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Abstract

Modeling and analyzing high-dimensional data has become a common task in various
fields and applications. Often, it is of interest to learn a function that is defined on
the data and then to extend its values to newly arrived data points. The Laplacian
pyramids approach invokes kernels of decreasing widths to learns a given dataset and
a function defined over it in a multi-scale manner. Extension of the function to new
values may then be easily performed. In this work, we extend the Laplacian pyramids
technique to model the data by considering two-directional connections. In practice,
kernels of decreasing widths are constructed on the row-space and on the column
space of the given dataset and in each step of the algorithm the data is approximated
by considering the connections in both directions. Moreover, the method does not
require solving a minimization problem as other common imputation techniques do,
thus avoids the risk of a non-converging process. The method presented in this paper
is general and may be adapted to imputation tasks. The numerical results demonstrate
the ability of the algorithm to deal with a large number of missing data values. In
addition, in most cases, the proposed method generates lower errors compared to
existing imputation methods applied to benchmark dataset.
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N. Rabin, D. Fishelov

1 Introduction

Modeling and analyzing high-dimensional data has become a common task in vari-
ous fields and applications. Kernel-based machine learning methods are capable of
generating compact models that capture underling important features of the com-
plex dataset. Typically, given a dataset X of size M x N, a kernel is constructed
based on the rows of X. This kernel captures the pairwise distances between the
rows of X. In classification algorithms, such as SVM (Support Vector Machines),
kernels are used for finding non-linear separations between data classes. In addition,
non-linear dimensionality reduction algorithms, such as diffusion maps [6], utilize
spectral decomposition of normalized kernels for embedding high-dimensional data.
Recent work [7] proposed dual geometry approaches that embed the dataset X in a
low-dimensional space using non-linear dimensionality reduction techniques that are
consequently applied to rows and columns of X.

Another method that utilizes kernels, which is extended in this paper, is Lapla-
cian pyramids [11, 28]. Laplacian pyramids is a multi-scale algorithm for learning
functions over scattered high-dimensional data. The multi-scale representation is
generated by convolving the dataset X with row-based kernels of decreasing widths.
Then, the construction is used for approximation of a function f defined on X and
its extension to new points. By slightly modifying the kernels to a have a zero diag-
onal, the method becomes more robust to noise and automatically finds the optimal
kernel width for stopping the iterations [12, 13]. Other multi-scale kernel-based meth-
ods for function extension are described in [2], where the spectral decomposition is
completed at each scale.

In this work, we extend the Laplacian pyramids technique to model the data by
considering two directional connections. In the spirit of the dual geometry represen-
tations, the dataset X is modeled by multi-scale kernels that are constructed on the
rows and the columns alternately, until the finest level is reached. The method is
simple to implement and has no risk of not converging. It can be used to model a
high-dimensional dataset X of size M x N and learn a function f of size M x N that
is defined over X. One application that benefits from such a construction is comple-
tion of missing values in X. Imputation is just a special application of the proposed
general setting, where the function f is the identify function: f = X.

Completion of missing data, also known as imputation, is a task that is often car-
ried out as a pre-processing step in machine learning, signal processing, and other
types of data analysis applications. Straightforward approaches include mean- and
median-based imputations that replace the unknown entries with an average value,
which is calculated based on known values in the same row or column [17, 22].
Alternately, the most frequent value or a random value, which is drawn from a dis-
tribution that describes the known data values, may be used to replace the missing
value. The multiple imputation approach [3] estimates the missing data values mul-
tiple times and combines the results. Another common approach is the maximum
likelihood-based imputation [9]. Regression-based methods are also used to complete
missing data. A method based on stepwise regression is described in [33] and opti-
mized linear imputation was recently proposed in [27]. Completion of missing data is
related to the matrix completion problem, which is addressed by using nuclear norm
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minimization (see [4] and [23]), or by generalizations to other regularization other
than the nuclear norm (see [31]).

For high-dimensional datasets, the low-dimensional intrinsic representation of the
data can be utilized for imputation. In [1], a low-dimensional model is constructed
and used for data imputation in road networks. An unsupervised regression-based
approach, which constructs a low-dimensional representation of the data and imputes
missing values, was proposed in [5]. A local low-rank matrix approximation model
was introduces in [20]. Dimensionality reduction and clustering was applied for
imputation of medical data [34]. A regression-based imputation method for high-
dimensional datasets that imputes the missing data column by column based on
dimensionality reduction and diffusion maps was proposed in [29].

Biological datasets, in particular those that describe gene expression, exhibit many
missing or zero values. A linear dimensionality reduction technique to fill in zero
values of single-cell gene expression was applied in [26]. Kernel-based methods
were proposed by [10] for imputation of gene-gene iterations. Recently, an approach,
which is based on low rank approximation and manages to preserve true zero entries
in RNA sequencing data, was proposed by Linderman et al. [21].

