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The evolution equation 𝜕
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)2
u +

A′(x)
(

𝜕

𝜕x

)
u − B(x)u + f , x ∈ Ω = [0, 1], t ≥ 0, is con-

sidered. A discrete parabolic methodology is developed, based
on a discrete elliptic (fourth-order) calculus. The main ingre-
dient of this calculus is a discrete biharmonic operator (DBO).
In the general case, it is shown that the approximate solutions
converge to the continuous one. An “almost optimal” conver-
gence result (O(h4− 𝜀)) is established in the case of constant
coefficients, in particular in the pure biharmonic case. Several
numerical test cases are presented that not only corroborate the
theoretical accuracy result, but also demonstrate high-order
accuracy of the method in nonlinear cases. The nonlin-
ear equations include the well-studied Kuramoto–Sivashinsky
equation. Numerical solutions for this equation are shown to
approximate remarkably well the exact solutions. The numer-
ical examples demonstrate the great improvement achieved by
using the DBO instead of the standard (five-point) discrete
bilaplacian.
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1 INTRODUCTION

Let Ω= [0, 1] and consider the linear evolution equation associated with the general one-dimensional
fourth-order elliptic operator

A,Bz(x) =
(
𝑑

𝑑𝑥

)4
z(x) − A(x)

(
𝑑

𝑑𝑥

)2
z(x) − A′(x)

(
𝑑

𝑑𝑥

)
z(x) + B(x)z(x). (1.1)

The associated evolution equation is therefore,

𝜕

𝜕t
u(x, t) = −A,Bu(x, t) + f (x)

= −
(
𝜕

𝜕x

)4
u(x, t) + A(x)

(
𝜕

𝜕x

)2
u(x, t) + A′(x)

(
𝜕

𝜕x

)
u(x, t) − B(x)u(x, t) + f (x),

x ∈ Ω = [0, 1], t ≥ 0, (1.2)

where we assume that

A(x),B(x), f (x) are real continuous functions, and A(x) ∈ C1(Ω). (1.3)

The equation is supplemented by the initial data

u(x, 0) = u0(x),

and homogeneous boundary conditions

u(0, t) = 𝜕

𝜕x
u(0, t) = u(1, t) = 𝜕

𝜕x
u(1, t) = 0, t ≥ 0. (1.4)

The initial function u0 is assumed to be sufficiently smooth, and for simplicity we take u0 ∈C∞(Ω).
To justify our interest in this equation, we can gratefully quote from the Introduction of [1]: “In
recent years, fourth-order problems have also become important in image processing and for model-
ing diffusion processes in physics and material sciences.” This paper deals with high-order discrete
approximations to (1.2), and is a sequel to the “elliptic” paper [2]. It builds on the premise of a discrete
functional calculus. The approximation procedure consists of functions and operators that are defined
on a fixed grid; every ingredient of the continuous theory (not only functions and operators but also
fundamental properties such as coercivity) has its discrete counterpart. There is no reference to any
piecewise continuous functions, as would be the case with finite element or discontinuous Galerkin
methods. An important feature of the discrete operators is their compactness, viz., depending only on
nearest neighbors. The convergence of the discrete solutions to the exact one is measured solely on
the grid, as it is being refined. A complete convergence proof in the general linear case is presented.
In the constant coefficient case it is shown to be “almost optimal,” as is further discussed below. This
discretization methodology enables us to go beyond the linear case and consider the approximation
to various well-known nonlinear evolution equations. Since it has already been extensively imple-
mented for the 2-D Navier–Stokes system (see further below), we have chosen here to test it on the
Kuramoto–Sivashinsky equation. This is carried out in the last section of the paper.

There is vast literature pertaining to the discrete approximation of higher order (in the spatial coor-
dinates) evolution equations. The studies are divided to “categories” reflecting either interest in specific
physical application or accounting for a particular numerical method. It would take a very compre-
hensive survey, beyond the scope of this paper, to give a full account of the literature. We shall just
mention six representative examples (all including extensive bibliographies).

• The papers [3–5] focus mainly on the issue of an accurate discrete time stepping. The first deals
with the biharmonic modified forward time-stepping; the highest order biharmonic operator
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is treated implicitly. The second deals with extensions of the IMEX approach to high order
semi-implicit schemes, mostly to second-order (in space) reaction–diffusion equations. The
third introduces the modified exponential time-differencing (ETD) method; the linear (say,
biharmonic) part is eliminated by an “integrating factor,” so that the nonlinear term can be
separately handled by a suitable Runge–Kutta method.

• In [3], the physical models of interest are the evolution of thin films and phase fields. The
underlying assumption is that the fourth-order (spatial) elliptic problem at each step is accurately
handled. In particular, periodic boundary conditions are imposed, avoiding the issue of boundary
layers. The same type of physical applications is considered in [6], which provides an overview
of finite volume and finite element methods, in one or two space dimensions.

• The adaptive mesh methodology in [1] is applied to the Cahn–Hilliard equation modeling phase
separation. The spatial part is handled using collocation by (piecewise) seventh-order Hermite
polynomial.

• In the area of image processing various models involving fourth-order evolution equations are
extensively studied. In [7], a nonlinear fourth-order equation, which is used for noise reduction
and simplification of two dimensional images, was investigated for the existence and uniqueness
of solutions of the problem. In [8], a Navier–Stokes system in streamfunction formulation with
a nonlinear viscosity term was proposed and tested for image impainting. In [9], fourth-order
partial differential equations were used for noise removal of magnetic resonance images.

• In [10, Section 3] a local discontinuous Galerkin (LDG) method is developed for biharmonic
type equations, primarily in one space dimension. Their method is based on introducing
new unknowns (related to successive derivatives of the solution) and then approximating the
resulting first-order system. In [11], this reduction was circumvented by using fluxes (at cell
boundaries) associated with higher order derivatives.

• Optimal error analysis was carried out on finite element methods in the following papers. In [12],
the author approximates a fourth-order time dependent differential equation by a finite element
method and establishes optimal error estimates for the semi-discrete case. In [10, Section 3],
an optimal convergence rate for the LDG method mentioned above was achieved. In [13], the
authors treat the biharmonic problem using a conformal bicubic Hermite polynomial. Using
interpolation theory it may be shown that if the solution is smooth enough then the error is
bounded by Ch4, where h is the mesh size.

It should be emphasized that all treatments of the time dependent problems rely on a careful high
order approximation of the biharmonic operator. Recently various LDG methods were proposed. A
main tool is the interior penalty procedure that must be properly chosen [14]. It is beyond the scope of
this paper to compare the compact scheme used here for 𝜕4

x with any variant of the DG methodology.
We refer to [2] for a further discussion on this topic.

One of the oldest instances of physical models in which the biharmonic operator plays a crucial role
is the 2-D Navier–Stokes system in pure streamfunction formulation [15]. Indeed, the present study
grew out of earlier work on high order approximation of this system [16–18].

The one-dimensional scheme was already extended to a two dimensional one in [19]. A nonoptimal
analysis was carried out for a second order compact scheme for the full nonlinear Navier–Stokes system
in [17]. It was shown that the convergence rate is at least 3/2. That is suboptimal compared to the actual
convergence rate (order 2), that was verified in numerical results.

In [20] we developed a fast direct solver in two dimensions for the biharmonic problem in a
rectangular grid. It is based on Fast Fourier Transform (FFT) expansions and on the Sherman–Morrison
formula.
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Our convergence analysis here is different from standard summation by parts arguments. Instead,
it is based on a detailed discrete functional calculus. It runs parallel to the classical partial differential
equations (PDE) theory and allows us to establish in a fully discrete context the coercivity properties
of the operators (see Section 3). In turn these properties enable us to prove convergence, not only for
the solution but also for its derivatives. In fact, the optimal (fourth order) convergence of the discrete
biharmonic operator (DBO) (see Claim 4.1) was established in [15, Chapter 10] by invoking matrix
methods. We refer to [2] for a detailed discussion.

The paper is organized as follows. In Section 2 we recall the basic well-posedness facts related
to Equation (1.2) and in Section 3 we review the construction of the discrete (elliptic) operators, the
analogs of the second-order and fourth-order derivatives. In particular, the DBO is defined in (3.11).
The construction of the discrete operators depends in a fundamental way on the concept of Hermi-
tian derivative, which is defined in (3.9). The present paper aims at proving (in the general case) the
convergence of the discrete approximation to the continuous solution and establishing (in the constant
coefficient case) the significant (from both theoretical and practical aspects) “high-order” accuracy of
the approximation. The crucial point in obtaining such estimates is that the discrete operators possess
the fundamental elliptic properties (such as coercivity), in full analogy with the continuous elliptic
operators.

