢ hy

By the above normalization, the condition (4.3) is satisfied (with v® there corresponding to 3% here).
Let Wy, (x), Z, (x) be the piecewise linear continuous functions corresponding, respectively, to folik, 3.
We can invoke Corollary 4.3 and obtain that the following limit exists.

lim , (x) = F(x) in C(2). (5.10)
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The limit function Ww(x) is in H*(£2) N Hg(Q) and satisfies the equation

d\* d\’
(a) wa(a) W 4 b = 0. 5.11)

In view of the Assumption (2.1), we must have
w=0.

However, from (5.8), we get 1 < m + |l |ﬁk. Owing to (5.6), we conclude that for some 1 > 0,
%, >0, k=12,..., (5.12)
hence by (5.10) also
|VT’|L2(Q) =,

which is a contradiction. Thus, for some Ny > 1,

1
|8i"), < C, Ny <N, h=—.
’ N
Finally, the other two estimates in (5.5) follow from the coercivity property (3.13). g

5.2 Error estimates by the general elliptic (energy) approach

The discrete (finite difference) operators introduced in Section 3, acting on grid functions associated with
smooth functions, should approximate the corresponding differential operators, as # — 0. Obviously,
the first requirement is the ‘consistency’, namely, that the ‘truncation error’ should vanish as & — 0.
However, we aim to derive ‘accuracy’ estimates, measuring the difference between the discrete and
continuous solutions, in an appropriate functional setting.

We first establish an error estimate in terms of the truncation error (%) involved in the discretization
of the simplified equation (5.1). This is achieved as a straightforward application of the fundamental
Theorem 5.2.

The truncation error results from replacing the continuous differential operators by their discrete
analogues. We use a superscript ‘4’ to indicate the dependence on the mesh size. Thus,

SHut + a2 + but = 4 4(h). (5.13)
Note that t(h) € I}.
Let g" € I}, be the solution to (5.2).

The ‘error’ grid function is defined as

e =ut — g, (5.14)
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and subtracting (5.2) from (5.13), we obtain
kel + ad?e" + be' = t(h). (5.15)
The error estimate is then given in the following theorem.

THEOREM 5.3 (Convergence by elliptic estimates) The convergence of the discrete solution to the con-

tinuous solution is of order % namely, e = O(h2). The same rate applies also to the discrete derivatives
up to fourth order.
More explicitly, there exists a constant C > 0, depending only on f, and an integer Ny > 1, such that

~ ; 1
82"+ 82"+ 1e'1) < ChE, No < N. h= . (5.16)

Proof. From Theorem 5.2 we infer that there exists an integer Ny > 1 and a constant (depending only on
Ny) C > 0 such that

~ 1
182", 4 82", + [e"|n < Clt(W)|hs, No <N, h = I (5.17)

To get a detailed estimate, we take a closer look at the truncation term t(%). Due to the presence of a
boundary (in contrast to the periodic case), the near-boundary points display a lower order of accuracy.
In fact, we have by Taylor’s expansion

2 % d ? ’ h2 (4)\* 4 .
@y = () u) + 5@y +00h, 1<j<N-1
J

The derivative (u®)? can be replaced by (8}u*);, with truncation error O(h) for j = 1,N — 1 and O(h*)
for2 <j < N —2 (Ben-Artzi et al., 2013, Proposition 10.8). Thus, in view of equation (3.12), we obtain

a1 o~ CW, j=1,N-1,
=) u| — | < = (5.18)
dx . : Ch*, 2<j<N-2.
J
As for the fourth-order derivative, we have, using again (Ben-Artzi et al., 2013, Proposition 10.8) (and

the Simpson operator o, defined in (3.5)),

o Ch, j=1,N-1,
‘crx [(u®) = 8%u ]j‘ < [Ch4 reiena (5.19)

From these two estimates, we infer,
[t(h)|; < Ch[W* + Nh*] < CK’, (5.20)

where C > 0 depends only on f.
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(Compare the proof of Proposition 10.8 in Ben-Artzi et al., 2013, Eq. (10.66), for the pure biharmonic
equation.)
Inserting this estimate in (5.17) we get (5.16).
d

REMARK 5.4 Note that the theorem does not give us the ‘optimal’ h* convergence. This is due to the
presence of boundary conditions, as mentioned in Remark 5.1 above. Recall that in the ‘pure’ case
a = b = 0, we do have the optimal error estimate as in Claim 3.9.

