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VORTEX METHODS FOR SLIGHTLY VISCOUS THREE-DIMENSIONAL
FLOW*

DALIA FISHELOV"

Abstract. Vortex methods for slightly viscous three-dimensional flow are presented. Vortex methods
have been used extensively for two-dimensional problems, though their most efficient extension to three-
dimensional problems is still under investigation. A method that evaluates the vorticity by exactly differentiat-
ing an approximate velocity field is applied. Numerical results are presented for a flow past a semi-infinite
plate, and they demonstrate three-dimensional features of the flow and transition to turbulence.
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1. Introduction. Vortex methods as suggested by Chorin [12] were applied to
various problems to simulate incompressible flows (see [34] and [32] for a review).
These grid-free methods represent complicated flows by concentrating the computa-
tional elements in regions where small-scale phenomena predominate and few elements
elsewhere. In addition, vortex methods introduce no artificial viscosity, and therefore
they are adequate for solving the slightly viscous Navier-Stokes equation.

Vortex methods have been used extensively in the last 15 years, especially for
two-dimensional flows. Although three-dimensional vortex methods have been con-
sidered inherently difficult, we represent a scheme that involves no elaborate computa-
tions and is a natural extension of the two-dimensional schemes. We applied this
method to a three-dimensional flow past a semi-infinite plate at high Reynolds number.
The velocity far away from the plate is assumed to be uniform. If we assume that the
flow is independent ofthe spanwise variable, the problem is two-dimensional, otherwise
the flow is three-dimensional. Chorin [11]-[13] solved the two-dimensional problem
numerically; he used computational elements, called blobs, with a smoothed kernel.
This kernel is obtained by convolving the singular kernel, which connects vorticity and
velocity, with a smoothing function (called a cutoff function). The latter approximates
a delta function in the sense that a finite number of its moments are identical to those
of a delta function.

A numerical solution to a three-dimensional problem was introduced in 1980 by
Chorin [11] and by Leonard [32]-[34] using different vortex filament methods. In the
filament method we approximate the initial velocity and vorticity along vortex lines,
whose tangents are parallel to the vorticity vector. Since circulation is conserved along
vortex lines, there is no need to update vorticity. Both authors [11], [34] stepped the
Navier-Stokes equations in time by splitting them to the Euler and the heat equations.
In [33] Leonard introduces one of the earliest vortex methods to solve the inviscid
three-dimensional Euler equations numerically. In his computations he was able to
simulate the time development of spotlike disturbances in laminar three-dimensional
boundary layer. He suggested to split the velocity field into a sum of the velocity at
infinity and a perturbed one, and to track vortex lines and compute their curvatures.
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He extended his method to the viscous case [34] using a core spreading technique, in
which the core of the filaments was changed every timestep to satisfy the heat equation.
This scheme was proved to approximate the wrong equations, rather than the Navier-
Stokes equations [22].

Chorin suggested a different filament method to solve the three-dimensional
problem. He approximates vortex lines by segments and then, using the Biot-Savart
law, he updates the endpoints of the segments for the Euler equation at every timestep.
The heat equation is approximated in the statistical sense via a random-walk algorithm.
Since Chorin uses segments to approximate vortex lines, his algorithm involves no
elaborate calculations, such as evaluation of curvatures. However it is not highly
accurate in space. The purpose of this paper is to modify Chorin’s scheme to gain
higher spatial accuracy.

Following Beale and Majda [4], [5] and Anderson and Greengard [1], [2], we
achieve higher spatial accuracy by generalizing the two-dimensional blobs to three-
dimensional ones. Vorticity as well as blob locations must be updated at every timestep.
Two versions of the three-dimensional blob extension were suggested. Beale and Majda
suggested approximating spatial derivatives with finite differences, whereas Anderson
explicitly differentiates the smoothed kernel mentioned above. We chose to apply the
method of Anderson, since it eliminates one source of error, associated with spatial
differentiation. The algorithm and its accuracy is then similar to the two-dimensional
one. The results shown here are the first attempt to apply this scheme numerically.
Convergence was proved in [3] and [10] for the Euler equations. Applying the
convergence proofs to our scheme, we show that for smooth cutoff functions second-
order accuracy in space is gained. Higher-order space accuracy can be achieved by
using cutoff functions, in which more moments agree with those of a delta function.
We were able to resolve three-dimensional features of the flow and transition to
turbulence. The numerical results are in agreement with experimental results shown
in [25], which suggest that at high Reynolds numbers there exist a large number of
small hairpins.

Spectral methods, which are highly accurate for smooth flows, were used for
turbulent flows by Orszag and Kells [35] and Orszag and Patera [36]. In [35] and [36]
periodic boundary conditions in the streamwise direction were assumed. Note that
nonperiodic boundary conditions in the streamwise direction might impose nonsmooth-
ness of the solution, such as that of the Blasius solution at the leading edge. This
nonsmoothness must be carefully treaded when using a spectral method. If we use a
finite-difference scheme, it requires a mesh that is inversely proportional to the square
root of the Reynolds number. However, a new finite-difference scheme with local mesh
refinement has recently been developed by Bell, Colella, and Glaz [7] and its application
for three-dimensional flows with transition to turbulence need to be tested.

The paper is organized as follows. In 2 we represent the fundamental equations,
in 3 the numerical scheme, and in 4 we describe the boundary conditions. In 5
we show that if we use a smooth cutoff function, second-order space accuracy is assured
for the Euler equations. The error from the viscous term is discussed as well. We also
suggest a new way for treating this term. Section 6 represents numerical results and
7 concludes the paper.