In Section 4 we study the pure biharmonic evolution equation, and prove the “almost optimal”
convergence rate (see below a more detailed explanation). We treat this case first because of its great
importance as a model in many classical problems of mathematical physics, such as elasticity theory
or the streamfunction formulation of the 2-D Navier–Stokes system.

In Section 5 we introduce (Equation (5.1)) the discrete elliptic operator A,B,h, which is the discrete
analog to A,B. The semi-discrete equation, analogous to (1.2) is given in (5.2):

𝜕

𝜕t
𝔳(xj, t) = −A,B,h𝔳(xj, t) + f ∗(xj), 1 ≤ j ≤ N − 1, t ≥ 0.

The unknown function 𝔳(xj, t) is a grid function defined on the discrete spatial grid and on the contin-
uous time variable. By the “convergence of the scheme” we mean the convergence (in an appropriate
sense) of the functions (in time) 𝔳(xj, t), t ≥ 0 to the corresponding restrictions of the exact solution
u(xj, t), t≥ 0 as the number N of the grid points increases. The convergence of the discrete scheme to
the exact solution is stated in Theorem 5.3.

In Section 6, the general constant coefficient case (A(x)≡ a, B(x)≡ b) is studied. We show that it
can be reduced to the pure biharmonic case. To measure the accuracy of the scheme, we estimate the
difference between the grid function and the restriction of the exact solution in terms of a power O(h𝛽),
where h = 1

N
is the mesh size (we consider here only uniform meshes). The exponent 𝛽 > 0 is the

“order of accuracy.” An estimate with 𝛽 = 4 is an “optimal” convergence rate. Even though we believe
(based on the numerical test cases) that our scheme yields the optimal convergence rate, it remains an
open problem (even for the pure biharmonic case). We are able to show (Theorem 6.2) only “almost
optimal” convergence rate, meaning that we can take 𝛽 = 4− 𝜀 for any 𝜀> 0 (but with a coefficient that
may blow up as 𝜀→ 0).

In Section 7 we present a collection of numerical examples that demonstrate the convergence
properties claimed in the preceding sections. It is worthwhile pointing out the great improvement in
accuracy achieved by using the DBO instead of the standard (five-point) bilaplacian. This is explicitly
demonstrated in the fourth test case.

In fact, we go beyond the linear theory expounded here and present numerical simulations of sev-
eral nonlinear evolution equations. In particular, we consider the well-studied Kuramoto–Sivashinsky
equation in the seventh test case.
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In the appendix we give details of the Taylor expansions of the finite difference operators addressed
in the paper. For these expansions we give the nominal order, viz. disregarding boundary conditions.

2 THE LINEAR EVOLUTION EQUATION—BASIC FACTS

As is well known, nonhomogeneous boundary conditions are accommodated by a modification of the
right-hand side function f (x). We use the standard notation for Sobolev spaces; Hp(Ω) is the space of
functions with (distributional) derivatives that are square integrable up to order p, while Hp

0 (Ω) is the
closure of C∞

0 (0, 1) in Hp. Defining a function w(x, t)= ectu(x, t), for some positive constant c> 0, we
see that w satisfies the equation

𝜕

𝜕t
w(x, t) = −A,B+cw(x, t).

Remark that the initial and boundary conditions of w are identical to those of u. By taking c> 0 suf-
ficiently large, and without changing notation, we can therefore assume that A, B is coercive in the
sense that,

Claim 2.1 ([21], Theorem 7.5). There exists a constant C > 0 such that, for every
function z(x)∈H4(Ω), satisfying the homogeneous boundary conditions

z(0) = z′(0) = z(1) = z′(1) = 0,

we have

∫
1

0
A,Bz(x) ⋅ z(x)𝑑𝑥 ≥ C ∫

1

0
[z′′(x)2 + z′(x)2 + z(x)2]𝑑𝑥. (2.1)

By a standard argument about parabolic equations it follows that Equation (1.2) has a unique
solution u(x, t).

Assume that the initial function u0 ∈C∞(Ω). Note that in view of the homogeneous boundary
conditions (1.4) all time derivatives of the solution vanish on the boundary. By differentiating the

equation N ≥ 1 times with respect to t, and taking the scalar product with
(

𝜕

𝜕t

)N
u(x, t) we obtain

1
2
𝑑

𝑑𝑡 ∫
1

0

||||( 𝜕

𝜕t

)N
u(x, t)

||||
2

𝑑𝑥 = −∫
1

0

||||( 𝜕

𝜕x

)2( 𝜕

𝜕t

)N
u(x, t)

||||
2

𝑑𝑥

+∫
1

0
A(x)

|||| 𝜕𝜕x

(
𝜕

𝜕t

)N
u(x, t)

||||
2

𝑑𝑥 − ∫
1

0
B(x)

||||( 𝜕

𝜕t

)N
u(x, t)

||||
2

𝑑𝑥. (2.2)

The integrations-by-parts in the right-hand side are justified by the boundary conditions (1.4). Invoking

the Sobolev inequality (with 𝜙 =
(

𝜕

𝜕t

)N
u(x, t))

∫
1

0
|𝜙′(x)|2𝑑𝑥 ≤ 𝜀∫

1

0
|𝜙′′(x)|2𝑑𝑥 + C(𝜀)∫

1

0
|𝜙(x)|2𝑑𝑥, (2.3)

and taking a sufficiently small 𝜀> 0 we infer that

𝑑

𝑑𝑡 ∫
1

0

||||( 𝜕

𝜕t

)N
u(x, t)

||||
2

𝑑𝑥 ≤ C ∫
1

0

||||( 𝜕

𝜕t

)N
u(x, t)

||||
2

𝑑𝑥, (2.4)

where C > 0 depends only on A(x), B(x). Gronwall’s lemma now yields

∫
1

0

||||( 𝜕

𝜕t

)N
u(x, t)

||||
2

𝑑𝑥 ≤ e𝐶𝑡 ∫
1

0

||||( 𝜕

𝜕x

)4N
u0
||||
2

𝑑𝑥, t ≥ 0. (2.5)
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Equation (1.2) enables us to replace temporal derivatives by spatial derivatives, to any order, so the
Sobolev embedding theorem yields, with a constant C(N, T , u0)> 0, depending only on u0, N, T ,

sup
x∈[0,1]

||||( 𝜕

𝜕t

)N
u(x, t)

|||| ≤ C(N,T , u0), t ∈ [0,T]. (2.6)

3 THE BASIC SETUP FOR DISCRETE APPROXIMATION

We equip the interval Ω= [0, 1] with a uniform grid

xj = 𝑗ℎ, 0 ≤ j ≤ N, h = 1
N
.

The approximation is carried out by grid functions 𝔳 defined on {xj, 0≤ j≤N}. The space of these grid
functions is denoted by l2h. For their components we use either 𝔳j or 𝔳(xj). For every smooth function
G(x) we define its associated grid function

G∗
j = G(xj), 0 ≤ j ≤ N. (3.1)

Clearly G* depends on the parameter h = 1
N
, but we do not indicate this dependence in order to simplify

the notation. The discrete l2h scalar product is defined by

(𝔳,𝔴)h = h
N∑

j=0

𝔳j𝔴j,

and the corresponding norm is

|𝔳|2h = h
N∑

j=0

𝔳2
j . (3.2)

For linear operators  ∶ l2h → l2h we use ||h to denote the operator norm. The discrete sup-norm is|𝔳|∞ = max
0≤j≤N

{|𝔳j|}. (3.3)

The discrete homogeneous space of grid functions is defined by

l2h,0 = {𝔳 ∈ l2h, 𝔳0 = 𝔳N = 0}.