On the other hand, it gives us also estimates for the (discrete) derivatives of the error. In what follows,
we rely on these estimates to recover, in Theorem 5.7, an optimal (h*) error estimate for e satisfying (5.15),
but not for its derivatives.

5.3 Optimal error estimate

The ‘suboptimal’ estimates (Remark 5.4) were a consequence of the loss of accuracy near the boundary

(see (5.18), (5.19)). The remedy to that fact is to apply the inverse operator (8;‘)_1, which retains optimal
accuracy also near the boundary. This is what we do next.
The following proposition deals with the approximation of the second-order derivative.

ProposITION 5.5 For a smooth function u(x), satisfying the homogeneous boundary conditions,

_ ai o -
()~ ((&) u) ~8uf | =0("), 1<j<N-1 (5.21)
J
Proof. Using Taylor’s expansion
da\> '\
= ( () ) + oy +ou 1=j=n-t,
J

so that acting with o, yields

2 * 2
(UXSfu*)_,' =0, |:<<§) u) :| + il_zax[(u(4))*]_i + 0(h4), l<j<N-—1.
J

In view of the equality (3.12), it follows that,
~ h2
(axagu*) = (0,8%u"), — — (0:8*u);,

hence, for1 <j <N —1,

~ 2 * 2
(O'X(S)%u*)j = 0, [((%) u) :| + il_z [O-X[(u(4))* _ aiu*]]j + 0(/’14) (5.22)

J
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We know that (Fishelov et al., 2012, Proposition 3; Ben-Artzi et al., 2013, Proposition 10.8),

o). j=2.....N—2.
o [(@®)* = 8tu)); = {Oih)) j]= ILN—1 (5-23)

Thus,
R@w) = o, [5214 _ ((i)2u>*:| _ {OW)’ j=2.. N =2, (5.24)
x dx oo, j=1N-1
Now, we can write
_ a5
o' (89) ] |:((E> u) —Sfu*:|
= (0:8%) " Rw). (5.25)

Clearly, the operators o, U;] (see (3.5)) are uniformly (with respect to the mesh size #) bounded, so to
prove the estimate (5.21) it suffices to estimate the right-hand side of (5.25). At this point, we invoke
the detailed structure of the matrix (g)’I associated with the operator (crxSfax)_l (see Fishelov et al.,
2012, Theorem 6; Ben-Artzi et al., 2013, Theorem 10.19). In fact, S = PSP in Ben-Artzi et al. (2013,
Equation (10.111)). The result we need is the following: the scales (in powers of h) of the elements of
(S)~! are such that all the components of the vector (S)~!R(u), where R(u) satisfies (5.24), are O(h*).
This therefore concludes the proof. d

We now rewrite equation (5.1) as

—4 —4 2 —4
<%> f=u+a<%) <%) u+b<%) u, xe2=1[0,1], (5.26)

subject to the homogeneous boundary conditions
u(0) = u(l) =u'(0) =u'(1) =0,

and equation (5.2) as

~ 1
GH =g" +a@hH 8" +bH ", h= (5.27)

]V >
subject to the boundary conditions
g = (80 = gy = @)y = 0.

. . . —4
Now Claim 3.9 says that (for smooth functions) we can replace the continuous operator (i)

(evaluated at grid points) by the discrete operator (8;‘)71 ‘at the expense’ of an O(h*) error.
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Thus, we conclude from (5.26) that

*,h
d\’ ’
EH = w4 (sH™! |:a (&) u—+ bu] + o). (5.28)
Given Proposition 5.5, we obtain from (5.28)
(8)4:)7lf*,h
= w4 a (837 8 4+ b (81 utt + o). (5.29)