Several papers address the problem of embedding high-dimensional data with
missing values to a low-dimensional space. In [15], the authors propose a methods
that constructs a distance matrix from the incomplete data and then uses a met-
ric repair to correct the perturbed distances. A non-linear PCA with missing data
approach, which is based on an inverse neural network model and applied to metabo-
lite data, is presented in [30]. A PCA-based approach that approximates a low-rank
structure for high-dimensional datasets, while enforcing graph smoothness assump-
tions on the rows and columns of the data is described in [32]. Mishne et al. recently
proposed an unsupervised manifold learning method [24] that reveals the underly-
ing geometry of a given matrix based on multi-scale information from the row and
column spaces and also works in a missing data setting. In [25], the low algebraic
dimension of a matrix is used to complete missing entries.

This paper is organized as follows. Section 2 reviews the one-directional Lapla-
cian pyramids and the error analysis for the one-directional case. In Section 3, the
new extension to the two-directional case is described and an error analysis is pre-
sented. The application and adaptation of the two-directional Laplacian pyramid for
imputation is described in detail in Section 4. Finally, Section 5 provides experimen-
tal results that demonstrate the efficiency of our approach on a synthetic example and
on a publicly available dataset.

2 One-directional Laplacian pyramid

Let X = {x1,...,x,} be a set of scattered data points, possibly high dimensional,
and f be a function defined on X. The Laplacian pyramid algorithm provides a multi-
scale approximation of f as a function of X. First, a coarse representation of f,
denoted by fj, is constructed by convolving f with a kernel K. Then, the residual
dy = f — fo is computed and convoluted with a finer normalized kernel K. This
results in a finer approximation of f, given by f &~ fo+ Kjx*d;. The iterative process
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is repeated until an optimal scale of f is reached. In what follows, this procedure is
described in detail.

We start with a coarse Gaussian kernel Gy = (go (xi, x j)), having a large scale of
00, defined by

—lx;—x; 12
golxi,xj))=e 0 , x,x;€X, @))

where x; and x; are the i and j™ rows of X, respectively. The associated
normalized kernel to G is Koy = (ko (xi, x j)), which is defined by

go(xi, x;)
(ko) (xi, Xj) = =—————- 2
Y g0, xk)
At a finer scale [, the Gaussian kernel Gy is defined by
e —x )12 /(%0
gi(xi.xj) =e Il (i —x )l /(2,)’ 1=1,2.3,...
Normalization of G, yields the smoothing operator K; = (k;(x;, x;)), where
X)X
ki(xi xj) = L I 3)

>k &1(xis X))’
The Laplacian Pyramid representation of f is iteratively defined as follows. For
the first level I = 0, a smooth approximation of f is given by

n
foxi) = Zko(xi,xj)f(xj), i=1,....n, xixj€X. 4)
j=1
Let
di(x)) = f(xi)) = foxi)), i=12,....n x; €X,
then a finer representation of f is

n
AGD) = fo) + Y ki, xpdixy),  i=1,....n
i=1
In general, for/ =1,2,3.. .,

di(x;) = f(xi) — fi—1(x:), i=1,...,n, S
fl(xi):flfl(xi)+Zkl(xi7xj)dl(xj)’ i=1,...,n, (6)
j=1

where fj is defined in Equation (4). Equation (6) approximates a given function f by
the series of functions { fo, f1, f2, - . .} in a multi-scale manner, going from a coarser
to a finer representation. The functions { fy, f1, f2, ...} can be easily extended to a
new point X in the following way.

fo®) =) ko(X,x))f(x;)  for [=0, (7)
j=1

HE) = fisl@ + Y k@ xpditxy)  forl =1,2,3,..., ®)
j=1

where d;(x;) is defined in Equation (5).
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2.1 Auto-adaptive Laplacian pyramids

The Laplacian Pyramids iterations may be stopped by setting an admissible error to a
small threshold, defined by err, and requiring || f — fi|| < err. If err is chosen to be
too large, then the iterations stop at a coarse scale, thus the approximation does not
capture finer structures of the function f. If err is chosen to be too small, then in finer
scales, it results in a situation where a point may have few or no neighbors; thus, over-
fitting may occur. The auto-adaptive Laplacian Pyramids, which were introduced
in [12, 13], slightly modify the kernels constructed in Equations (1) and (3). This
prevents over-fitting of data and provides a criteria for selecting a proper stopping
scale /. The main modification is to replace the kernels G; = (gl (x;, x j)) by Gl,
which are defined by

sy )G, xy) P #E]
Gl(-xlv-x])_{ 0 i=j. 9
These yield the normalized operators
~ 81(xi, xj)
k(xi,xj)) = =————, [=1,2,3,... (10)
ST Y 8 ;)
and the iterative construction
n
folx) =) koxin x)) f(x)) forlevel 1 =0 (11)
j=1
n
At = fia ) + > ki, xpdi(xp)  forlevel [=1,2,....  (12)

j=1
Extension to new points is done in a similar manner, x replaces x; in Equations (11)
and (12).