2. Representation of the problem. The flow is described by the Navier-Stokes
equations, formulated for the vorticity :

c,/ (u. V)-(:. V)u= R-A:,
(2.1)

div u 0,
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where : =curl u, u= (u, v, w) is the velocity vector, r= (x, y, z) is the position vector
and A V2 is the Laplace operator. R UL! u is the Reynolds number, where U and
L are typical velocity and length, respectively, and , is the viscosity.

We will solve the above equations for a flow past a semi-infinite flat plate located
at z =0, x->0. Far away from the plate (for zc) there is a uniform flow in the
positive x direction, i.e.,

u=(U,0,0) forz, t>0.

On the plate we impose the no-leak boundary condition u. n 0, where n is normal
to the plate. We also impose the no-slip boundary condition u. s=0, where s is
tangential to the plate. Initially, u (Uoo, 0, 0) at 0.

The Prandtl equations are known to approximate the Navier-Stokes equations
near the plate, and are used therefore in a thin layer 0<= z =< Zo. The Navier-Stokes
equations are employed in the region z-> Zo. In the Prandtl equations we assume that
sc (sol, :2,0), i.e., :3 is negligible in comparison to the other components (see, e.g.,
[39]). Thus

a,l + (u. V),

(2.2) Ot2-}- (U" V):2 R-lOZzzf2,

divu=0,

Ov Ou
(2.3) so’= Oz’ so2 zz’ u=(u, v, w).

The Pradtl equations admit the two-dimensional steady state solutionthe Blasius
solution. However, the three-dimensional Navier-Stokes equations are unstable at high
Reynolds numbers (R => 1000), i.e., small perturbations in the Blasius solution may
cause large perturbations in the solution as time progresses. Once the disturbances in
the Blasius solution begin to grow, spanwise vortices appear, the solution then depends
on the spanwise variable y, and there is a transition to turbulence.

Theoretical aspects of this instability are given in Benney and Lin [9] and Benney
[8]; they suggest that the secondary motions produced by the interaction of three-
dimensional modes with two-dimensional ones can produce profiles that are highly
unstable. Physical experiments done by Kline et al. [31], Klebanoff, Tidstrom, and
Sargent [30], and Head and Bandyapodhyay [25] showed that secondary motion,
caused by the production of longitudinal vorticity due to three-dimensional disturb-
ances, creates highly unstable profiles leading to turbulent spots. Klebanoff, Tidstrom,
and Sargent [30] suggested that the weak three-dimensional disturbances may control
the nonlinear development of the flow and its transition to turbulence.

Kinney and Paolino [28], Schmall and Kinney [43], and Kinney and Cielak [29]
suggested vorticity formulation along with a boundary condition for the vorticity on
the body. Recently, van der Vegt [44] performed two- and three-dimensional calcula-
tions using a vortex-spectral method. He simulated the flow over a cylinder and pointed
out the ability of the vortex model to describe typical viscous phenomena, such as
flow separation.

As the outcome of numerical and physical experiments two main models of the
turbulent boundary layer have emerged. One is the coherent structure with large
horseshoes [27], and the other is the uncorrelated hairpins 14], [42]. Using a numerical
simulation, Kim and Moin [27] found out that the bursting process is associated with
well-organized vortical structures described by large horseshoes. On the other hand,
Chorin [14], Siggia [42], Kerr [26], and Head and Bandyapodhyay [25] claim that the
structure is better described by uncorrelated small hairpins.
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The experiments of Head and Bandyapodhyay [25] for high Renyolds numbers
(R _-> 1,000) indicate the existence of large numbers of vortex pairs or hairpin vortices,
extending through at least a substantial part of the boundary-layer thickness; for the
most part they are inclined to the wall at a characteristic angle of 40 to 50. At low
Reynolds number (R-<_800) the hairpins are much less elongated and are better
described as horseshoe vortices or vortex loops. Head and Bandyapodhyay [25] note
that almost all investigators have used experimental techniques that limit the observa-
tions to relatively low Reynolds numbers, where the structure is markedly different
from that at high Reynolds numbers; vortex lines tend to appear as low aspect-ratio
loops rather than extended vortex pairs or hairpins. In our calculations, we found
support to the hairpins model, rather than to the horseshoe model.

One of the conclusions from the experimental data in [31] is that the flow is
periodic in the spanwise direction. We therefore solve (2.1) and (2.2) with the following
periodic boundary condition"

u(x,y+q,z)=u(x,y,z), (x,y+q,z)=(x,y,z).

As was noted in [11], q was found to be roughly 0.1.

3. The numerical scheme. We first describe the random-vortex method for the
Navier-Stokes equations and then the three-dimensional sheet method, called the tile
method, for the Prandtl equations.

3.1. Time discretization. We split the Navier-Stokes equations into the Euler
equations and the heat equation. The Euler equation (3.1) governs the flow of an
inviscid fluid"

(3.1) o,+ (u. v)-(. V)u o.
Note that for a two-dimensional case the last term in the left-hand side of (3.1) vanishes,
and therefore vorticity is a material property, i.e., D/Dt=O/Ot+(u. V):=0.
However, this is not necessarily true in three dimensions.

The heat equation is

(3.2) .e0_= R_ Z:ot

(it is also called the diffusion equation). Both (3.1) and (3.2) are easier to analyze than
the Navier-Stokes equations. We apply a Strang-type scheme to step the Navier-Stokes
equations in time, using (3.1) and (3.2). This is done in the following way: we represent
both problems above in the form

A().