Subtracting (5.27) from (5.29), we obtain, with a constant C > 0 independent of A,
0=¢"+a(8}) ' 82" +b(sH) e+, [, < Ch*. (5.30)
The error term t” is now majorized by 4*, and our goal is to obtain a similar estimate for ¢ from equa-
tion (5.30). Note that equation (5.26) is not a differential equation, but rather a ‘pseudo-differential’ one.
Similarly, equation (5.27) is a ‘discrete pseudo-differential’ equation. In seeking an estimate for " from
equation (5.30), we shall therefore need a pseudo-differential version of the discrete elliptic Theorem 5.2.
The result will depend on the ‘suboptimal’ (see Remark 5.4) estimates obtained in Theorem 5.3. Although

the estimates there were not of fourth order, they involved also the discrete derivatives of the error. We
shall incorporate these estimates (for " and its derivatives) in the following proposition.

PROPOSITION 5.6 (Fundamental discrete pseudo-differential estimates) Let {0" € 17, 0 < h < o} be a
family of solutions (depending on the mesh-size parameter /) to the equation

o' +a (53) 7 520" 4+ b (51 ot =", (531)
Assume that v} € [}, and that, for some 8 > 0 (independent of h)
1850 | < B. (5.32)

Then, there exists an integer Ny > 1 and a constant C > 0 (depending only on Ny) such that

1
0", < CI¥"l,, No <N, h= 5 (5.33)

Proof. Suppose to the contrary that there exist sequences i, — 0 and {thk € Z;Z.A 0} such that
S P
lim [¢"], =0 (5.34)
k—00

while

", =1, k=1,2,.... (5.35)
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Let g" = (§2)~'v", so that equation (5.31) takes the form
o +a (8%) 7 520M 4 byt = o (5.36)

Note that the operators 8¢ and gf do not commute, and this is the reason we cannot invoke Theorem 5.2
at this point.

By (5.35) |8} [y, = |0/, = 1.

Lety € C5°(0,1) and set @ = ¢. Let {q);[k € l,%k’o, k=1,2,.. } be the sequence of grid functions
corresponding to ¢ (x) (see (3.1)).

Taking the scalar product of the equality in (5.36) with q&,’;k and using the symmetry of the discrete
operators, we get

(o, 7 Y, +a (n’“kﬁf(&‘)‘lﬁk)hk + b, ¢y e = (%, B (5.37)

By assumption (5._14), the right-hand side in equation (5.37) tends to zero as k — oo.

Denote ™ = §7(8)) ' ¢, .

We recall Definition 3.6 and introduce the continuous, piecewise linear functions v, (x), g, (x), wp, (xX),
én, (x) corresponding, respectively, to the grid functions v, g, ", b -

The discrete scalar products in (5.37) can be replaced by integrals of the corresponding functions,
using the algebraic equality (Ben-Artzi et al., 2013, Lemma 10.4)):

1
i = [ 0y
0

Ni—1

h 1
g @ = @)@, @),) M= 639
m=0
and similarly for the other terms (compare (3.37)).
We therefore have (compare derivation of (3.38))
klirgo(vhk: ¢hk)L2(Q) + a(th» th)Lz(,Q) + b(ghk, ¢hk)L2(9) =0. (5.39)

Since |0k | n =1, k=1,2,... we can invoke the compactness Theorem 3.7 and obtain a subsequence
o0

{gj(x) = ghk‘(x)} converging uniformly to a function g(x) € H*(£2) N H3($2). Furthermore, the

v/ j=1

corresponding subsequence {vj (x) = v, (x)} converges weakly to v(x) = g (x). However, this con-
J i=1

vergence is in fact uniform in view of the assumption (5.32) (again using Theorem 3.7). We therefore
have

v e HY(R) ﬂHg(.Q),
and the normalization assumption (5.35) entails

Vi2) = 1. (5.40)
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We can use Proposition 3.11, with the function g there replaced by ¥ here, namely, klim wy, (X) =
—>00

¥ (x) in C(£2). Passing to the limit (as j — 00) in equation (5.39), we obtain,

(8(4), ¢)L2(sz) + 3(8(4), K[f//)ﬂ(:z) + b(g, ¢)L2(9) =0. (5.41)

Since ¥ € C3°(0, 1), the same is true for its derivatives and we can integrate twice by parts in the middle
term, so that