Given 𝔳 ∈ l2h,0 we introduce the basic (central) finite difference operators

(𝛿x𝔳)j =
1

2h
(𝔳j+1 − 𝔳j−1), 1 ≤ j ≤ N − 1,

(𝛿2
x𝔳)j =

1
h2

(𝔳j+1 − 2𝔳j + 𝔳j−1), 1 ≤ j ≤ N − 1. (3.4)

The cornerstone of our approach to finite difference operators is the introduction of the Hermitian
derivative of 𝔳 ∈ l2h,0, that will replace 𝛿x. It will serve not only in approximating (to fourth-order of
accuracy) first-order derivatives, but also as a fundamental building block in the construction of finite
difference approximations to higher-order derivatives. First, we introduce the “Simpson operator”

(𝜎x𝔳)j =
1
6
𝔳j−1 +

2
3
𝔳j +

1
6
𝔳j+1, 1 ≤ j ≤ N − 1. (3.5)

Note the operator relation (valid in l2h,0)

𝜎x = I + h2

6
𝛿2

x , (3.6)
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so that 𝜎x is an “approximation to identity” in the following sense. Let 𝜓 ∈ C∞
0 (Ω), then|(𝜎x − I)𝜓∗|∞ ≤ 𝐶ℎ2‖𝜓 ′′‖L∞(Ω), (3.7)

which yields |(𝜎x − I)𝜓∗|h ≤ 𝐶ℎ2‖𝜓 ′′‖L∞(Ω). (3.8)

In the above estimates the constant C > 0 is independent of h, 𝜓 . The Hermitian derivative 𝔳x is now
defined by

(𝜎x𝔳x)j = (𝛿x𝔳)j, 1 ≤ j ≤ N − 1. (3.9)

Remark 3.1 In the definition (3.9), the values of (𝔳x)j, j = 0,N, need to be provided, in
order to make sense of the left-hand side (for j= 1, N − 1). If not otherwise specified, we
shall henceforth assume that, in accordance with the boundary condition (1.4), 𝔳x ∈ l2h,0,
viz.

(𝔳x)0 = (𝔳x)N = 0.

In particular, the linear correspondence l2h,0 ∋ 𝔳 → 𝔳x ∈ l2h,0 is well defined, but not onto,
since 𝛿x has a nontrivial kernel.

We next introduce a fourth-order replacement to the operator 𝛿2
x (see [22, eq. (15)], [15, eq.

(10.50)(c)]),
(𝛿2

x𝔳)j = 2(𝛿2
x𝔳)j − (𝛿x𝔳x)j, 1 ≤ j ≤ N − 1. (3.10)

The DBO is given by (for 𝔳, 𝔳x ∈ l2h,0),

𝛿4
x𝔳 = 12

h2
[𝛿x𝔳x − 𝛿2

x𝔳]. (3.11)

Note that, in accordance with Remark 3.1 the operator 𝛿2
x is defined on grid functions 𝔳 ∈ l2h,0, such that

also 𝔳x ∈ l2h,0. The connection between the two difference operators for the second-order derivative is
given by

−𝛿x
2
= −𝛿2

x +
h2

12
𝛿4

x . (3.12)

Remark 3.2 Clearly the operators 𝛿x, 𝛿
2
x , 𝛿

4
x depend on h, but for notational simplicity

this dependence is not explicitly indicated.

Remark 3.3 For clarity, the Taylor expansions of the operators used are collected in the
appendix.

The fact that the DBO 𝛿4
x is positive (in particular symmetric) is proved in [15, Lemmas 10.9,

10.10]. Therefore, its inverse (𝛿4
x )−1 is also positive. Beyond just positivity, a fundamental tool (anal-

ogous to classical elliptic theory) is the coercivity property (with C > 0 independent of h) [15,
Propositions 10.11,10.13],

(𝛿4
x𝔷, 𝔷)h ≥ C(|𝔷|2h + |𝛿2

x𝔷|2h + |𝛿x𝔷x|2h), (3.13)

valid for any grid function 𝔷 ∈ l2h,0 such that also 𝔷x ∈ l2h,0. Owing to (3.10) we can add also

(𝛿4
x𝔷, 𝔷)h ≥ C|𝛿2

x𝔷|2h. (3.14)

Notation for time-dependent grid functions. A time-dependent grid function is denoted as
{𝔳(xj, t)}N

j=0 or {𝔳j(t)}N
j=0. When there is no risk of confusion we simplify the notation, replacing

{𝔳(xj, t)}N
j=0, {u∗(xj, t)}N

j=0 by 𝔳(t), u∗(t), respectively.
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4 THE PURE BIHARMONIC GENERATOR

We first establish convergence estimates for the simple equation

𝜕

𝜕t
u = −

(
𝜕

𝜕x

)4
u, x ∈ Ω, t ≥ 0, (4.1)

subject to initial data
u(x, 0) = u0(x),

and homogeneous boundary conditions

u(0, t) = 𝜕

𝜕x
u(0, t) = u(1, t) = 𝜕

𝜕x
u(1, t) = 0, t ≥ 0.

The initial function u0 is assumed to be sufficiently smooth, and we take for simplicity u0 ∈C∞(Ω).
The semi-discrete analog of (4.1) is

𝜕

𝜕t
𝔳(xj, t) = −𝛿4

x𝔳(xj, t), 1 ≤ j ≤ N − 1, t ≥ 0, (4.2)

subject to initial data
𝔳(xj, 0) = (u∗

0)j = u0(xj),

and homogeneous boundary conditions

𝔳(x0, t) = 𝔳x(x0, t) = 𝔳(xN , t) = 𝔳x(xN , t) = 0, t ≥ 0.

Here 𝛿4
x is the DBO (3.11). Clearly the grid function 𝔳(⋅, t) depends on h, but we refrain from indicat-

ing it explicitly, as it will always be clear from the context (compare Remark 3.2). Occasionally the
simplified notation 𝔳(t) will be used instead of 𝔳(⋅, t), see the end of Section 3. We recall the basic
optimal convergence fact [15, Theorem 10.19]:

Claim 4.1 Let f (x) be a smooth function in Ω. Let g(x) satisfy(
𝑑

𝑑𝑥

)4
g(x) = f (x),

subject to homogeneous boundary conditions. Then|g∗ − (𝛿4
x )−1f ∗|∞ = O(h4). (4.3)

4.1 Almost optimal error estimate—the pure biharmonic case

We note that Equation (4.1) can be rewritten as

𝜕

𝜕t

(
𝜕

𝜕x

)−4
u = −u, x ∈ Ω, t ≥ 0. (4.4)

In view of Claim 4.1 (with − 𝜕

𝜕t
u(⋅, t) playing the role of f and u(⋅, t) playing the role of g) we have, for

any T > 0, with O(h4) depending only on u0 and T ,

𝜕

𝜕t
(𝛿4

x )−1u∗(xj, t) = −u∗(xj, t) + O(h4), 1 ≤ j ≤ N − 1, 0 < t ≤ T . (4.5)

Note that by definition (
𝜕

𝜕t
u
)∗

(xj, t) =
𝜕

𝜕t
u∗(xj, t), 1 ≤ j ≤ N − 1, t ≥ 0.
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Similarly, Equation (4.2) can be rewritten as

𝜕

𝜕t
(𝛿4

x )−1𝔳(xj, t) = −𝔳(xj, t), 1 ≤ j ≤ N − 1, t ≥ 0. (4.6)

The smoothness of the initial data implies the boundedness of all time derivatives of the solution, as
stated in the following claim.

Lemma 4.2 For every integer N ≥ 0||||( 𝜕

𝜕t

)N
𝔳(⋅, t)

||||h ≤ |(𝛿4
x )Nu∗

0|h, t ≥ 0. (4.7)

Proof. Taking the scalar product of (4.2) with 𝔳(⋅, t)we have, due to the positivity of 𝛿4
x ,

1
2
𝜕

𝜕t
|𝔳(⋅, t)|h = −(𝛿4

x𝔳(⋅, t), 𝔳(⋅, t))h ≤ 0.

Thus |𝔳(⋅, t)|h is a nonincreasing function of t and its value at t= 0 is |u∗
0|h. This proves

the claim for N = 0. We then proceed to all N by repeated differentiation of (4.2) with
respect to t, and noting that (

𝜕

𝜕t

)N
𝔳(t = 0) = (−𝛿4

x )Nu∗
0. ▪

The difference between the exact solution and the discrete one is given by the “error” grid function

𝔢(t) = u∗(t) − 𝔳(t). (4.8)

The following theorem gives an estimate for this error.

Theorem 4.3 For every 𝜀> 0 and every T > 0 the error can be estimated by|𝔢(t)|h ≤ 𝐶ℎ4−𝜀, t ∈ [0,T], h < h0, (4.9)

where C > 0 depends only on u0, T , 𝜀.