For the first one

A() AI() (.

and for the second

A() A2(sc) R-1 A.
For both operators we apply the modified Euler scheme:

At
n+l n,,+/:z ,, +_._ a("), "+ Ata(n+l/2).
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Let L(At) be the operator that acts on sc" to yield Cn+, i.e.,

L(At)" "+ " + AtA (n +
At
--fA(

L(At), L2(At) are defined as L(At) with A1, A2 replacing A. We finally arrive at the
following scheme for discretizating (2.1) in time:

According to [21 ], this scheme is second-order accurate in time, is accurate up to order
two in the time variable, even in the nonlinear case. The same time discretization was
used also in 17] and 18].

3.2. Spatial discretization.
3.2.1. The Euler equations. For an incompressible fluid the following relation

((3.7) below) between vorticity and velocity holds [15]. Since divu--0, there exists a
function $, called a stream function, such that

(3.3) u=Vx$,

and we may choose such that div $ 0. By definition

(3.4) =Vu,

and therefore, from (3.3), we find that

(3.) a, -:.
Thus we may determine the velocity from the vorticity by first solving the Poisson

equation (3.5), and then applying (3.3).
If G is a fundamental solution of the Laplace equation, then

(3.6) 6 G * f G(x-x’)sC(x’) dx’,

where G(x)=-l/4rlxI, x=(x,y,z), and the integration is taken over the whole
three-dimensional space. Substituting (3.6) in (3.3), we find

(3.7) u(x, t)= f K(x-x’)(x’, t) dx’,

where

(3.8) K(x) II"rlxl
z 0

--y X

Note that (3.7) is a consequence of incompressibility only.
In vortex methods particle trajectories are followed. Let x(x, t) be the trajectory

of a particle in the fluid that is at the point z at 0. For fixed x the trajectory x(x, t)
is obtained from the velocity field u as a solution of the ordinary differential equation:

dx
(z, t)= u(x(ot, t) t), x(ot, 0)(3.9) d--
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Combining (3.7) and (3.8), we find

dX_dt I K(x(at, t)-x’(at, t))sC(x’, t) dx’

(3.10)

f K(x(at, t)-x(at’, t))sC(x(at’, t), t) dat’.

The last equality is true, since for an incompressible fluid the Jacobian ofthe transforma-
tion at(t) x(at, t) is the identity.

We must supply initial conditions to (3.10). We therefore set the initial velocity
and vorticity on a regular mesh:

ai (hi il h2i2, h3i3),

1 _--< il =< N1, =< i2=< N2,

and then track these particles in Lagrangian coordinates. To discretize the equations,
we set (= Yj , where the are functions of small support. Let Kj be the intensity of
the jth particle, i.e., K dx dy dz. Then we obtain the following set of ordinary
differential equations for the approximate locations of the particles

(3.11)
d:i
dt

(t)=a,(t)= K(i(t)-j(t))ffj(t),
j=l

where b :R3 R, b-- (1/3)b(x/) is the cutoff function, and K K 4’ is a
smoothed kernel. K replaces the kernel K (defined in (3.8)), which is singular at
x 0. Here Y(t), ,(t) approximate j(t) and xi(t), respectively, the exact intensity
and particle locations for the Euler equations.

We may write K in the following way:

(3.12) K(x) K(x)f (x),

where f(x)= (1/3)f(x/6). If f(x) is chosen to be radially symmetric, the relation
between b and f is b(r)=f’(r)/47rr (see [6]). We specify f(x)=f(r) below:

(3.13) f(r)= 5 3
r - r5, r < 1.

This function is continuous with its first derivative at r- 1. Substituting (3.8) and (3.13)
in (3.12) yields

’t o
K= 47rlxl

z 0 for]xl>6,
--y x

and

(3.14) K d.Trlxl3t
z 0 -- for Ixl <

--y X
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For a three-dimensional Euler equation vorticity is not a material quantity, and
therefore we must track vorticity as well as blob locations. We use the equation

d-(. V)u.
dt

Therefore, the evolution of vorticity along particle trajectories is described by the

equations

(3.15) d..__ (x(t, t) t)= ((x(et, t), t). Vx)U(X(t, t), t)
dt

where V,, is the gradient with respect to the Eulerian coordinates. Applying (3.11), we
find that the following equality holds for the approximated velocity fi

7xfi(x t)-

where V,,Ks is derived analytically in Eulerian coordinates using the definition of Ks
(3.15). Substitution of the last equality in (3.14) yields

dff_(3.16)
dt j--1

This can be written in the form

di(3.17)
dt

(;A(:i-j)j(t)+ ;/B(f,-);(t) + ;C(,-f7)j(t)),
j=l

where di (Ki’x, d/y, ff), and

0
A(x) 2---- Ks(x),

OX

0
B(x) _--- Ks(x),

oy
C(x) z-- K(x).