(g(4)’¢//)L2(Q) — (g”,(b)g(g),
and inserting this in (5.41)
" +ag’ +bg. )20 = 0. (5.42)
Since @ = ¢, it follows that
d\*
((&) (¥ +ag" + bg), Iﬁ) =0.
L2(2)

From the fact that v is a general test function, we infer that

4
(i) (8¥ +ag" +bg) =0= g +ag" +bg =px)
dx b

where p(x) is at most a cubic polynomial.
Recall that v(x) = g™ (x) and v € HZ N H*, so we can differentiate the last equation four times to get

v 4L av” 4+ by = 0. (5.43)
Assumption (2.1) implies v = 0. This is in contradiction to (5.40), thus proving (5.33). O
The optimal (fourth-order) estimate of the error is stated in the following theorem.

THEOREM 5.7 (Fourth-order estimate of the error) Consider equation (5.1) and the corresponding finite-
difference scheme (5.2).

Let ¢" = u™" — g’ be the error grid function (5.14).

Then, we have an optimal estimate

le"]; = O(hY).
More explicitly, there exists a constant C > 0, depending only on f, and an integer Ny > 1, such that

1
le"ls < Ch*, Ny <N, h= v (5.44)



DISCRETE FOURTH-ORDER OPERATORS 29

Proof. ¢" satisfies equation (5.30). From Theorem 5.3 we know that it satisfies the condition (5.32), hence
we can apply Proposition 5.6. Thus, from (5.30)

le"], < CIY"|, < Ch*. O

REMARK 5.8 (small coefficients) If the coefficients a, b are small, then the optimal error estimate follows
directly from the invertibility of equation (5.30), in view of the explicit bounds (independent of /) in
Remark 3.5.

The optimal estimate of Theorem 5.7 is in contrast to the estimates in Theorem 5.3, concerning the
errors involved in comparing the derivatives of the exact solution to those of the discrete one. Invoking
the coercivity property of the discrete biharmonic operator, we can actually improve these estimates as
follows.

COROLLARY 5.9 The Hermitian derivative ¢” and the second-order derivative gf ¢" of the error function

are, respectively, of order O(h%) and O(h% ). More explicitly, there exists a constant C > 0, independent
of h, such that
1

e, < Ch¥, (32", < Ch%, Ny<N, h= v (5.45)

Proof. Applying the coercivity property (3.13) to ¢" and, using the estimates (5.44) and (5.16), we get
8212 < Clste ule" s < Chint,

hence, indeed, the O(h%) for gfe”.
We now use the coercivity property of the second-order derivative (Ben-Artzi et al., 2013, Equation
(9.34)) and the previous estimate to get

11 27
|8.:¢"[; < CI87e"|ale"]s < Ch** % = Ch7,

from which we infer that |8,¢|, = O(h%). However, by definition (3.9) we have ¢/ = o!5,¢", and
the operator o' is uniformly (with respect to ) bounded (Ben-Artzi et al., 2013, Equation (10.24)). It
follows that also [e”|, = O(hz%). O

6. Numerical results

In this section, we present numerical results of a representative set of test problems. The underlying
equation is always (1.1), subject to the homogeneous boundary conditions (1.2). The scheme used is (4.1).
Our notation here is in accord with that employed in the previous sections, in particular Section 5.
For the reader’s convenience, we recall the main features to be used here as follows.
For a given continuous function v(x), x € [0, 1], we denote by v* (3.1) its associated grid function.
When it is expedient to indicate explicitly the mesh size &, we use the notation v*", as in (5.13).

Vi =v(x), x=jh, 0<j<N.
g" (4.1) is the discrete solution, approximating the analytic solution u(x).

¢" = u*" — g" is the error grid function (5.14).



30 M. BEN-ARTZI ET AL.

The discrete grid functions corresponding to the second-order and third-order derivatives are,
respectively, 82g" (3.10) and 82g".

The discrete norms | - |, and | - |, are defined, respectively, by (3.2) and (3.3).

For linear operators A : I} — 7, we use |A|, to denote the operator norm.