Proof. Define the grid function

𝔴(t) = (𝛿4
x )−1𝔢(t) = (𝛿4

x )−1u∗(t) − (𝛿4
x )−1𝔳(t). (4.10)

Subtracting Equation (4.6) from Equation (4.5) we obtain

𝔴′(t) + 𝔢(t) = O(h4), t ∈ [0,T], (4.11)

with𝔴(0) = 0.Taking the discrete scalar product of (4.11) with𝔴 and using the coercivity
property (3.13), noting that 𝔢(t) = 𝛿4

x𝔴(t), we get

𝑑

𝑑𝑡
|𝔴(t)|2h + C|𝔴(t)|2h ≤∣ (O(h4),𝔴(t))h ∣≤ O(h8) + C

2
|𝔴(t)|2h. (4.12)

It follows from Gronwall’s inequality that|𝔴(t)|h = O(h4), t ∈ [0,T]. (4.13)

Take an integer Q> 1. We define a finite difference operator

SQ𝔴(t) = (Δt)−1
M∑

k=−L
ak𝔴(t + kΔt), (4.14)
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so that |SQ𝔴(t) −𝔴′(t)| = O((Δt)Q), t ∈ [LΔt,T − MΔt]. (4.15)

Observe that we can find such a difference operator, to any order, since all time derivatives
of 𝔴(t) are bounded in the | ⋅ |h norm in view of the bounds (2.6), Lemma 4.2 and the
uniform boundedness of the operator (𝛿4

x )−1 for h< h0. Note also that M, L depend on Q.
Plugging this into (4.11) we obtain

SQ𝔴(t) + 𝔢(t) = O(h4) + O((Δt)Q), t ∈ [LΔt,T − MΔt], (4.16)

and the estimate (4.13), applied to SQ𝔴(t), yields

𝔢(t) = O(h4) + O((Δt)Q) + O
(

h4

Δt

)
, t ∈ [LΔt,T − MΔt]. (4.17)

Take now Δt = h
4
Q . The last estimate yields

𝔢(t) = O
(

h4
(

1− 1
Q

))
, t ∈

[
𝐿ℎ

4
Q ,T −𝑀ℎ

4
Q

]
. (4.18)

Since Q can be taken arbitrarily large, the theorem is proved. ▪

5 A DISCRETE VERSION OF THE GENERAL EVOLUTION EQUATION

Using the finite difference operators introduced in Section 3, and taking h = 1
N
, we introduce the

discrete operator analogous to A, B that was defined in (1.1):

[A,B,h𝔤]i = (𝛿4
x𝔤)i − A∗

i (𝛿2
x𝔤)i − (A′)∗i (𝔤x)i + B∗

i 𝔤i, 1 ≤ i ≤ N − 1, (5.1)

where f *, A*, (A′)*, B* are the grid functions corresponding, respectively, to f (x), A(x), A′
(x), B(x).

In order to formulate a semi-discrete analog of (1.2), we introduce the unknown grid function 𝔳(xj, t),
depending on the continuous time parameter. We do not indicate explicitly the obvious dependence on
“h”, since this will be clear from the context, as in Section 4. The semi-discrete equation is therefore

𝜕

𝜕t
𝔳(xj, t) = −A,B,h𝔳(xj, t) + f ∗(xj), 1 ≤ j ≤ N − 1, t ≥ 0, (5.2)

subject to initial data
𝔳(xj, 0) = (u∗

0)j = u0(xj),

and homogeneous boundary conditions

𝔳(x0, t) = 𝔳x(x0, t) = 𝔳(xN , t) = 𝔳x(xN , t) = 0, t ≥ 0.

Remark 5.1 We assume that all grid functions and their Hermitian derivatives are in
l2h,0. This amounts simply to extending the grid functions (whose relevant values are at
the interior points {xi, 1≤ i≤N − 1}) as zero at the endpoints x0, xN .

In the proof of the convergence theorem below, an important ingredient is the coercivity of the
operator, in analogy with Claim 2.1. It is actually a generalization of (3.13) that played a fundamental
role in the case of the pure biharmonic generator.

Lemma 5.2 By adding to B(x) a sufficiently large constant K > 0, the following
coercivity inequality holds.
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There exist positive constants C, h0 > 0 such that, for every grid function 𝔷 ∈ l2h,0, where
also 𝔷x ∈ l2h,0, we have

(A,B,h𝔷, 𝔷)h ≥ C[|𝛿2
x𝔷|2h + |𝔷x|2h + |𝔷|2h], 0 < h < h0. (5.3)

Proof. We have

(A,B,h𝔷, 𝔷)h = (𝛿4
x𝔷, 𝔷)h − (A∗𝛿2

x𝔷, 𝔷)h − ((A′)∗𝔷x, 𝔷)h + (B∗𝔷, 𝔷)h

≥ (𝛿4
x𝔷, 𝔷)h − 𝜀[|𝛿2

x𝔷|2h + |𝔷x|2h] − 𝛽

𝜀
|𝔷|2h + (B∗𝔷, 𝔷)h,

where we have used the Cauchy–Schwarz inequality and set 𝛽 = |A∗|2∞ + |(A′)∗|2∞.
In view of (3.13) and (3.14) we can take 𝜀> 0 sufficiently small and then add a suitable

constant K > 0 to B* so that (5.3) is satisfied. ▪

The basic convergence result here is that “stability” implies “convergence” as follows.

Theorem 5.3 (General convergence). Let u(x, t) be the solution to (1.2) and let 𝔳(xj, t)
be the solution to (5.2). Let

𝔢(t) = u∗(t) − 𝔳(t)

(compare (4.8)). Then, for every T > 0, we have the following convergence result:

lim
h→0

sup
0≤t≤T

|𝔢(t)|h = 0. (5.4)

Proof. The coercivity property stated in Lemma 5.2 implies, exactly as in the discus-
sion prior to Claim 2.1, that by adding a sufficiently large constant c> 0 to B(x), without
changing notation, we can assume that A, B, h satisfies (5.3). Let 𝜏(h)= o(h) be the trun-
cation error arising in the application of the discrete operator A, B, h to the grid function
u*(xj, t), viz.

𝜕

𝜕t
u∗(xj, t) = −A,B,hu∗(xj, t) + f ∗(xj) + 𝜏(h), 1 ≤ j ≤ N − 1. (5.5)

Observe that 𝜏(h) is in fact also a function of t, such that for any 𝜀> 0 and T > 0 there
exists h0 > 0 so that

|𝜏(h)|h ≤ 𝜀ℎ, 0 < h < h0, 0 ≤ t < T . (5.6)

Subtracting (5.2) from (5.5) we obtain (using the simplified notation for time dependent
grid functions)

𝜕

𝜕t
𝔢(t) = −A,B,h𝔢(t) + 𝜏(h). (5.7)

Taking the scalar product (in l2h,0) of (5.7) with 𝔢(t) and using the coercivity inequality
(5.3) yields

1
2
𝑑

𝑑𝑡
|𝔢(t)|2h ≤ −1

2
C|𝔢(t)|2h + 2

C
|𝜏(h)|2h, (5.8)

where the Cauchy–Schwarz unequality was used to estimate the scalar product
(𝜏(h), 𝔢(t))h. In view of (5.6) and Gronwall’s inequality the proof is complete. ▪
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6 THE LINEAR EVOLUTION EQUATION WITH CONSTANT
COEFFICIENTS

In Equation (1.2) we now consider the case A(x)≡ a, B(x)≡ b, f ≡ 0, where a, b are real constants.
Using the operator notation (compare (1.1))

a,bz =
(
𝑑

𝑑𝑥

)4
z − a

(
𝑑

𝑑𝑥

)2
z + 𝑏𝑧,

the equation takes the form

𝜕

𝜕t
u(x, t) = −a,bu(x, t), x ∈ Ω, t ≥ 0. (6.1)

The equation is supplemented with initial data

u(x, 0) = u0(x),

and homogeneous boundary conditions

u(0, t) = 𝜕

𝜕x
u(0, t) = u(1, t) = 𝜕

𝜕x
u(1, t) = 0, t ≥ 0.

The initial function u0 is assumed to be smooth, viz. u0 ∈C∞(Ω). As already observed above (see (2.1))
by taking the constant b sufficiently large the coercivity can be assumed:

(a,bz, z)L2(Ω) ≥ C[‖z′′‖2
L2(Ω) + ‖z′‖2

L2(Ω) + ‖z‖2
L2(Ω)].

Next we introduce the corresponding discrete operator (as in (5.1))

a,b,h𝔳(xj, t) = 𝛿4
x𝔳(xj, t) − a𝛿2

x𝔳(xj, t) + b𝔳(xj, t), 1 ≤ j ≤ N − 1.

The coercivity in the general case (5.3) yields in this special case the following estimate (for b> 0
sufficiently large).