OZ

Or more explicitly,

Ki
XK, A(x);)- 4;1’ (-(IxlZ 3 ), 3xy, 3xz) x

(3.18) ;YB(x)ffj
4rlxl

(3yx, -(Ixl-3y), 3yz) x j,

;, c(x)# 411 (3zx, 3zy, -(Ixl=- 3z2)) x

for Ixl < , and

;A(x)ff) =4rr85 (-(2.582 1.51x[- 3x2), 3xy, 3xz) x ,
(3.19)

ff/
(3yx, -(2.562- 1 51xl=- 3y2), 3yz) x ,ff’B(x)j 47r6

,C(x)j’z
47r;5’ (3zx, 3zy,-(2.5t52 1.51xl=- 3z=)) x ,
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for ]xl > 3. To conclude, the semidiscrete three-dimensional scheme that we used for
the Euler equation is

di
dt

(t)=fii(t)= K(i(t)-j(t))j(t),
i----1

d;,
(;, V,,)K(,(t) (t));j(t)(3.20)

dt ./=1

i(O)=oi, /i(0) /?,

where Ks is defined in (3.14), and the second equation is given in more detail in
(3 17)-(3.19). Here, are initial values of the intensities of the computational elements
on the initial grid.

3.2.2. The heat equation. The second equation to solve is the heat equation:

0: R_A or R-Au
ot ot

Following Chorin ([11] and [13]) we use the random-walk method to step the heat
equation in time, i.e., we move the blobs according to

~n+l
Xi Xi +l(At),

where l(At)= (71(At), r/z(At), r/3(At)) and TI,T2 ’/3 are Gaussian random variables
with mean zero and variance 2At chosen independently of each other.

Note that we use the trapezoidal rule in (3.11) and (3.16) to approximate spatial
integrals. The error due to this approximation depends on the derivatives of the
integrands, and in particular on the voriticity, i.e., if the vorticity grows so does the
error. Therefore, if we find that the vorticity grows while using blobs for the Navier-
Stokes equations, we replace a blob that carries a high enough vorticity with several
blobs. The new blobs are placed at the same computational point, and share the same
total vorticity of the original blob. Since the random walk is used to simulate the heat
equation, these blobs will likely find themselves in different locations at the next
timestep. If we use filaments, growth in vorticity causes stretching of the filaments. In
this case we should split the vortex line into several short ones, and then use some
interpolation between the endpoints of the old filament to keep a desired accuracy.
This interpolation is an additional source of error, but it can be avoided if we adopt
the three-dimensional vortex blob method described above.

3.3. Prandtl equations. The Prandtl equations (2.2) used in a thin layer 0-< z-< z0
above the plate were solved numerically by the tile method, which is the three-
dimensional extension of the sheet method (see [11], [13]). This was done to evaluate
the boundary conditions on the plate, since it was found in [13] and [11] that blobs
did not accurately represent the velocity field near the boundary. We describe the tile
method for a region 0=< z =< o, noting that the boundary conditions at z z0 will be
viewed as those at infinity, seen from the plate.

In the tile method the computational elements are rectangles, parallel to the plate,
that represent a jump in the velocity components u, v. Thus (1, :_) is the intensity of
the tile, where 2 Uabove--Ubelow, :l Vabove--Vblow. Consider a collection of N tiles
T, with intensities (()i, (:2)i), 1,. ., N and centers xi (xi, Yi, Zi). The motions
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of these tiles are described by (2.3), i.e.,

Ov

Oz Oz

and if we integrate these equations with respect to z, we have

(3.2) u(x, y, z, )= u(x, y, )- (x, y, ’) ’,

(3.) v(x, y, , )= v(x, y, ) + (x, , z’) ’,

where u(x, y, t), v(x, y, t) are the velocity components u, v as z m. By incompressi-
bility and the boundary condition w(x, y, 0, t)=0, we have

(3.23) w(x, y, z, ) -Ox u(x, y, ’) dz’-O v(x, y, dz’) dz’.

Equations (3.21)-(3.23) provides a relation between the voicity and the velocity,
which replaces the one given by (3.7) for the interior region.

The above equations can be approximated by

1
(3.24) u (x, y, z, t) u(xi, y, t)- ()- ()d,

1
(3.5 v (x, y, z, v(x, , +(+ (,

where d 1-Ix- xl/h, and 1-lY-YI/h are smoothing functions, the summa-
tions in (2.24)-(2.25) are over all for which 0N d N 1, 0N N 1, and N z.

Similarly, from (3.23)

(x, , z, -(L -)/h (J+ J_)/h,

where

I+_ u(x, + h,/2, y,, t)z,-Y. (2)jaffz,

J+ l)(Xi, y, + hz/2, t)z, + EY (,)jdjf. z,
and

d. 1
Ix,+/-h/2-xl ly,+/-hz/2-yl

hi
fj=l-

hz z=min(zi, z).

The sums x/, yx are over all T, such that 0-<f < 1, and 0 < d- < 1, 0 < d- < 1,
respectively. Similarly, the sums ]+, YY__ are over all T, such that 0<-dj =< 1, and
0 <=ff -< 1, 0-<fj- =< 1, respectively. This is a thin vertical layer, and therefore the number
of operations to calculate the velocity fields for the tile method is O(N).

For simplicity, we describe the motion of a tile for a first-order timestepping Euler
scheme

X+I xi + At" ui, y+l y, + At. vi,

Z+I z + At. w + r/(At),
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where r/ is a Gaussian random variable with mean zero and variance 2At/R. Note
that r/appears only in the z component, since the Prandtl equation (2.2) assumes that
vorticity diffuses in the z direction only.