REMARK 6.1 (Concerning errors for derivatives) In Corollary 5.9, we derived estimates for the derivatives
of the error function ¢”. These are the discrete derivatives, so that only values of the exact solution itself
are used. In contrast, in our numerical test cases here, we compare (discrete) derivatives of the calculated
solution to the grid functions corresponding to the exact derivatives. Thus, the error for the first derivative
is displayed here as (u) " _ g" and not u*" — g", the difference of the Hermitian derivatives.

Indeed, comparing with derivatives of the exact solution seems to be a stricter criterion. However,
due to the high-order accuracy of the Hermitian derivative ((%u)*h —u*h = O(h*), Ben-Artzi et al.,
2013, Lemma 10.1), the two estimates are compatible.

A similar observation is valid for higher-order derivatives as well.

REMARK 6.2 (Numerical efficiency) Even though the main purpose of the article is to present a ‘discrete
elliptic theory’, resulting in a high-order compact scheme, the solution of the linear system (4.1) is quite
efficient. In fact, it involves (that is, the compactness of the scheme) the inversion of a three-diagonal
matrix of size N x N. In addition, another (simultaneous) inversion of the three-diagonal Simpson matrix
o, (see (3.9)) is required for the connection of the unknown g" to its Hermitian derivative g”. Thus,
the algorithm requires the inversion of two three-diagonal N x N matrices. The fact that the scheme
possesses ‘optimal accuracy’ enables us to use a very low N. This is demonstrated in the numerical
examples hereafter.

We display numerical results for three test cases.

e The first test case deals with the pure biharmonic equation. We give detailed results for the differences
of all derivatives (up to third order).

* The second test case is an example of equation (5.1) and shows fourth-order accuracy for u, in
agreement with Theorem 5.7. Fourth-order accuracy is actually obtained not only for u, but also for

the derivative u'(x), whereas Corollary 5.9 states only O(h%) error estimate for the derivative.

e The third test case is a numerical example introduced in Fishelov ez al. (2012).
The solution is highly oscillatory around the centre of the interval [0, 1].

6.1 A pure biharmonic problem

The first test case corresponds to the pure biharmonic problem

uP@ =fx), 0<x<l,

6.1)
u@0) =u(l)=0, u'0)=u()=0,

where

fx) = %i)‘ie [1— (14 4im)*e*™], (6.2)
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with exact solution
ux) = €' sin’(2mx). (6.3)
The numerical scheme is (5.2), which in this case reduces to
5igh = fr. 6.4)

In Table 1, we display the errors using both the /*° norm (3.3) and the lﬁ norm (3.2) on a number of grids
ranging from N = § points (very coarse grid) to N = 64 points.

The observed convergence rates are 4, 4, 4 and 2 for u(x), u'(x), u” (x) and u® (x), respectively, better
than claimed in Corollary 5.9.

In Table 1, we also present, for u(x), u'(x), u” (x), the relative errors. They have a magnitude of 2, 0.1,
0.01 and 0.005% on the grids N = 8, 16,32 and 64, respectively. The relative error for u® (x) is of 20, 5,
1 and 0.5% on the same grids.

In the last row of Table 1, we display the truncation error for the fourth-order derivative

=8 —g"), 1<j<N-1 (6.5)

In view of (6.4), this is just the difference between the discrete operator §¢ acting on the grid function
u*" (the exact solution restricted to the grid) and the grid function corresponding to the exact right-hand
side f(x).

In accordance with the analysis in Ben-Artzi et al. (2013, Section 10.4), we obtain an asymptotic
value of O(h) in the maximum norm and of O(h%) in the l,% norm.

6.2 A regular test case

We consider equation (5.1) witha = 1,b = 1:

(O u+ (LY utu=f, xe=[01],

w0 =u(l) =0, ') =u(l)=0. ©0)
Let
fx) = ; {3 — [(3 —7(4m)* + (471)4) cos(4mx) — (871(3 — 32712)) sin(471x)]}.
The exact solution u(x) is readily seen to be
u(x) = € sin’(2mx). (6.7)
The scheme is (5.2), which in our case reduces to
@)+ Gy + g =f 1<j<N-1 6:8)