(a,b,h𝔷, 𝔷)h ≥ C[|𝛿2
x𝔷|2h + |𝔷x|2h + |𝔷|2h], 0 < h < h0, (6.2)

valid for every grid function 𝔷 ∈ l2h,0, such that also 𝔷x ∈ l2h,0.
Claim 2.1 and (6.2) imply in particular that the operators a, b, a, b, h are invertible and the norms

{|−1
a,b,h|h, 0 < h < h0} are uniformly bounded. Throughout the rest of this section we assume that

b> 0 is sufficiently large, as stipulated in these claims. The semi-discrete analog of (6.1) is

𝜕

𝜕t
𝔳(xj, t) = −a,b,h𝔳(xj, t), 1 ≤ j ≤ N − 1, t ≥ 0, (6.3)

subject to initial data
𝔳(xj, 0) = (u∗

0)j = u0(xj), 1 ≤ j ≤ N − 1.

and homogeneous boundary conditions

𝔳(x0, t) = 𝔳x(x0, t) = 𝔳(xN , t) = 𝔳x(xN , t) = 0, t ≥ 0.

In analogy with (4.4) we can rewrite (1.2) as

𝜕

𝜕t
(−1

a,bu(x, t)) = −1
a,b

(
𝜕

𝜕t
u(x, t)

)
= −u(x, t), x ∈ Ω, t ≥ 0. (6.4)

Similarly, the analog of (4.6) is
𝜕

𝜕t
(−1

a,b,h𝔳(xj, t)) = −1
a,b,h

(
𝜕

𝜕t
𝔳(xj, t)

)
= −𝔳(xj, t), 1 ≤ j ≤ N − 1, t ≥ 0. (6.5)

The crucial element in our treatment is the “optimal” estimate for the (constant coefficient) elliptic
case, which extends the same one in the pure biharmonic case (Claim 4.1).
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Claim 6.1 ([2], Theorem 5.7). Let f (x) be a smooth function in Ω. Let g(x) satisfy

a,bg(x) = f (x),

subject to homogeneous boundary conditions. Then

|g∗ − −1
a,b,hf ∗|∞ = O(h4). (6.6)

We can now apply Claim 6.1 to Equation (6.4), where 𝜕

𝜕t
u(x, t) corresponds to f , while −u

corresponds to g. We infer that

−1
a,b,h

(
𝜕

𝜕t
u∗(xj, t)

)
= −u∗(xj, t) + O(h4). (6.7)

Defining the error grid function 𝔢(t) = u∗(t) − 𝔳(t) (compare (4.8)) we obtain, by subtracting (6.5)
from (6.7)

𝜕

𝜕t
−1

a,b,h𝔢(t) = −𝔢(t) + O(h4). (6.8)

The following theorem gives the “almost optimal” convergence estimate for the general equation and
constitutes a generalization of Theorem 4.3.

Theorem 6.2 Suppose that u0 ∈C∞(Ω). For every 𝜀> 0 and every T > 0 the error 𝔢(t)
can be estimated by

|𝔢(t)|h ≤ 𝐶ℎ4−𝜀, t ∈ [0,T], h < h0, (6.9)

where C > 0 depends only on u0, T , 𝜀.

Proof. Define the grid function

𝔴(t) = −1
a,b,h𝔢(t) = −1

a,b,hu∗(t) − −1
a,b,h𝔳(t). (6.10)

From Equation (6.8) we get

𝔴′(t) + 𝔢(t) = O(h4), t ∈ [0,T], (6.11)

with 𝔴(0) = 0. This equation is identical to Equation (4.11), so that the proof proceeds
verbatim as that of Theorem 4.3. Note that instead of using the coercivity property (3.13),
we use here the coercivity property (6.2).

▪

7 NUMERICAL EXAMPLES—LINEAR AND NONLINEAR

Theorem 5.3 dealt with a general convergence result for linear equations with variable coefficients
while Theorem 6.2 established an almost fourth-order accuracy of the semi-discrete scheme (6.3),
in the case of constant coefficients. In this section, we first corroborate the assertion of Theorem
6.2 by four numerical test cases with constant coefficients. Indeed, the numerical results yield a full
fourth-order accuracy. We then consider a linear equation with variable coefficients in the fifth test
case. The excellent approximation (to known analytical solutions) achieved by employing the same dif-
ference operators is indicative of the applicability of the methodology developed here to more general
evolution equations. Then, with the sixth and seventh test cases, we go beyond the linear setting that
has been the subject matter of the general convergence theory expounded hitherto and demonstrate the
effective fourth-order accuracy on several nonlinear biharmonic equations. This includes numerical
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solutions of the well-known Kuramoto–Sivashinsky equation, modeling the evolution of flame fronts
(as well as other physical phenomena).

Discrete time stepping: Notice that in the convergence theory of the preceding sections we have
used a “semi-discrete” scheme; the time variable was continuous. Numerical implementation neces-
sitates discrete time intervals. Semi-discrete equations considered hereafter have the general form

𝜕t𝔳 = −𝛿4
x𝔳 + L(𝔳) + H(𝔳) + F(t) = R(𝔳, t), (7.1)

where L is linear in 𝔳, 𝔳x, 𝛿
2
x𝔳 and H is nonlinear is 𝔳, 𝔳x. F(t)= [F1(t), … , FN − 1(t)] is a time-dependent

forcing function.
Two time stepping schemes are considered. The first one is the two stage Radau-IIA scheme. It

is an IRK (Implicit Runge–Kutta) scheme, of third order accuracy, with A-stability and L-stability.
Using this scheme allows to focus only on observing the accuracy in space. This is true in particular for
linear problems. In the computation, due to the third-order accuracy in time, the time step is selected
according to a relation Δt=Ch4/3. The matrix A of the Radau-IIA scheme is [23, chap. 3, p. 225]

A =
[

a11, a12
a21, a22

]
=

[ 5
12

− 1
12

3
4

1
4

]
. (7.2)

The stage time values are Δt/3 and Δt, respectively. The scheme is expressed as{
𝜉1 = un + Δt(a11R(𝜉1) + a12R(𝜉2))
𝜉2 = un + Δt(a21R(𝜉1) + a22R(𝜉2)),

(7.3)

with un+ 1 = 𝜉2 (FSAL1 property). The system (7.3) is solved by Newton iterations. The second time
stepping scheme is the IMEX (IMplicit-EXplicit) scheme already used in [16]. Here, it is used only
for the Kuramoto–Sivashinski equation (test cases 7 hereafter). As a rule, we denote by u*, n (see (3.1))
the grid values, at time level t= tn, of the exact solution. The discrete solution at this time level is
designated as 𝔳n. The computational errors are designated as follows.|𝔢n|h = |𝔳n − u∗,n|h the error (of the computed solution) in the discrete l2h norm, as in (3.2),

(7.4)

|𝔢n
x|h =

||||𝔳n
x −

(
𝜕u
𝜕x

)∗,n||||h the error, using discrete l2h norm, for the x-derivative of the solution.

(7.5)
Note that 𝔳n

x is the Hermitian derivative (with respect to x) of 𝔳n. However, we compare to the exact
derivative 𝜕u

𝜕x
and not to the Hermitian derivative (u∗)nx . We shall also use the sup-norm (see (3.3))|𝔢n|∞ = |𝔳n − u∗,n|∞. Recall that en, as a grid function, depends on h. To display the convergence rate,

we make it explicit by writing en
h. Then the convergence rate between the error 𝔢h and 𝔢h∕2 is calculated

by Log2(|𝔢h|∕|𝔢h∕2|).
7.1 First test case: periodic biharmonic equation

We consider on the interval I = [0, 2𝜋) the biharmonic equation⎧⎪⎨⎪⎩
𝜕

𝜕t
u = −

(
𝜕

𝜕x

)4
u, x ∈ I, t ≥ 0,

u(x, 0) = u0(x) = sin(x), x ∈ I.
(7.6)

1First Same As Last.
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TABLE 1 Biharmonic periodic problem (7.6) with exact solution u(x, t)= sin(x) exp(−t) on x∈ [0, 2𝜋) at final time is
tf = ln(2). The first line indicates the errors obtained by the scheme (7.7). The second line indicates the errors obtained by a
piecewise cubic discontinuous Galerkin method [10] (without postprocessing). The time scheme Radau-IIA is used for
(7.7). The time step is Δt=Kh4/3 with five iterations for N = 10. There are 80 iterations for the grid N = 80. Note that the
DG scheme has four times more unknowns (four unknowns per cell) that the compact scheme (one unknown per point)

Mesh N = 10 Rate N = 20 Rate N = 40 Rate N = 80|𝔢|∞ 6.65 (−5) 4.07 3.95 (−6) 4.02 2.43 (−7) 4.00 1.52 (−8)|𝔢|∞,DG [10] 6.10 (−5) 4.69 2.35 (−6) 4.06 1.40 (−7) 4.00 8.75 (−9)

When periodic boundary conditions are applied, the solution is u(x, t)= sin(x) exp(−t). The
semi-discrete scheme is ⎧⎪⎨⎪⎩

𝑑𝔳j(t)
𝑑𝑡

= −𝛿4
x𝔳j(t), j = 0, 1,… ,N − 1,

𝔳N(t) = 𝔳0(t), t ≥ 0,

𝔳j(0) = (u∗
0)j ≔ u0(xj), j = 0,… ,N.