Using the above modification results in a leave-one-out cross-validation that is
inherent in the algorithm, where each training point x € X is treated as a test point.
The approximation of f at x; is built without using the value of the point itself, so
that the contribution is only from x s neighboring points. This modification makes
the procedure more robust in the presence of noise. The stopping scale [ is determined
by computing the mean square error err; = || f — fi|| at each level and choosing the
stopping scale / for which the minimum value of the vector err; occurs. To conclude,
this procedure is equivalent to applying the Laplacian Pyramids algorithm in a leave-
one-out cross-validation manner and choosing the stopping scale / for which the error
is minimal.

The cost of running L steps of the ALP is O(LN?), where N x N is the dimension
of the sampling kernel. This is compared to the cost of LOOCYV (leave-one-out cross-
validation, which is O(LN?) operations.

2.2 Error analysis for the one-sided LP scheme

For the sake of completeness of the presentation, in this section, we review the error
analysis for the Laplacian pyramids procedure, described in [12]. Assume that f is
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in Ly, i.e., fx fz(x)dx < K, for some constant K. The LP scheme is a relaxation
process for which in the first step the function f is approximated by

Jo (x) = (ko * f) (x). (13)

Here, we use kernels of the form k; (x), which approximate a delta function,
satisfying
f ki (x)dx =1,
[ xki (x)dx =0, (14)
J1xlP Ik (o)l dx < C.

Note that k; are normalized kernels. As an example, one may choose

ki =ce ™l oy =/l (15)

where ¢; is a normalizing factor for k;. Define
di = f — fo.
then, in the second step, f is approximated by
f1 = fo+kyxdi. (16)
Taking the Fourier transform of k; (x) and using the assumptions (14), we have
(see [14])
(k} (@) — 1‘ < Ciofwl2, 1=0.1,2, ... where
(17)
Cr =35 [%% Ik 1kt ()] dx.

Let us analyse the error in the first step. The error d; (x) is defined by
di(x) = f(x) = (ko * f)(x). (18)
Taking the Fourier transform of dj (x) and using Equation (17), we have

di(@)| = | F@)| [fo@) 1| = cagllol} | f@). (19)

where C is a universal constant. The error in the second step is
dy=dy —kixdy=(kox f— f) — k1 *xd. (20)
Taking the Fourier transform of Equation (20) yields
()| = |di @) = dy @y @) = |di @)] [kr @) — 1] @1)
Using Equations (20) and (21), we obtain

20| = C|di@)| Pl = Cogotiont|f@)

2 2 417 (22)
= Cogloo/wPlol} | f@)|.
For the ['" level, the error is bounded by
02 -1
di)| = co (ﬁ) I3 |/ @)]. 23)
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By Parseval’s equality, we obtain

2

-1
2 [ %
ldi ()l 2 < Coy (m) 1f Oz - (24)

Thus, the error decays faster than any algebraic rate.

3 Two-directional Laplacian pyramids

Given a function f = f(x, y) of size M x N, the Laplacian pyramids method is
modified to be a two-direction approximation, which takes into account the relation-
ship between the rows and columns of f. Ateach scale [, two kernels are constructed.
The kernels are based on the pairwise distances between the rows and columns of f,

and are denoted by GZ(L) and GI(R), for left (L) and right (R) respectively. Denote the
(L)

associated normalized kernels by K; " and K I(R). First, f is coarsely approximated
by
fo= KéL) * f % K(()R).

Next, the difference

dy = f — fo
is calculated and it becomes the input for the next finer approximation. In the second
step, f is approximated by

fi=fo+r K wdix K.