The functions u(x), ' (x), ' (x), (£)” u(x) and (L) u(x) are displayed in Fig. 1.
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TABLE 1 Error levels and convergence rates for the test case (6.1)—(6.3). For each function u(x), u'(x),
3 . .
u’(x) and (i) u(x), the max error, relative max error and I* errors are given. The convergence rates

are 4 for u(x), 4 for u' (x), 4 for u’ (x) and 2 for (%)3 u(x). On the last two lines, the truncation error for
84urh — f*h are displayed in max norm (convergence rate 1) and I> norm (convergence rate 3/2)

N =38 Rate N =16 Rate N =32 Rate N =64

" — g 5.8852(—2) 4.43 2.7340(=3) 4.09 1.6000(—4) 4.03 9.8219(—6)
" — g oo/ 1]l oo 2.76(—2) 1.28(—3) 7.51(=5) 4.61(—6)
" — gl 3.1390(—2) 4.43 1.4604(—3) 4.11 8.4766(—5) 4.03 5.2006(—6)
W)™ — g 3.5830(—1) 4.15 2.0183(=2) 4.01 1.2489(—3) 4.01 7.7252(=5)
1) — g'|oo/ 11 ] 2.55(—2) 1.44(-3) 8.89(—5) 5.50(—6)
|y — g, 2.3440(—1) 421 1.2680(—2) 4.05 7.6410(—4) 4.01 4.7323(—5)
|y — (329" 4.8479(+0) 3.92 3.1931(—1) 4.03 1.9543(—2) 3.98 1.2345(—3)
W) = (2" oo/ le 2.26(—2) 1.49(—3) 9.13(—5) 5.77(—6)
|y — §2g"|, 2.6941(+0) 4.08 1.5902(—1) 4.00 9.9617(=3) 3.99 6.2722(—4)

(&) )™ — @2gh|,  47894(+2) 195 12391(2) 1.95 32148(1) 200 8.0205(0)

[((£)) "2l

e 1.95(—1) 5.04(—2) 1.31(—2) 3.26(—3)
() w)™" - 82g"], 2.6552(+2) 1.99 6.6681(1) 2.00 1.6714(1) 2.00 4.1869(0)
17 1.2395(+3) 1.80 3.5509(+2) 1.10 1.6531(+2) 1.02 8.1351(+1)
Izl 4.9450(+2) 232 9.8824(+1) 1.61 32373(1) 152 1.1249(+1)

The values of the discrete solution g” and its subsequent discrete derivatives on the coarse grid N = 8
are represented by squares. This very coarse grid corresponds to the minimally acceptable resolution with
five points per wavelength.

In Table 2, we give the error values in the /*° norm, the relative errors in the /* norm and the errors

d

in the /2 norm for u, u', u”, (5)3 u and (ﬁ)4 u.

The excellent accuracy is clearly observed for u(x), u'(x), u”(x) and (%)4 u(x).

6.3 Oscillating test case

Here, we consider the full equation (1.1):

(£)4 u—+A) (i)2 u+A(x) (i) u+BxXux)=fx), 0<x<l,

6.9)
u©) =u(l) =0, ' (0)=u(1)=0.
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FiG. 1. Exact (solid curve) and calculated solution (black squares) using a seven-point grid (N = 8), for equation (6.6). The exact
3
solution is given in (6.7) and the calculated solution is solution of (6.8). The magnitude of u(x), u’(x), u” (x), (%) u(x) and

4
(%) u(x) is accurately calculated even on the very coarse grid with parameter N = 8. (A) Exact and calculated u(x). (B) Exact

3 4
and calculated u’(x). (C) Exact and calculated u” (x). (D) Exact and calculated <%) u(x). (E) Exact and calculated (%) u(x).