(7.7)

The discrete time-stepping is the Radau-IIA time scheme (7.3). The periodic boundary conditions
make this test case easier to implement compared to the case of homogeneous boundary conditions.
However, it enables us to focus on the spatial accuracy of the DBO 𝛿4

x . In Table 1, the accuracy of
the scheme is compared to the piecewise cubic discontinuous Galerkin method of [10] (without local
postprocessing). Both schemes are fourth-order accurate in space. The error levels are of the same
order of magnitude for the two cases.

7.2 Second test case: polynomial initial data

We consider the equation⎧⎪⎪⎨⎪⎪⎩
𝜕

𝜕t
u = −

(
𝜕

𝜕x

)4
u + a

(
𝜕

𝜕x

)2
u − 𝑏𝑢 + f (x, t), 0 < x < 1, t ≥ 0,

u(0, t) = 𝜕

𝜕x
u(0, t) = 0, u(1, t) = 𝜕

𝜕x
u(1, t) = 0, t ≥ 0,

u(x, 0) = u0(x), 0 ≤ x ≤ 1.

(7.8)

The semi-discrete analog to (7.8) is (compare (6.3))⎧⎪⎨⎪⎩
𝑑𝔳j(t)
𝑑𝑡

= −𝛿4
x𝔳j(t) + a 𝛿2

x𝔳j(t) − b 𝔳j(t) + f ∗j (t), j = 1,… ,N − 1, t ≥ 0,

𝔳0(t) = 0, 𝔳N(t) = 0, 𝔳x,0(t) = 0, 𝔳x,N(t) = 0, t ≥ 0

𝔳j(0) = (u∗
0)j ≔ u0(xj), j = 0,… ,N.

(7.9)

We picked a= 1, b= − 1 in (7.8) with exact solution u(x, t)= x4(1− x)4et. The initial condition is there-
fore u0(x)= x4(1− x)4. The function f (x, t) is chosen so that (7.8) is satisfied. Note that in Claim 2.1
it was required that b> 0 in order to ensure coercivity, and in particular that zero is not an eigenvalue
of a, b, h. However, for any value of b∈R, if we know that zero is not an eigenvalue, then the discrete
scheme has the “almost optimal” rate of convergence. Indeed, coercivity is restored (without chang-
ing the scheme) by multiplying the discrete equation by a suitable function ect (see the beginning of
the proof of Theorem 5.3). Several runs were performed with successively refined meshes. Due to
third-order accuracy of the Radau-IIA scheme, we picked Δt=Kh4/3, where the constant K is adjusted
so that eight iterations are performed for N = 8. The numerical results are displayed in Table 2 and
Figure 1.
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TABLE 2 Equation (7.8) with a= 1, b= − 1 discretized by (7.9). The exact solution is u(x, t)= x4(1− x)4et. The
initial time t0 = 0 and the final time is tf = 10. The time scheme is the Radau-IIA scheme. The time step is
Δt=Ch4/3 (eight time iterations for the coarsest grid N = 8). There is 125 iterations on the finest grid N = 64

Mesh N = 8 Rate N = 16 Rate N = 32 Rate N = 64|𝔢|∞ 2.46 (+0) 4.02 1.64 (−1) 4.13 1.01 (−2) 3.99 5.83 (−4)
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FIGURE 1 Exact and calculated solution for (7.8) with a= 1, b= − 1, and u(x, t)= x4(1− x)4et at final time tf = 10. Left:
N = 8, center: N = 16, right: the estimated convergence rate in the maximum (circles) and l2

h (squares) norms is 4. Radau-IIA
time scheme with Δt=Kh4/3.There are eight time iterations with the grid N = *. The error level at final time is excellent, even
on the coarse grid N = 8 [Color figure can be viewed at wileyonlinelibrary.com]

7.3 Third test case: highly oscillating solution

We consider again Equation (7.8), but now the exact solution is

u𝜀(x, t) = p(x) sin(1∕q𝜀(x)) sin(2𝜋𝑡). (7.10)

The polynomial functions p(x) and q𝜀(x) are given by

p(x) = 16x2(1 − x)2, q𝜀(x) = (x − 1∕2)2 + 𝜀, 𝜀 > 0. (7.11)

The parameter 𝜀 has to be adjusted so that the function u𝜀(x, t) oscillates faster in the middle of the
interval [0, 1]. In this example we took 𝜀= 0.05. Numerical results using the Radau-IIA time scheme
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TABLE 3 Equation (7.8) with a= 1, b= − 1 with exact solution: u(x, t)= p(x) sin(1/q𝜀(x)) sin(2𝜋t), 𝜀= 0.05.
The initial time is t0 = 0 and the final time is tf = 0.75. The time scheme is the Radau-IIA scheme. The time step
is Δt=Kh4/3 with 10 iterations for N = 32. There is 160 iterations on the finest grid N = 256

Mesh N = 32 Rate N = 64 Rate N = 128 Rate N = 256|𝔢|∞ 1.23 (−1) 6.70 1.18(−3) 4.28 6.10 (−7) 4.07 3.65 (−8)
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FIGURE 2 Exact and calculated solution u(x, t)= p(x) sin(1/q𝜀(x)) sin(2𝜋t) for Equation (7.8) 𝜀= 0.05, at final time tf = 0.75.
The number N of grid points is N = 32, N = 64, N = 128, and N = 256. The convergence rate is indicated at final time tf = 0.75.
Left: N = 32, center: N = 256, right: the observed convergence rate is close to 4 in the max norm (circles) and the l2

h norm
(squares). Radau-IIA time scheme with Δt=Kh4/3. There are 10 time iterations with the grid N = 32. Notice the good error
level, even on the coarse grid N = 32, with 10 time iterations [Color figure can be viewed at wileyonlinelibrary.com]

are displayed in Table 3 and Figure 2. The results, even for the very coarse grid with N = 32, show the
remarkable accuracy of the scheme.

7.4 Fourth test case: linear equation with spectral damped solution

We use this example to assess the difference between the discrete operators 𝛿4
x , (𝛿2

x )2, both of which
serve to approximate the fourth-order derivative. Let 𝜑k(x) (resp. 𝜇k) be the kth eigenfunction (resp.
kth eigenvalue) of the spectral problem (

𝑑

𝑑𝑥

)4
𝜑(x) = 𝜇𝜑(x), (7.12)
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with homogeneous boundary conditions

𝜑(0) = 𝑑

𝑑𝑥
𝜑(0) = 0, 𝜑(1) = 𝑑

𝑑𝑥
𝜑(1) = 0. (7.13)

The eigenfunctions are analytically known, see for example [24, 25]. We consider the time dependent
problem ⎧⎪⎪⎨⎪⎪⎩

𝜕

𝜕t
u(x, t) = −

(
𝜕

𝜕x

)4
u(x, t) +

(
𝜇k − 1

𝜏

)
u(x, t), 0 < x < 1, t ≥ 0,

u(0, t) = 0, 𝜕

𝜕x
u(0, t) = 0, t ≥ 0,

u(1, t) = 0, 𝜕

𝜕x
u(1, t) = 0, t ≥ 0,

u(x, 0) = 𝜑k(x), k ≥ 1, 0 ≤ x ≤ 1.

(7.14)

Here 𝜏 > 0 is a parameter. The exact solution is given by the damping in time of the initial function
𝜑k(x),

u(x, t) = 𝜑k(x) exp(−t∕𝜏). (7.15)

The aim here is to recover a similar behavior for the discrete solution. With the notation of Section 6
we have

a = 0, b = −(𝜇k − 1∕𝜏), f (x, t) = 0. (7.16)

In the numerical example we took k= 10 and 𝜏 = 10
𝜇k
, leading to b = − 9

10
𝜇k.

We use this example also to consider the difference between two semi-discrete schemes for (7.14).
The first consists of (see (5.2)):⎧⎪⎪⎨⎪⎪⎩

𝑑𝔳j(t)
𝑑𝑡

= −𝛿4
x𝔳j(t) +

(
𝜇k − 1

𝜏

)
𝔳j(t), j = 1,… ,N − 1, t ≥ 0,

𝔳0(t) = 0, 𝔳N(t) = 0, t ≥ 0,

𝔳x,0(t) = 0, 𝔳x,N(t) = 0, t ≥ 0,

𝔳j(0) = 𝜑∗
k,j ≔ 𝜑k(xj).