After [ — 1 iterations, the difference between f and its multi-scale representation is
given by

d=f—fi-1,

and at the [-th iteration, the a finer version of f is

fi=fi-1+ K,(L) x dj * KI(R). (25)
3.1 Error analysis for the two-sided LP scheme

Assume that f isin Ly, i.e., fx fz(x)dx < K, for some constant K.
Define the kernels kl(L) (x) and kl(R) (x) which approximate a delta function. The

kernel kl(L) operates on f from the left and kl(R) operates on f from the right. The
two kernels satisfy equation (14).
Note that kl(l‘) and kl(R) are normalized kernels. As an example, one may choose

(L)
e L N L R
(26)
(R)
kB = (Bg=/e® B _ B 1
where cl(L) and cl(R) are normalizing factor for kl(L) and kl(R) respectively.
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The two-sided LP scheme is a relaxation process for which in the first step, the
function f is approximated by

L R
fo =k s fakl®.
Define
di = f — fo.

then, in the second step, f is approximated by
fi= fo+ k" wdp x k"
Taking the Fourier transform of kl(L) (x) and using the assumptions (14) for

kl(L) (x), we have (see [14])

" @ 1| = CoP P, where
27

C =1 /% 2k (x)]dx.
Similarly for kfR). We first analyse the error in the first step. The error di(x) is
defined by

di(x) = f () = (e o f k) (x)
Taking the Fourier transform of d (x) and using Equation (27), we have

di@)] = [&" F@i® = f)

£ﬁﬂw%”—ﬂw¢ﬂ+Vw%“—ﬂw\ (28)

IA

k" = 1 F @] +| F@& -]

First, note that by Taylor expansion of ‘IQSR) (a))‘ around w = 0, and by using Equa-

tion (14) for kl(R) (x), it follows that is bounded ‘lgéR)) is bounded by a constant.
Bounding the two terms on the right-hand-side of (28), we have

|G = D7 @k®| = o0l i) | f@)|

. (29)
< CloPPlel3 |f @)
and
F@@&® = 1] = co™Plo| f@). (30)
Here, C denotes a universal constant.
Combining Equations (28), (30), and (29), we have
di@)] = C§®7 + (PP | @] G3D)
For simplicity, we assume that GO(L) and o(;R) are bounded by og. Thus,
di(@)] = caplol3 | F@). (32)
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The error in the second step is
dr(x) = dy — k" sedy 5 kP (33)
Taking the Fourier transform of Equation (33) yields
()] = [P di @ @k — di@). (34)
It may be bounded as in Equation (32) by

(@) = €02 + ")) 0l |di )|

2 200141 F (35)

< C(o0)"(oo/W)~llwli5] f (@)].

For the " level, the error is bounded by
5\ -1

5 2 [ %0 2 7

| = g {77 ) 10l | ). (36)
By Parseval’s equality, we obtain
2\ -1
2 [ %

di )l 2 < Coy <ﬁ) (NECIN LI (37)

Thus, the error for the two-sided LP procedure as well decays faster than any
algebraic rate.

4 Two-directional Laplacian pyramids for data imputation

This section describes how to utilize the two-directional multi-scale construction for
imputation of missing data for a rectangular dataset. Denote the dataset with missing
values by X = (x;;), a matrix of size M x N. In order to utilize the connections
between the rows and columns in X, the dataset needs to be normalized. Thus, each
column (or each row) should be adjusted such that its mean equals zeros and its
variance equals one. Let B = (bj;) be a binary indicator matrix of size M x N that
specifies the missing data locations in X. Thus, if b;; = 1 then x;; contains a known
value and if b;; = 0 then x;; is a missing data entry.

First, in Section 4.1, we describe how the coarse normalized kernels K(()L) and

KéR) are constructed from X and B. Next, in Section 4.2, the imputation algorithm is
reviewed in detail and applied to a synthetic example. Last, Section 4.3 summarizes
the imputation method in an algorithm format.

4.1 Construction of the initial coarse kernels

Given the dataset X and its corresponding indicator matrix B = (), the two ini-
tial coarse kernels are constructed based on the known entries of X (similar to the
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distance defined in [15]). Here, Gaussian kernels denoted by G(()L) and G(()R) are used
to define the normalized kernels K (()L) and K (()R). Recall that

G(()L)zg(()L)(Xi,xj)Ze o X xj e X,

where x; and x; are the i th and Jj th rows of X. The distance ||x; —x 1l in the exponent
is computed as follows.

M
2 2
e =2 = Y ik — xpl*
k=1
bik=b ;=1
Therefore, the entries which are included in this distance contains only indices k for

which both x;; and x j; are known. This process results in a full matrix G(()L).

Next, the auto-adaptive modification is performed on the kernel G(()L). As
described in Section 2.1, the diagonal of G(()L) is set to zero and the kernel G(()L) is
normalized to be the smoothing operator K (()L).

The same process is applied for construction of G(()R). Let x' and x/ be two

columns of the matrix X, then the elements of G(()R) are given by
e xS )2
GéR)zgéR)(x’,x])ze o, x'x'eX.

The distance ||x’ — x/|| is then computed by ||x¥/ — x¥7|| where k satisfies by; =
byj = 1. Thus,
N
' 2 2
I —x 2= > — gl

k=1
bi=byj=1

Therefore, the entries which are included in this distance contains only indices k for
which both x;; and x; are known. Last, a normalization of G(()R) yields the coarse
kernel KéR).