The functions A(x) and B(x) are taken as oscillatory (but regular) functions, defined by:

A(x) = C4(1 4+ 0.5sin(407rx)); A’ (x) = 20C 7 cos(40mx);

. (6.10)
B(x) = Cpsin(40mx).
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TABLE 2 Error levels and convergence rates for the test case (6.6)—(6.7). For each function u(x), u'(x),
u’(x), (%)3 u(x) and (%)4 u(x), the max error, relative max error and I* errors are given. The convergence
rates are 4 for u(x), 4 for u' (x), 4 for u” (x), 2 for (%)3 u(x) and 4 for (%)4 u(x). On the last two lines, the
truncation error for 8*u*" —f*" are displayed in max norm (convergence rate 1) and I* norm (convergence
rate 3/2)

N =28 Rate N =16 Rate N =32 Rate N =64

e — g, 5.0484(—2) 443 27681(=3) 4.09 1.6199(—4) 4.03 9.9484(—6)
1 — g/l 2.79(=2) 1.30(—3) 7.60(—5) 4.67(—06)
= g, 3.1726(—2) 442 1.4784(=3) 4.11 8.5855(—5) 4.03 5.2681(—6)
W) — g 3.5792(—1) 415 2.0155(=2) 4.02 12465(—3) 4.02 7.7101(=5)
1) = g oo/ 112 [0 2.55(~2) 1.43(~3) 8.87(—5) 5.49(—6)
W) — g, 23329(—1) 421 12609(=2) 405 7.5974(—4) 401 4.7051(=5)
W'y = 52g 4.8838(+0) 3.93 3.2109(—1) 403 1.9667(=2) 3.99 1.2419(—3)
W) = 82 o/l o 2.28(-2) 2.50(~3) 9.19(—5) 5.80(—6)
W) — 526", 27085(+0) 4.08 1.5991(—1) 4.00 1.0020(—2) 3.99 6.3095(—4)
|((:¥X)3u)*’h—(8fgf)|oo 47848(+2) 1.95 1.2388(+2) 1.95 3.2146(+1) 2.00 8.0204(+0)
d ) *.h7 2
|((d*)(c)l)3 LI 1.95(—1) 5.04(—2) 131(=2) 3.26(—3)
(L) uloo

(L) )™ — 82", 26533(+2) 199 6.6667(+1) 2.00 1.6713(+1) 2.00  4.1668(+0)

(&) u)™ = (s%g")|,  4.8245(+0) 3.92 3.1840(—1) 4.03 1.9505(—2) 3.98 123332(-3)

1.49(—4) 9.82(—6) 6.01(=7) 3.80(—8)

|((i)“u)*”’—(54gh)|h 2.6901(+0) 4.08 1.5916(—1) 4.00 9.9782(=3) 3.99 6.2845(—4)

1] 1.2430(+3) 1.81 3.5504(+2) 1.10 1.6530(+2) 1.02  8.1350(+1)
1zl 4.9663(+2) 233 9.8831(+1) 1.61 32372(+1) 152  1.1249(+1)

The function u(x) is in this case (Fishelov er al., 2012):
u(x) = p(x)/(sin(g(x)) + ¢€) (6.11)
with
px) =x*(1 —x)2, qx)=@x—1/2)% &>0. (6.12)

The parameter ¢ = 0.025 serves for monitoring the oscillations frequency. The source term f(x) is
obtained by applying equation (6.9) to the function (6.11).
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FIiG. 2. Exact (solid curve) and calculated solution (black squares) using an 80-point coarse grid (N = 80), for equation (6.9).
The exact solution is given in (6.11)—(6.12). Despite the highly oscillatory behaviour of u(x) and its derivatives, the magnitude of

3 4
u(x), u'(x), u” (x), (%) u(x) and (%) u(x) is very accurately captured even on the very coarse resolution of the N = 80 grid.
3
(A) Exact and calculated u(x). (B) Exact and calculated «’ (x). (C) Exact and calculated u” (x). (D) Exact and calculated <%> u(x).

4
(E) Exact and calculated (%) u(x).

The scaling constants C4 and Cp are chosen to ensure that the magnitudes of the various terms in
(6.9) are roughly equal.

The values are C4, = 10* and Cp = 108,

Taking into account the frequency of the oscillations of A(x) and B(x) in (6.10), a plausible stencil
of five points per wavelength gives a mesh size of 4 = 1/80. This resolution is therefore a lower bound
for a computational grid.