4. Boundary conditions. We first specify the boundary conditions for the region
z_>-Zo, in which the Navier-Stokes equations are used. At infinity the flow is uniform
and is in the x direction, i.e., u(x, y, z, t)- (U, 0, 0) as z oo. Boundary conditions
also have to be imposed at z Zo (see [39, p. 111]), and they link the two computational
regions. If a tile finds itself in the region z_-> Zo after taking a timestep, it turns into a
blob. Similarly, if a blob enters the thin layer in which the Prandtl equations are
employed, it becomes a tile. We assign the same circulation to a tile which turns into
a blob and vice versa. Thus Ki ihlh2, where K is the intensity of the blob, and s is
the intensity of the tile. In addition, we require continuity of u and v at z Zo.

The boundary conditions for the Prandtl equations are
(a) u(x, y, Zo, t) u(x, y, t), and v(x, y, Zo, t)= v(x, y, t), where uoo(x, y, t) and

voo(x, y, t) are calculated by the blobs, located at z-> Zo.
(b) u.n =0 at z 0, where n is normal to the plate. This is done by the method

of images, i.e., for each blob or tile at (x, y, z), carrying vorticity :(x, y, z) we add an
imaginary blob or tile at (x, y, z) with vorticity -(x, y, z).

(c) u s 0 at z 0, where s is tangential to the plate z 0. This is done by creating
tiles at the boundary, assigning vorticity to each of them (see [11]). In more detail:
we calculate Uo-- u(x, y, O) uoo(x, y, t)-o 2 dz and Vo v(x, y, O)= vow(x, y, t)+
o 1 dz, and replace the integrals Jo so2 dz and o :1 dz by the sums j=l ()jdjf
and j=l ()jdjf, respectively. The only tiles that contribute to these sums are those
located in the region {, )7[[-x1_-< h, ])7-y[_-< h2}. If (Uo, Vo) (0, 0), new tiles are
created at (x,y,O) with intensity := (:, :, 0), such that x/sc+_<-:max, where max
is a chosen small parameter. As a result the new values of Uo and Vo, denoted by to
and o, satisfy

(4.1) laol =< :max, Iol :max.
Periodic boundary conditions were imposed in the following way. For each blob

or tile located at (x, y, z) two other imaginary blobs or tiles were added at (x, y + q, z).
To save computational time, further blobs or tiles were not added, as their contribution
to the flow quantities became smaller the further they are from the computational
domain.

We restrict ourselves to the domain 0_-<x_< Xo, rather than 0_-<x_-<o. Thus we
remove any blob or tile whose x-component location exceeds Xo. This is reasonable,
since blobs and tiles located far away from the region of interest contribute little to
the overall flow. In addition, this procedure economized the cost of computation, for
otherwise a large number of computational elements became bunched near x- Xo.

5. Convergence. The first convergence proof for vortex methods was given by
Hald and Del Prete [24] for the two-dimensional Euler’s equations. Convergence for
the three-dimensional version ofvortex method that was suggested by Beale and Majda,
for which spatial derivatives are approximated by finite differences, was given in [4],
[5], [2]. For our scheme, in which explicit differentiation is applied to approximate
spatial derivatives, convergence was first proved by Beale [3 ], and then, using a different
approach, by Cottet [10]. We quote the theorem appearing in [10], since it applies to
a slightly more general case, i.e., the restriction d => 4, where d appears in (5.3)-(5.4)
below, is removed in [10].
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Let us first define for p [1, ) and m => 0 the Sobolev spaces

W"’P {f, Of LP(Rn), m}

and by II’ll , the norm

)II/llm, Y II0/ll o,
0<=ll_<-m

and for p the usual modification.
THEOREM. Convergence in 3D [10]. Assume that the initial vorticity o is smooth

enough and that the following conditions hold for the cutofffunction
(5.1) qb wm’(R3) Wm’l(g3) Vm>0,

(5.2) .fR b(X) dx 1,

(5.3)
R

(5.4)

and that there exist constants C and fl > 1 such that

(5.5) h <- C6 t3.

Then there exists a time - and a constant C, depending only on Co, such that for h and
6 small enough

11 7- ullo, --< p 6 (3/2, ],

We now apply this theorem to our scheme. Using the relation b(r)=f’(r)/47rr2

derived in [6], we find that

0,
th(r)

15. (1- rE)/87r,
It is easy to verify that b(r) satisfies (5.2) with d 2. In addition, if we choose the
cutoff function b to be infinitely smooth, second-order accuracy is achieved. We would
now like to view the importance condition (5.1), in the case where the latter is satisfied
for finite m only.

The error in vortex methods is usually estimated by bounding the part caused by
the regularization of the singular kernel separately, and from the one caused by the
discretization of the equations. We therefore write the error in the following form"

e u (u: u) + (fi u,) er + ed,

where er is the regularization error, caused by replacing the singular kernel K by a
smoothed one K, and ed is the discretization error.

It was proved in [3] and Lemma 5.5 of [10] that

Ilerllo,p --< Ca, p (3/2,

for some time 6 [0, r], provided that (5.2)-(5.4) hold. In addition, as was shown in 10],

(5.6) lie. IIo, -<- Ch"/6m-,
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in case that (5.1) holds for every m > 0. A generalization of this theorem for finite m
was given in [38, p. 315] for a two-dimensional problem. We must assume, in addition,
that

d/) E Wm-l’(g2) t") Wm-l’l(g2), m >_-. 3

or 4’ E Wr-I"(R2) for m >= 2 and has compact support. Then for all arbitrarily small
s > 0 there exist a constant Cs, such that

ullo, _<_ + hm/m-1),

provided that (5.5) is replaced by c6 <=h<=c6, with c->_/3> 1. Therefore, by
choosing ce, /3 appropriately we can balance the regularization error with the dis-
cretization error. Similar results were proven in [2] for the three-dimensional vortex
methods suggested by Beale and Majda. In our case 4 W’(R3) and has compact
support, and if we could apply similar results to a three-dimensional problem, the
discretization error would have been O(h/6), Therefore, for 6= Ch/3, the error is
at most of order h4/3. This can be improved by choosing an infinitely smooth cutoff
function.