In order to utilize the automatic stopping criteria procedure that was described
in Section 2.1, it is recommended to modify just the left kernel G(()L) to be G(()L).
Modifying GéR) to GSR) may result in over-smoothing of the data, especially in cases
where the number of columns M is small.

The initial kernel widths aéL) and aéR) can be set by estimating the pairwise dis-

tances between the rows for the left kernel and between the columns of X for the
right kernel. Here, the following MaxMin heuristic (see [19]) is used

) .
ol = ® - max[min (% — x;1)?]
JoLiFE]

and
a(gR) = C® . max[min (J]x" — x7/|)?].
JoonLi#Ej
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40

20
0 o

Fig.1 Synthetic dataset X = (x;, j, where x;; = f(s;i, 1) = sin3(si)cos(tj)

It is possible to choose different values for CX) and C®. In this paper, we experi-
ment with two different choices; the first is C&) = 2 ,C® = 2 and the second is
c =2,c® =05

4.2 Multi-scale construction

In this section, the two directional multi-scale construction is described and applied
to a synthetic example. Consider the dataset X = (x;;) of size 60 x 60, where x;; =
fGintj) = sin3(sl~)cos(tj). Here, 0 < s;,t; < m, with an equal spacing of g—o
between the points in both directions. The dataset X with no missing values is plotted
in Fig. 1.

In this running example 20% of the values in X, which were chosen randomly,
are missing. Figure 2 displays on the left X with the missing values and on the right
its associated binary index matrix B. To enable a reasonable visualization of X with

i SR e e
. ey e e T R
104 ..F'-.u_'-r'r‘-.'.;'___‘-__ L
- = O
- "y Tma_= -

20 -
i." A, - P
30 g ._L_: - Fl:ﬁ am, =
L. y

- E
40 mgm I =

5 _.'_-'_u._::"'!. Ly -"F,_.-:'

s =tz 0Tl
P - o B e e N
10 20 30 40 50 60

Fig.2 Left: The dataset X with 20% missing values. Right: The associated index matrix B
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missing values, entries with missing data were replaced by the value 0, this value
is not used in the algorithm. On the right, the entries of B that satisfy b;; = 1 are
colored in yellow and the locations of missing entries of X that satisfy b;; = 0 are
colored in blue.

Two initial coarse kernels Ifé“ and KéR) are constructed from X as described in
the previous Subsection (4.1). The initial values for the kernels’ scales were set to be
oéL) = O'(;R) = 10. In order to convolve them with X, X needs to be a full matrix. We
construct the matrix X* by simply imputing the missing values in X with the mean
value of the known data entries. Denote this mean value by m* = mean (X ,-j), where

ij are indices that satisfy b;; = 1. Thus, X* is constructed as follows
Xij ifb;; =1
X* — ijs ij
ij {m = mean (X;;), ifb;; = 0. (38)
Then, a coarse approximation of the dataset is computed by
Xo = K" s« x* 5« k(P (39)
The two-sided convolution in Eq. 39 is computed in two consecutive steps. Convolv-
ing X* with IE'SL) yields
X(L) K(L) * X*,
which approximates the data by averaging its rows, as described in Eq. 4. In
summation notation, X ((]L) is evaluated row-by-row as follows

L L .
x{ ZK@J X%, i=1,...M, (40)

where X( ) is the i — th row in X( ) , and X* is the j — th row in X*. The second
convolutlon is performed by
Xo = X§" « K§®.

In summation notation,

(R) y(L)
XOJ—ZKO” o j=1,...,N, (41)
i=1

where Xy .; is the j — th column in Xy, and X( ) is the i — th column in X( )
The error between the known data Values and their coarse approx1mat10n is
computed and stored in errg. It is calculated based on the difference

erro = || Xi; — Xoijl,

where the only indices ij for which b;; = 1 are included in the computation of the
error. Here, erry is computed as the root mean square error.

The first residual is given by D1 = X — Xy. The values of Dy are known for all
locations ij that satisfy b;; = 1. The matrix Dj is then constructed as described in
Eq. 38, the missing values in Dj are replaced by the mean of its known entries. The
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Fig.3 Multi-scale approximation and imputation of X. Left: X¢, middle: X3, right: X5

kernels K I(L) and K I(R), which operate on Dj from the left and from the right, yield a
more accurate representation of X, denoted by X7. It is given by

X1 = Xo+ K" % Dy« k.