The numerical scheme is now the full scheme (4.1).
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TABLE 3 Error levels and convergence rates for the test case (6.9)—(6.10). For each function u(x), u'(x),
3 4 . .
u’ (x), ( i) u(x) and (ﬁ) u(x), the max error; relative max error and I* errors are given. The convergence

rates are 4 for u(x), 4 for u'(x), 4 for u” (x), 2 for (ﬁf u(x) and 4 for (ﬁ)4 u(x). On the last two lines, the
truncation error for §*u™" — f*" are displayed in max norm (convergence rate 4) and I* norm (convergence

rate 4)

N =64 Rate N =128 Rate N =256 Rate N =512
i — gl 83916 (—1) 5.03 2.5677(—2) 4.08 15147(=3) 400 9.4041 (5)
o — g/ e 84228 (=1) 25777 (=2) 1.5204 (—3) 9.4390 (—5)
e — ghl, 17924 (—1) 4.82 63341 (=3) 411 3.6767(—4) 4.02 22604 (—5)
W)™ — g 3.9828 (+1) 425 2.0891 (+0) 4.17 1.1605(—1) 4.04 7.0551 (=3)
W)™ — g/l ]l 2.5858 (—1) 1.3563 (=2) 7.5342 (—4) 4.5804 (—5)
W) — g, 10114 (+1) 443 46866 (—1) 4.13 2.6838(=2) 4.03 1.6451 (—3)
') — 32 14971 (+4) 470 57429 (+2) 4.04 34817 (+1) 396 2.2349 (+0)
'”“'% 5.9422 (—1) 2.2794 (—2) 1.3820 (—3) 8.8707 (=5)
W'y — 32gl, 39786 (+3) 4.85 13824 (+2) 4.09 8.1374(+0) 4.02 50119 (—1)
Uy — 82gh| 1.6790 (+6) 1.60 55408 (+5) 1.90 14872 (+5) 1.99 3.7450 (+4)
% 4.0468 (—1) 1.3355 (—1) 3.5845 (—2) 9.0266 (—3)
Uy — 8240, 52628 (+5) 1.80 1.5138(+5) 1.99 3.8188(+4) 2.00 9.57779 (+3)
@) — 54g" | 14720 (+8) 4.65 5.8746 (+6) 4.02 3.61729 (+5) 3.95 2.3428 (+4)
% 2.0996 (—1) 8.3792 (=3) 5.2094 (—4) 3.3416 (=5)
D) — 54g", 3.9528 (+7) 486 13573 (+6) 4.08 8.0024 (+4) 4.02 4.9385 (+3)
I7]n 32156 (+8) 4.86 1.10859 (+7) 4.18 6.1042 (+5) 4.01 3.7991 (+4)
1% 9.6786 (+7) 5.19 2.6503 (+6) 428 13638 (+5) 4.07 8.1440 (+3)

In Fig. 2, we plot (as solid lines) the graphs of the exact solution and its derivatives, and indicate

the corresponding discrete solutions using the coarse grid (N = 80, i.e., h = 1/80). Even at this low
resolution, all the five functions u(x), u(x), u”(x), (%)3 u(x) and (%)4 u(x) are very well approximated.

This is particularly true for the functions «’(x) and (%)4 u(x).In Table 3, we display the errors, convergence
rates and relative errors for the grid functions corresponding to u(x), u(x), u’(x), u®(x) and u® (x)
compared, respectively, with their discrete analogues g", g”, §2g", §2g", §*g".

Observe that the truncation errors (6.5),

=8 —gh, 1<j<N-1, (6.13)
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FiG. 3. Convergence rate for the test case (6.9)—(6.10). A series of five grids with N = 128,256,512, 1024 and 2048 is used. Fourth

4 3
order is obtained for u, ', ” and (%) u. Second order is obtained for (%) u.

are of order 4, better than what could be inferred from Corollary 5.9. This is typical of a periodic
behaviour due to the fact that all derivatives almost vanish near the boundary. See Remark 5.1. Figure 3

. . . . 3
shows the convergence rates for the discrete approximations to the functions u(x), u'(x), u” (x), (i) u(x)
4 . .
and ()" u(x) in terms of decreasing h.
. 4
Fourth-order convergence is observed for u(x), ' (x), u”(x) and (%) u(x). Second-order convergence

is obtained for (%)3 u(x).
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