It was observed in numerical experiments (e.g., [6]) that the formal accuracy of
the vortex-blob method might be degraded for a set of radially symmetric test problems.
This was understood as loss of accuracy due to the distortion of the initial grid. Beale
and Majda [6] suggested to rezone the grid as time evolves. Another way to overcome
this difficulty is to use a fixed grid for this set of problems. This method is discussed
and analyzed in [20]. It is most probable, however, that the grid is not as much distorted
for a flow past a plate, and therefore the vortex-blob method can be used on the
Lagrangian grid for this problem. A consideration of a fixed-grid vortex scheme for
this problem needs more extensive research.

We turn to the accuracy of the random walk used to model viscosity. It is well
known that in two dimensions the random walk approximates the heat equation, though
without high accuracy. More accurate error estimates were given in [23] for a one-
dimensional heat equation, using a random-walk method with creation of vorticity, i.e.,

u L
CR + k2

where

CR 1 + 1 +v/..j. + 1/R]’

N is the number of tiles, k is an arbitrary positive number, At is the timestep, and P
denotes probability. Note that CR is a decreasing function of R. A numerical study of
the vortex sheet method for the Prandtl equations was done by Puckett [37] together
with a spline smooth,ng of the velocity field. Convergence of this method was demon-
strated numerically, with consistency error of order (h + max)v/At/R. Here h is the
initial spacing in the streamwise direction and emax is the maximal vorticity of newly
created sheets.

In 19] we suggest a new way to discretize the viscous term. The idea is to convolve
the vorticity with a cutoff function, and approximate the Laplacian of the vorticity by
the convolution of the Laplacian of the cutoff function against the vorticity. Another
deterministic method was suggested by Degond and Mas-Gallic in [16].
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6. Numerical results. We must specify the following parameters for our numerical
scheme. The initial grid, with spacing h, h2, the timestep At, the maximum allowed
intensity of a newly created tile, :max, are parameters to be chosen. In addition, the
cutoff 6, the thickness of the layer for which the Prandtl equations are used Zo, and
the physical domain 0_-< x-<_ X0, in which we keep track of the motion of the compu-
tational elements, must be specified. We set Xo= 1.5 (as in [11]). We picked Zo-
Cx/2At/R, with C 1.5, x/2At/R being the standard deviation of the random walk.
We made this choice for Zo to ensure that a tile, located in the layer 0-< z-< Zo, will
have a high probability of moving out of the tile layer in a few timesteps, and will
then turn into a blob. We picked U L-1 and the viscosity v-10-4, so that the
Reynolds number R- UL/v- 104. This value was high enough to show the three-
dimensional effects and the transition to turbulence, as was also observed in the
experiments in [25]. Note that the local Reynolds number R, Ux/v depends on x
but R does not. Following Chorin [11] we picked h/Tr as the cutoff & This is in
agreement with the condition in the convergence theorem in 5, that the cutoff 6
should be larger than the typical distance between neighboring particles, the latter
being of order 1/ in our problem.

After fixing Xo, Zo, and choosing 6, we had to pick the initial spacing hi, h2, :max,
and the timestep At. To do this, we first ran the two-dimensional problem, in which
the independent variables are x, z, and whose steady-state solution is analytically
known to be the Blasius solution. We found out, as was also pointed out in [40], that
hi and :max have primary importance, since they control the number of newly created
sheets. The latter determines the number of blobs, and therefore the number of
computational elements. If larger numbers of computational elements are used, the
error in both interior and exterior regions decreases. We tried the following choices
for h, At, and :max"

(a) h At 0.20, SCmax 0.1.
(b) hi At 0.15, SCmax 0.075.
(C) h At 0.10, SCmax 0.050.
For these sets of parameters we checked the drag, given by the following formula

(see e.g., [41], [11]):

(6.1) D(xo) fo U(Xo, z)( u- U(Xo, z)) clz,

and compared it with the Blasius drag Do 0.6641x/xo/R. The integral in equation
(6.1) was discretized by the trapezoidal rule

Ocom ciu(Xo, Az)( U-U(Xo, Az)) Az,
i=0

where Co= c,, =0.5, and ci 1, for l<=j<-m-1. Here m’-Zmax/AZ, where Zma is the
maximal z, for which computational points were found in the region Ix- Xo[ =< hi, and
Az was chosen to be 0.004. The relative error in the drag I(D(xo)-Do(xo))/Do(xo)l for
Xo 1 is given in Table 1. In addition, to measure the intensity of the noise from the
statical process, we averaged the computed drag every 10 iterations, i.e.,

1 9

(6.2) Davg - Dcom(t rt At)
n=0

and calculated the variance of the instantaneous drag from the averaged one. The
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TABLE

Grid

(a)
(b)
(c)

Relative

drag error

0.52
0.21
0.14

Variance

0.061
0.024
0.016

No. of
sheets

95
139
344

No. of
blobs

76
151
415

Time

3 min.
13 min.