(7.17)

The second scheme replaces the compact 𝛿4
x by the standard five-point discrete biharmonic given

in [26]:

(𝛿2
x )2𝔳j =

𝔳j+2 − 4𝔳j+1 + 6𝔳j − 4𝔳j−1 + 𝔳j−2

h4
, j = 2,… ,N − 2. (7.18)

This scheme needs to be supplemented by an appropriate meaning for (𝛿2
x )2𝔳j at the near-boundary

points j= 1, N − 1, taking into account the Dirichlet boundary conditions as in (7.17). In [26] this is
accomplished by a quadratic extrapolation based on the value at the near-boundary point; for j= 1 the
imposed boundary values 𝔳0 = 𝔳x,0 = 0 are used, along with the value 𝔳1, obtaining an extrapolated
value at the “ghost” point j= − 1. Using this extrapolation approach leads to a formula for (𝛿2

x )2𝔳1

given by

(𝛿2
x )2𝔳1 = 7𝔳1 − 4𝔳2 + 𝔳3

h4
. (7.19)

A similar approximation is applied at j=N − 1. The operator (𝛿2
x )2 is second order at points

2≤ j≤N − 2. The associated semi-discrete scheme is⎧⎪⎪⎨⎪⎪⎩

𝑑𝔳j(t)
𝑑𝑡

= −(𝛿2
x )2𝔳j(t) +

(
𝜇k − 1

𝜏

)
𝔳j(t), j = 1,… ,N − 1, t > 0,

𝔳0(t) = 0, 𝔳N(t) = 0, t ≥ 0,

𝔳x,0(t) = 0, 𝔳x,N(t) = 0, t ≥ 0,

𝔳j(0) = 𝜑∗
k,j ≔ 𝜑k(xj), j = 1,… ,N − 1,

(7.20)
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FIGURE 3 The eigenfunction 𝜑10 of the spectral problem (7.12) associated to the eigenvalue 𝜇10 [Color figure can be viewed
at wileyonlinelibrary.com]
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FIGURE 4 Convergence rates for the discrete approximations to the time dependent equation (7.14). (a) Convergence rates
for (7.17). (b) Convergence rates for (7.20). For both subfigures: N = 8, N = 16, N = 32, N = 64, and N = 128. (a) Fourth-order
convergence rates with excellent error values for 𝛿4

x . (b) Second order convergence rates with poor accuracy for (𝛿2
x )2

Figure 3 displays the oscillating shape of the eigenfunction 𝜑10. Note that 𝜑10 is antisymmetric with
respect to the point x = 1

2
. The corresponding eigenvalue is 𝜇10 ≃ 11, 410, 019.97. The parameter 𝜏

represents a damping effect in time. The selected value is 𝜏 = 10
𝜇10

. The grids are N = 8, 16, 32, 64 and

N = 128. The final time is tf = 1/𝜇10. Figure 4 represents the numerical convergence history for the
schemes (7.17) and (7.20). In Figures 5 and 6 the results of the Schemes (7.17) and (7.20) are compared
at final time for N = 32 and N = 64. The superiority of the operator 𝛿4

x over the operator (𝛿2
x )2 is clearly

observed: with N = 32 the Scheme (7.17) is more accurate than the Scheme (7.20) with N = 64.

7.5 Fifth test case: linear equation with nonconstant A(x) and B(x)

We consider the function

u(x, t) = U(x) exp(𝜔𝑡), U(x) = exp
(
− 1

x(1 − x)

)
. (7.21)
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FIGURE 5 Approximate and exact solution at final time tf = 1/𝜇10. Equation (7.14) is approximated by (7.17). The
biharmonic operator is approximated by the fourth-order operator 𝛿4

x . In the left panel, the grid size is N = 32. In the right
panel, the grid size is N = 64. In both cases, the approximate solution is remarkably close to the exact one [Color figure can be
viewed at wileyonlinelibrary.com]
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FIGURE 6 Approximate and exact solution at final time tf = 1/𝜇10. Equation (7.14) is approximated by (7.20). The
biharmonic operator is approximated by the second-order operator (𝛿2

x )2. In the left panel, the grid size is N = 32. In the right
panel, the grid size is N = 64. In both cases, the approximate solution is far from the exact one [Color figure can be viewed at
wileyonlinelibrary.com]

The graph of U(x) is displayed in Figure 7. Note that U(0)=U(1)=U′
(0)=U′

(1)= 0.
The derivatives of U(x) are given by

U(n)(x) = pn(x)
qn(x)

U(x). (7.22)

The polynomials p1(x) and q1(x) are

p1(x) = 1 − 2x, q1(x) = x2(1 − x)2. (7.23)

For n≥ 2, the following recursion relations hold{
pn+1 = q1(pn

′qn − qn
′pn) + qnpnp1,

qn+1 = q2
nq1.

(7.24)
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FIGURE 7 The function U(x) = exp
(
− 1

x(1−x)

)
[Color figure can be viewed at wileyonlinelibrary.com]

The polynomial qn is qn = q2n−1
1 . We consider the operator A, B (1.1) applied to u(x, t), where A(x)

and B(x) are selected below in (7.29) and (7.27), respectively. Recall that

A,Bu(x, t) = 𝜕4
x u(x, t) − 𝜕x(A(x)𝜕xu(x, t)) + B(x)u(x, t). (7.25)

Using (7.24) we get

(𝜕t + A,B)u(x, t) = 𝜔𝑈 (x) exp(𝜔𝑡) + p4(x)
q4(x)

U(x) exp(𝜔𝑡)

− 𝜕x

(
A(x)p1(x)

q1(x)
U(x)

)
exp(𝜔𝑡) + B(x)U(x) exp(𝜔𝑡). (7.26)

Given a function A(x), if we define the function B(x) to be

B(x) = −𝜔 − p4(x)
q4(x)

+ A′(x)p1(x)
q1(x)

+ A(x)
(

p1(x)
q1(x)

)′

+ A(x)
(

p1(x)
q1(x)

)2

= −𝜔 − p4(x)
q4(x)

+ A′(x)p1(x)
q1(x)

+ A(x)
(

p2(x)
q2(x)

)
, (7.27)

we see readily that u(x, t) is the solution of the equation

𝜕tu(x, t) = −A,Bu(x, t). (7.28)

We take
A(x) = 1 + 0.1 sin(2𝜋𝑘𝑥), (7.29)

and the corresponding function B(x) is determined by (7.27). We then consider Equation (7.28) with
the initial condition u(x, 0)=U(x) and the semi-discrete approximation (see (5.2))

𝜕t𝔳(t) = −A,B,h𝔳(t), (7.30)

where the operator A,B,h is given by (5.1). The approximate solution of (7.30) is compared to the
analytical solution u(x, t)=U(x) exp(𝜔t). In the following we have chosen k= 10 and 𝜔= 1. In Figure 8
we display the solution of the semi-discrete equation at final time t= tf after time-stepping using the
grids N = 32 and N = 64. This solution is compared with the exact solution u(x, tf )=U(x) exp(𝜔tf ).
We also record the convergence rate, adding a coarser N = 16 grid and a finer one N = 128. Note that
there is a delicate interaction between the three finite difference operators 𝛿4

x𝔳, 𝛿2
x𝔳 and the Hermitian

derivative 𝔳x.
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FIGURE 8 Equation (7.28) approximated by (7.30) with A in (7.29) and B in (7.27). The initial time is ti = 0. Results are
shown at final time tf = 3. Left panel: N = 32, the convergence in space is not achieved. Center panel: N = 64, the convergence
in space is achieved. Right panel: convergence rate in the maximum (circles) and l2

h (squares) norms based on the values
obtained for N = 16, N = 32, N = 64, and N = 128. The convergence rate in the lower part is close to 4 [Color figure can be
viewed at wileyonlinelibrary.com]

7.6 Sixth test case: a nonlinear example

A nonlinear modification of (7.8) is the evolution equation⎧⎪⎪⎨⎪⎪⎩
𝜕

𝜕t
u = −

(
𝜕

𝜕x

)4
u + H(u(x, t)) + f (x, t), 0 < x < 1,

u(0, t) = 𝜕

𝜕x
u(0, t) = 0, u(1, t) = 𝜕

𝜕x
u(1, t) = 0,

u(x, 0) = u0(x).