The construction is carried out in an iterative manner and the iterations continue
for a pre-defined maximal number of steps (here set to 20). In the / — ¢/ iteration the
residual D; = X — X;_1 is computed, Dj is constructed. Then, operating on D} from

the left and the right by K ;L) and K I(R) respectively, yields a finer representation of
X, which is given by

X, = X1+ K"« D« kP

The error, denoted by err;, is calculated based on the difference between X and
X; on the known data entries. Figure 3 displays the multi-scale approximation and
imputation construction for the synthetic example X¢, X2, X5 corresponding to the
scales ! = 0, 2, 5, respectively. Figure 4 shows the corresponding multi-scale kernels.

Fig.4 Multi-scale kernels. In the first row, KéL), K éL) ,and K S(L) are plotted from left to right, respectively.
The second row contains K(()R) , K éR), and K S(R)
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In the first row, K éL), KéL), and K S(L) are plotted from left to right, respectively.

The second row contains K(SR) , KéR) and K S(R) . High kernel values (close to 1) are
plotted in yellow, while values close to O are plotted in blue. It may be seen that the
different geometries along the row and the columns are captured accordingly by the
left and right kernels. In addition, as the scale [ increases, sharper kernels, which are
consecrated in narrower regions, are formed.

The calculated root mean square errors, err; on the known data entries in each of
the 20 iterations are plotted in Fig. 5. It can be seen that the optimal stopping scale,
which holds the smallest error, is [ = 5. This means that the imputed values for X
should be taken from Xs. This automatic stopping scale detection is achieved due to
the replacement of the left kernels K I(L) by K I(L).

Last, it is demonstrated in Fig. 6 how the error for the missing data too decays as it
decays for the known data entries. The root mean square errors for scales! =0, ..., 5
are computed for the known and for the missing data entries and are plotted in blue
and yellow bars respectively.

The proposed method is suitable for imputing data with a large number of missing
entries. To demonstrate this advantage, the previous synthetic example is used, this
time 60% of the data is missing. Figure 7 top-left shows the complete, full, dataset,
on the top-right the indicator matrix of missing data is presented (blue stands for
missing values), the data with the missing values set to zero is plotted on the bottom-
left and the imputation result are plotted on the bottom right. Recall that only the
known values of X are used, setting the missing values to zero is done solely for
visualization.

Figure 8 shows how the auto-adaptive construction (see Section 2.1) results in an
optimal scale, here [ = 8, in which err; reaches a minimum.

0.45 — T T v

04 .

0.3F 1

0251 1

0.2} 1

0.15 1

01F 1

0.05 1

0 5 10 15 20

Fig. 5 The root mean square errors err; that were calculated on the known entries in each of the 20
executed iterations. The minimum error is reached at/ = 5
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Fig.6 The root mean square errors err;,l = 0, ..., 5 on the known data entries in blue and on the missing
data entries in yellow
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Fig.7 Top-left: The original dataset X. Top-right: The indicator matrix B. Bottom-left: An illustration of
X with missing data. Bottom-right: The imputed dataset X
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Fig. 8 The root mean square errors err; that were calculated on the known entries in each of the 20
executed iterations. The minimum error is reached at/ = 8

The multi-scale approximation and imputation is demonstrated in Fig. 9 for three
levels, I =. The data matrix X7 that is presented on the right holds the final imputed
version for the original dataset X that had in it missing values.

Figure 10 plots the root mean square errors on the known points and on the missing
points in each iteration in blue and yellow bars respectively.

4.3 The imputation algorithm

The proposed approach is summarized in the following algorithm.

5 Experimental results

This section demonstrates the application of the imputation algorithm to several pub-
lic datasets that were downloaded from the UCI repository (http://archive.ics.uci.edu/
ml/datasets). In all the examples, each feature (column) of each dataset was nor-
malized to have mean O and standard deviation 1 in order to make the error values

Fig.9 Multi-scale approximation and imputation of X. Left: X3, middle: Xy, right: Xg
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0.45 T T T T T
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Fig. 10 The root mean square errors err;, [ = 0, ..., 8 on the known data entries in blue and on the
missing data entries in yellow

Algorithm 1 Imputation with two-directional Laplacian pyramids.

Input:

Dataset X of size M x N, normalized, with missing values.
A location indicator matrix B of size M x N.
00(L>, O'O(R) - initial kernel widths.

Linax - maximum number of iterations.

Output:

_ = =
N e

R I A A o

Multi-scale imputed representation of X: {Xo, X1, -, Xi}.
The values in X; ;; for which b;; = 0 are the imputed data for the missing values
in X.

Construct I%é” and KSR) (see Section 4.1).
Construct X* (see Eq. 38).
Xo = KM« x* 5 kP
Compute the root mean square error errq and store it in err[0] = erry
for 1=1 o0 I, do
D =X—-X;_1.
Dy.
X = Xi—1 + KV« Dr x k.
err[l] =err;
end for
Determine the scale / for which err[/] reaches its minimum value.
return {Xg, X1, - - - , X;}, where X; is the final result.
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Table 1 Errors for the Mice dataset with C&) =2, ¢(® =2

% missing 1D Pyds 2D Pyds Mean Freq.