127 min.

variance of the drag is given by the following formula:

(6.3) V(D) E(ID- E(D)I),
where E(X) is the expected value of a random variable X. We approximated the
expected values E(X) in (6.3) Xavg, where the average is computed as in (6.2). We
would like to reduce the statistical noise, and therefore to decrease the variance by
choosing the appropriate parameters. The results for the drag and variance in the
two-dimensional problem are given in Table 1. The total computational time on a
VAX-VMS computer is given in this table as well.

The dominant term of the error, as seen by the convergence analysis, is the one
due to random walk. This error is of order 1/v/if, where n is the number of sheets or
blobs. When we refined grid (a) to (b), we approximately doubled the number of
computational elements, so that the error should decrease by a factor of x/. The
computational factor is found to be bigger than two. If we look at grid (c) compared
to (b), the number of sheets or blobs was increased by a factor of three approximately,
so that the error should decrease by a factor of x/, which is approximately 1.7. The
computed factor was found to be 1.5. From Table 1 we can learn that the finer the
grid, the smaller the relative error in the drag, and the smaller the variance. In addition,
much more time is required for grid (c) than for grid (b). To make our computations
affordable for a longer time in the three-dimensional problem, we chose the three-
dimensional grid (b). We also had to specify h2 for three-dimensional problems. We
chose h2 q/4 for grid (a), h2 q/6 for grid (b), and h2 q/8 for grid (c).

We examined the instability of the Blasius solution for high Reynolds numbers
in a three-dimensional problem. This was done as follows (see 11 ]). For 0 =< _-< T
we approximated the Prandtl equations, whose steady-state is the Blasius solution,
using only tiles. Note that instability does not occur for the Prandtl equations, whereas
it might occur for the Navier-Stokes equation. The numerical solution converges to
the Blasius solution as c and hi, h2 0, where hi, hz is the size of the initial grid.
We used the results of this scheme at T= 1 to be the initial conditions for the
Navier-Stokes equations. Instability for the Navier-Stokes equations is shown, i.e.,
small perturbations in the Blasius solution cause large changes in the solution. We
perturbed the Blasius solution by choosing the following initial condition at infinity"

u(x, y, , T)=
f( U, A, 0)
(u,0,0)

for 1/4q < y < q,
elsewhere,

where A 10-3. After T 1 we used the scheme described in 3 and 4, in which tiles
and blobs are present, and therefore instability might occur.

We display all the results at 22.5. Velocity and vorticity are shown in the
following two-dimensional planes: (a) y =1/2q, which describes the flow quantities as
a function of x and z; (b) at the two planes x 1, 1.4, which shows the velocity and
vorticity as a function of y and z. Note that as x increases the more apparent are the
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three-dimensional features, i.e., the dependence on y and the transition to turbulence.
This happens since the local Reynolds number Rx Ux/L increases for larger x.

In Figs. 1-3 we display velocity components computed at a regular mesh. Figure
1 shows the x, z components of the velocity at y q/2. In Figs. 2-3 the y, z components
of the velocity at x 1, 1.4, respectively, are displayed. These figures, as well as other

FG. 1. Velocity field in the x, z plane for y q/2.

ttt?ltt?ttttllt??ttttl

rttttttttttttttttttttttttt
ttttttttttttttttttttttt
tttttttttttttt?tttttttt
ttfttttttttttttttttttt

ttttttltttttttttlttttttttttt

tttttttttttttttt?tttttttttt
tttttttttttttttttttttttt
ttttttttttttttttttftttttFt

0.00 0_01 0040.02 0.03 olos 01o6 oToz 01o8 0:09 I0

FG. 2. loci field in the y, z planer x 1.
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0.00 0’.01 0’.02 0.03 .04 0.05 0[06 13107 08

FIG. 3. Velocity field in the y, z plane for x 1.4.

figures represented for fixed x, show the three-dimensional features of the flow, i.e.,
the dependence on y. This is in accordance with results appearing in [35] and [36];
in the latter numerical results were performed for a periodic problem in both x and
y. They indicate the three-dimensional character of secondary instability, which is
consistent with the idea that turbulence is intrinsically three-dimensional. Vorticity is
represented in the Lagrangian computational grid points in Figs. 4-6. In Fig. 4 the x,
z components of vorticity at y-q/2 is displayed. We can see that for larger x the
intensity of the vorticity increases, which is one of the features of transition to
turbulence, i.e., vorticity is no longer preserved in the Lagrangian system as it is in a
two-dimensional problem.

In Figs. 5-6 we show the y, z components of vorticity at x- 1, 1.4, respectively.
Note that for larger x the vorticity is no longer directed in one direction. This is in
agreement with the results in [25], which indicate the appearance of small hairpins as
the flow develops in the streamwise direction. Figures 7-9 show contours of the
z-component of vorticity. These figures indicate that for larger x small scale phenomena
appear. Figures 10-12 show contours of the y-component of vorticity, in which the
results are similar to those of the z-component of vorticity.

In Tables 2 and 3 we show the averaged drag (multiplied by a factor of 100), the
thickness of the boundary layer and the drag variance for y q/2, x 1 and y q/2,
x 1.4, respectively, and for different time levels. The averaged drag and variance
were calculated in the same way as for the two-dimensional problem. The boundary
layer thickness is given by

Thickness (x, y) U- u(x, y, z)) dz,

and is computed for y q/2. The integral is discretized by the trapezoidal rule.
We notice that the drag grows until it reaches a certain level at about 6 and

then stabilizes. As time progresses the variance at x 1 also stabilizes and stays at a
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0.5 0.6 0.80.7

FIG. 4. Vorticity in the x, z plane for y q/2.