20% (MSE) 0.1545 0.1468 1.0047 9.5592
20% (RMSE) 0.3931 0.3831 1.0024 3.0918
50% (MSE) 0.2722 0.2702 0.9999 9.5419
50% (RMSE) 0.5217 0.5198 0.9999 3.0890
80% (MSE) 0.5756 0.5923 1.0056 7.8405
80% (RMSE) 0.7587 0.7696 1.0028 2.8001

comparable between the datasets (see [27]). The first dataset is the Mice Protein
Expression Data Set, which contains expression levels of 77 proteins and has many
missing values. In order to be able to evaluate the results, a smaller, complete dataset
X, of size M x N = 1000 x 66 is extracted from the original data. The dataset X
is normalized such that each column has zero mean and variance one. We examine
three different settings: (i) : 20% of the data is missing, (ii) : 50% of the data is
missing, and (ii) : 80% of the data is missing. For each mode, Algorithm 1 is applied
ten times, where at each time the missing data locations are chosen at random. The
results are compared with standard techniques; The first replaces the missing values
in each column by its mean value and the second replaces the missing values by the
most frequent value.

Tables 1 and 2 contain the average mean square errors (MSE) and the average
root mean square errors (AMSE) for the ten executions of the proposed algorithm
(denoted by Pyds) and the two alternative imputation techniques (Mean co. value and
Frequent col. value) and compared to the one-dimensional (1D) Laplacian pyramids
algorithm in each of the three settings (20%, 50%, and 80%). The experiments were
executed with two different initial values for C©) and C®) (see Section 4.1); the
first setting (see Table 1) is C/) = 2, C® = 2 and the second setting is C&) = 2,
C® = 0.5 (see Table 2). In most of the cases, the two-directional algorithm per-
formed better than the one-directional method. Only in one case, when the missing
percentage of data was 80% and the initial column sigma value was picked to be
relatively wide, the one-directional scheme achieved better results. Figure 11 shows

Table 2 Errors for the Mice dataset with C(X) =2, C(®) = 0.5

% missing 1D Pyds 2D Pyds Mean Freq.
20% (MSE) 0.1460 0.1444 1.0065 9.9686
20% (RMSE) 0.3821 0.3800 1.0033 3.1573
50% (MSE) 0.2603 0.2565 0.9959 10.0160
50% (RMSE) 0.5102 0.5065 0.9979 3.1648
80% (MSE) 0.5691 0.5655 1.0024 8.4540
80% (RMSE) 0.7544 0.7520 1.0012 2.9076
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Fig. 11 Multi-scale approximation in blue and imputation in yellow for scale / = 2 (top left), / = 5 (top
right), / = 7 (bottom left) and / = 8 (bottom right)

several steps of the algorithm’s multi-scale construction of the data for the 50% case.
In blue, the known values in X (x-axis) versus their approximated values (y-axis) for
scales [ = 2,5,7, 8 are plotted. In yellow, the multi-scale imputation of the miss-
ing values is plotted. Note the the y-axis has a different scale in each sub-figure, as
the iterations proceed it spans more value. In addition, as / increases the points are
aligned close to the y = x, which means that the imputed results get closer to the
exact values.

Note that in our numerical tests, the rate of decay for the [’ left and the right
kernels was set to i/ where u = 2. It is possible to choose different decay rates for
the left and the right kernels, depending on the geometry of the data. For example, in
Table 1, in case of 80% and 50% missing data, setting the decay rates to ) = 1.2
and 1® = 4 resulted in a MSE errors of 0.4043 and 0.2136, which improves the
results. However, the choice of these parameters depends both on the data structure
and on the amount of missing values.

Another example is the voice rehabilitation dataset, also from the UCI reposi-
tory (http://archive.ics.uci.edu/ml/datasets). The dataset is of size 126 x 309, where
126 is the number of patients and 309 is the number of features. The features were
computed by applying various speech signal processing algorithms such as wavelets,
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Table 3 Errors for the voice dataset with C&) =2, ¢(® =2

% missing 1D Pyds 2D Pyds Mean Freq.
20% (MSE) 0.5843 0.5793 0.9954 10.9006
20% (RMSE) 0.7644 0.7611 0.9977 3.3016
50% (MSE) 0.7047 0.6788 1.0206 8.2944
50% (RMSE) 0.8394 0.8239 1.0103 2.8800
80% (MSE) 0.8408 0.8103 1.0433 5.0751
80% (RMSE) 0.9170 0.9002 1.0214 2.2528

frequency-based and non-linear time-series algorithms. It is plausible that there is
some correlation between rows of this dataset as well as between its columns. Three
experiments were performed, with 20%, 50%, and 80% of randomly selected missing
data entries. The data was first normalized to have mean equal to zero and standard
deviation equal to one in each column.

Tables 3 and 4 contain the mean square errors for the three setting (20%, 50%,
and 80% missing data) after running Alg. 1 for 10 times in each case and aver-
aging the results. It can be seen the proposed approach performs much better than
the mean imputation approach even for the case of 80% missing data. Moreover, it
improves the results of the one-dimensional case for both of the examined scale set-
tings. Note that in this dataset, it has a relatively large number of columns (309);
hence, the two-directional construction contributes to process by taking into account
the relationships between the columns.

Figure 12 illustrates the multi-scale imputation process on a subset of points that
were stretched for this figure to be a one-dimensional vector. The three pictures on the
top of this figure show the approximation process on 1000 points x;; for which b;; =
1, their value is known. The known values are colored in black and the approximated
values are in blue. The known points are used to determine the stopping scale /, which
is [ = 6 for this example / = 6; the approximations for levels [ = 4, 5, 6 are plotted.
The three figures on bottom of this figure shows the imputation construction for 1000
points with missing values. The correct values are colored in black and the imputed
values are colored yellow.

Table 4 Errors for the voice dataset with C&) = 2, c® =05

% missing 1D Pyds 2D Pyds Mean Freq.
20% (MSE) 0.5761 0.5755 0.9904 10.6954
20% (RMSE) 0.7590 0.7586 0.9952 3.2704
50% (MSE) 0.6858 0.6736 1.0172 8.7580
50% (RMSE) 0.8281 0.8207 1.0086 2.9594
80% (MSE) 0.8432 0.8269 1.0415 4.8659
80% (RMSE) 0.9183 0.9002 1.0205 2.2059
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Fig. 12 Multi-scale approximation in blue and imputation in yellow for scales [ = 4,5, 6 of the voice
dataset

The proposed method is also applied to the following three datasets: Ecoli [18],
White wine [8] and Boston housing [16] from the UCI repository and the results are
compared with those that were presented in [27]. Categorical variables were removed
from the datasets and they were all standardized to have columns with mean equal
to 0 and standard deviation equal to 1. The Ecoli data is of size 336 x 7, 5 of the
columns include continuous numeric values and 2 columns include binary values.
The wine dataset is of size 4898 x 11. The columns hold attributes such as acidity,
sugar, and pH, which were computed based on physicochemical tests. The size of
the housing dataset (without two categorical attributes named CHAS and RAD) is
506 x 11. Figure 13 plots the multi-scale kernels for the housing dataset example. In
order to enhance the column kernel visualization, the attributes were arranged in the

@ 00 150 20 20 B0 B0 00 450 K

4 s 5 7 8 9 W0 W

Fig. 13 Multi-scale kernels for the house dataset example. In the first row, KéL), K I(L), KéL), and K3(L)
are plotted from left to right, respectively. The second row contains K(()R), K I(R), K éR), and K. 3(R)
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Table 5 MSE Imputation errors for the three public dataset

Dataset 2D Pyds 1D Pyds Mean IRMI OLI MICE
Ecoli 0.62 0.66 0.96 8.26 5.75 1.2
Wine 0.43 0.46 0.94 - 0.87 1.1
Housing 0.32 0.34 0.98 0.28 0.30 0.56

following order: ZN, AGE, TAX, CRIM, LSTAT, PTRATIO, INDUS, B, RM, DIS,
and NOX, so that correlated attributes are located next to each other.

The last three columns in Table 5 show the errors for the iterative stepwise regres-
sion imputation method [33], denoted by IRMI, Optimized Linear Imputation [27],
denoted by OLI and Multiple imputation technique [3], which is denoted by MICE.
The percentage of the missing data in these examples is 5%. Ten experiments were
ran and the error results were averaged. The IRMI method did not converge for
the white wine dataset, the error results are left empty for this example. It can be
seen that the proposed two-directions Laplacian pyramids approach significantly
improve the mean value technique and also, in two cases outperforms the results of
other regression-based methods. Additionally, in the proposed method, there is no
convergence risk.

Combining the two-directional processing, which acts as local regressions in the
row and in the column space, together with the multi-scale construction that allows
these regressions to be performed at several frequency passes of the data results in
stable low error rates even when the percentage of missing data is large.

6 Conclusion

In this paper, we presented a multi-scale approach for modeling a dataset with respect
to its dual geometry structures in different scales. The application to data imputation
is immediate and the missing data is completed in one pass, together with the model
construction. The general representation extended and applied to other learning tasks
such learning functions over datasets while considering the two-directional geometric
structures.
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