FIc,. 5. Vorticity in the y, z plane for x 1.
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0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 O. I0

FIG. 6. Vorticity in the y, z plane for x 1.4.

OiO.O01. .2 01.3 014 01.5 01.8 0’.7 0’.8 01.9 |.0 1.| 11.2 11.3 11.4 11.5 1.6 1.7

FIG. 7. Contours of the z component of vorticity in the x, z plane for y q/2.
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FIG. 8. Contours of the z component of vorticity in the y, z plane for x 1.

o.oo o’.o o’.o o’.o o’.o o’.o olo o.o olo olo
FIG. 9. Contours of the z component of vorticity in the y, z plane for x 1.4.
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0.00.1 0.2 0.3 0. O.S 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.1 1.5 1.6 1.7

FIG. 10. Contours of the y component of vorticity in the x, z plane for y q/2.

0.00 o.ot 0.02 0.03 0.04 o.os 0.06 0.07 0.08 0.09 0.0

FIG. 11. Contours of the y component of vorticity in the y, z plane for x 1.
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0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 O. I0

FIG. 12. Contours of the y component of vorticity in the y, z plane for x 1.4.

TABLE 2
Averaged drag, thickness, and variance at x 1.

Drag
Thickness
Variance

t= 1.5

0.2713
56.340
0.0376

t=3

0.4647
81.710
0.0283

t=6

0.5262
80.510
0.0128

0.5245
87.820
0.0098

=22.5

0.5718
100.491

0.0080

TABLE 3
Averaged drag, thickness, and variance at x 1.4.

Drag
Thickness
Variance

t= 1.5

0.2582
57.340
0.0348

t=3

0.4731
92.170
0.0188

t=6

0.5221
107.05

0.0194

t=12

0.5450
136.17
0.0400

22.5

0.4194
101.776

0.0527

level of about 0.01. However, the variance at x 1.4 changes in time and starts to grow
as time progresses. Therefore, we notice that the flow downstream is changing more
rapidly in time. The thickness of the boundary layer increases as time progresses until
it reaches a certain level and then starts to oscillate rapidly, especially at x 1.4. If
we compare the thickness of the boundary layer at x to the one at x 1.4, we notice
that this quantity grows as we proceed in the downstream direction.

In Figs. 13-15 we show the u component of the velocity as a function of the
similarity variables yx/U/x. In every graph we display the velocity at both x 1
and x 1.4. Figures 13, 14, and 15 correspond to =6, 12, and 22.5, respectively. We
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01.8 1.6 21.4 31.2 41.0 41.8 5.6 6’.4 7.2 8.0

FlG. 13. u-component of the velocity at 6, -- at x 1, O-- at x 1.4.

FIG. 14. u-component of the velocity at 12, -- at x 1, O at x 1.4.
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0.0 ll8 .3 2.4 3.2 4.0 4.1 61.4 . 3.L7

FIG. 15. u-component of the velocity at 22.5, (C)-- at x 1, (C)-- at x-- 1.4.

FIG. 16. u-component of the velocity at x 1, at =6, (2)-- at 12,/-- at 22.5.
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can learn from these figures that the velocity varies with x, whereas in Blasius’s solution
the solution is a function of r/ only. In Figs. 16-17 we show the same quantity u as a
function of r/, but now several time levels are shown in Fig. 16 for x 1 and in Fig.
17 for x 1.4. We can learn from Figs. 16-17 that the flow quantities oscillate more
in time when we proceed in the streamwise direction. This is explained by the growth
of the local Reynolds number.

0.0 0.8 1.6 2.4 3.2 4’.0 4’.8 5.6 6’.4 7.2 .0

FIG. 17. u-component of the velocity at x= 1.4, -- at =6, (C)n at 12,/-- at 22.5.

Table 4 gives the running times on a CRAY X-MP for the three different grids,
and for different time levels.

Tables 5 and 6 show the number of tiles and blobs, respectively, for various times
(t 3, 6, 9, 12, 22.5.) and grids (a, b, c).

We found that our numerical results agree with the experimental results of [25]
in a way that both results indicate the existence of small hairpins at high Reynolds
numbers. Note that in other experiments horseshoe vortices rather than small hairpins
were found. As was explained in [25], the reason for the different results was that the
experimental techniques of other investigators limited the results to low Reynolds
numbers.

7. Conclusions. The three-dimensional version of vortex methods used here were
capable of resolving the three-dimensionality of the flow and the transition to tur-

TABLE 4
Total computational time to reach 3, 6, 9, 12, 22.5.

Grid

(a)
(b)
(c)

t=3

0.5 min
7 min

2 h 30 min

t=6

min
25 min

t=9

2 min
43 min

t=12

3 min
h 7 min

=22.5

6 min
2 h 13 min
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Grid

(a)
(b)
(c)

TABLE 5
Number of tiles.

t=3

263
1,080
4,548

323
962

t=9

344
1,000

t=12

360
926

22.5

348
1,098

grid

(a)
(b)
(c)

TABLE 6
Number of blobs.

t=3

205
1,051
6,948

t=6

213
915

t=9

187
830

t=12

183
947

22.5

222
987

bulence. Away from the plate, we used a three-dimensional blob method, which is a
natural extension of two-dimensional vortex methods. These methods can have high
spatial accuracy, and they involve no elaborate calculation. Near the plate, the tile
method approximates a thin boundary layer, and is a straightforward extension of the
two-dimensional sheet method. Therefore the two-dimensional and the three-
dimensional problems can be similarly treated numerically.
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