(7.31)

The function f (x, t) is selected so that the exact solution is u𝜀(x, t) with 𝜀= 0.05 (see (7.10)). Here
H(u)= 100sin2u. The initial data is u0(x)= u𝜀(x, 0). The analogous semi-discrete equation is

𝑑

𝑑𝑡
𝔳j(t) = −(𝛿4

x𝔳)j + H(𝔳j(t)) + f ∗(xj, t), 1 ≤ j ≤ N − 1. (7.32)

The time discretization is performed with the Radau-IIA scheme. The numerical results are displayed
in Table 4 and Figure 9.

http://wileyonlinelibrary.com


BEN-ARTZI ET AL. 23

TABLE 4 Equation (7.31) with exact solution: u𝜀(x, t)= p(x) sin(1/q𝜀(x)) sin(2𝜋t), with the particular value
𝜀= 0.05. Initial time t0 = 0, final time tf = 0.75. The time scheme is the Radau-IIA scheme. The time step is
Δt=Ch4/3 (10 time iterations for N = 32)

Mesh N = 32 Rate N = 64 Rate N = 128 Rate N = 256|𝔢|∞ 1.23 (−1) 6.73 1.20 (−3) 4.33 7.50 (−5) 4.08 7.63 (−6)
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FIGURE 9 Nonlinear equation (7.31) with exact and calculated solution u𝜀(x, t)= p(x)1/q𝜀(x) sin(2𝜋t), 𝜀= 0.05, at final time
tf = 0.75. The grids contains N = 32, N = 64, N = 128, and N = 256 points. Left panel: N = 32, center panel: N = 256, right
panel: convergence rate in the maximum (circles) and l2

h (squares) norms. The rate is 4. The time scheme is the Radau-IIA
scheme with a time step Δt=Kh4/3 and 10 time iterations for N = 32 [Color figure can be viewed at wileyonlinelibrary.com]

7.7 Seventh test case: Kuramoto–Sivashinsky equation

Consider the Kuramoto–Sivashinsky equation [27, 28]

⎧⎪⎪⎨⎪⎪⎩

𝜕

𝜕t
u = −

(
𝜕

𝜕x

)4
u −

(
𝜕

𝜕x

)2
u − u 𝜕

𝜕x
u + f , 0 < x < 1, t > 0,

u(0, t) = 0, 𝜕

𝜕x
u(0, t) = 0,

u(1, t) = 0, 𝜕

𝜕x
u(1, t) = 0.

(7.33)
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TABLE 5 Compact scheme for KS equation (7.33) with exact solution u= e−tx2(x− 1)2 on [0, 1].
We display |𝔢|h and |𝔢x|h the errors in u, and ux, respectively at t= 0.25. The time step is Δt= h2

Mesh N = 16 Rate N = 32 Rate N = 64|𝔢|h 5.9269 (−8) 4.00 3.7045 (−9) 4.00 2.3129 (−10)|𝔢x|h 2.0558 (−7) 4.00 1.2840 (−8) 4.00 8.0158 (−10)
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FIGURE 10 First KS numerical example (7.33): exact solution (solid line) and computed solution (circles) for N = 32 (left),
N = 64 (center). The convergence rate is displayed in the right panel for u (circles) and 𝜕u

𝜕x
(squares) [Color figure can be

viewed at wileyonlinelibrary.com]

This equation has been independently derived in the context of several extended physical systems
driven far from equilibrium by intrinsic instabilities, including instabilities of dissipative trapped ion
modes in plasmas, instabilities in laminar flame fronts [28], phase dynamics in reaction–diffusion
systems [27], and fluctuations in fluid films on inclines [29]. The equation generically describes the
dynamics near long-wave-length primary instabilities in the presence of appropriate (translational, par-
ity, and Galilean) symmetries. We present computations of three numerical examples, where the exact
solutions are known and the error of the approximate solutions (and their derivatives) can be precisely
measured. In the third example, there is no forcing function and the evolving solution develops steep
slopes.

1 First numerical example. We take u(x, t) as
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TABLE 6 Compact scheme for KS equation (7.33) with exact solution u= e−tx4(x− 1)4 on [0, 1].
We display |𝔢|h and |𝔢x|h, the errors in u, and ux, respectively at t= 0.25. The time step is Δt= h2

Mesh N = 16 Rate N = 32 Rate N = 64|𝔢|h 4.6595 (−4) 3.97 2.9750 (−5) 3.99 1.8702 (−6)|𝔢x|h 2.2606 (−3) 4.65 8.9829 (−5) 4.24 4.7682 (−6)
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FIGURE 11 Second KS numerical example: exact solution (solid line) and computed solution (circles) for N = 32 (left) and
N = 64 (center). The convergence rate for the KS equation is documented in the right panel for u (circles) and ux (squares)
[Color figure can be viewed at wileyonlinelibrary.com]

u(x, t) = e−tx2(1 − x)2, 0 < x < 1, t > 0, (7.34)

so that Equation (7.33) is satisfied with f (x, t) taken accordingly. As in the previous test cases, we
obtain the approximate solutions 𝔳j(t) of u(xj, t) from the knowledge of the discrete data f ∗j (t) = f (xj, t)
on the grid 0= x0 < · · ·< xj < xN = 1. The approximate solutions are computed at discrete time levels
tn = nΔt, using a temporal discretization that is analogous to the second-order IMEX time-scheme that
has been used in [16, 19].

⎧⎪⎨⎪⎩
𝔳n+1∕2

j −𝔳n
j

Δt∕2
+ 1

2
(𝛿4

x𝔳
n+1∕2
j + 𝛿2

x𝔳
n+1∕2
j ) = − 1

2
(𝛿4

x𝔳n
j + 𝛿2

x𝔳n
j ) − 𝔳n

j 𝔳n
x,j + f ∗,nj ,

𝔳n+1
j −𝔳n

j

Δt
+ 1

2
(𝛿4

x𝔳n+1
j + 𝛿2

x𝔳n+1
j ) = − 1

2
(𝛿4

x𝔳n
j + 𝛿2

x𝔳n
j ) + 𝔳n+1∕2

j 𝔳n+1∕2
x,j + f ∗,n+1∕2

j .

(7.35)
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TABLE 7 Compact scheme for KS equation (7.33) with exact solution
u = u(x, t) = c + (15∕19)

√
(11∕19)(−9 tanh(k(x − 𝑐𝑡 − x0)) + 11tanh3(k(x − 𝑐𝑡 − x0)). We

display |𝔢|h and |𝔢x|h, the errors in u, and ux, respectively at t= 1. The time step is Δt= h2

Mesh N = 241 Rate N = 481 Rate N = 961|𝔢|h 3.2873 (−4) 3.99 2.0752 (−5) 4.00 1.2984 (−6)|𝔢x|h 2.9822 (−4) 3.95 1.9332 (−5) 3.98 1.2246 (−6)
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FIGURE 12 Third KS numerical example: exact solution (solid line) and computed solution (circles) for N = 121 (left) and
N = 961 (center). The convergence rate for the KS equation is documented in the right panel for u (circles) and 𝜕u

𝜕x
(squares)

[Color figure can be viewed at wileyonlinelibrary.com]

In Table 5 we display numerical results for (7.35). We have picked Δt= h2, where h= 1/N, and the
final time is tf = 0.25. Observe that the scheme (7.35) achieves fourth-order accuracy for u and 𝜕u

𝜕x
.

In Figure 10 we display the exact solution u(x, t) (solid line) at t= 0.25 and the computed solution 𝔳
(circles) for N = 32 (left) and N = 64 (center). The convergence rates are documented in the right panel.
Notice the fourth-order rates both for u and 𝜕

𝜕x
u. Notice also that even with a coarse mesh N = 16 the

match is excellent.

2 Second numerical example. We consider again the Kuramoto–Sivashinsky equation (7.33), and
we take the exact solution u(x, t) as
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u(x, t) = e−tx4(1 − x)4, 0 < x < 1, t > 0, (7.36)

with a suitable f (x, t). The discrete solution 𝔳 is again obtained by the scheme (7.35). In Table 6 we dis-
play numerical results. We have picked Δt= h2, where h= 1/N, and the final time is t= 0.25. Observe
in the right panel that fourth-order accuracy is achieved for u and 𝜕u

𝜕x
. In Figure 11 we display the exact

solution u(x, t) at (solid line) t= 0.25 and the computed solution 𝔳 (circles) for N = 32 (left) and N = 64
(center) at t= 0.25. Notice that even with a coarse mesh N = 16 the match is excellent. The right panel
shows the fourth order convergence rate for u and ux.

3 Third numerical example. We consider again the Kuramoto–Sivashinsky equation (7.33). This
time we take the exact solution u(x, t) [30] as

u(x, t) = c+(15∕19)
√

11∕19(−9 tanh(k(x−𝑐𝑡−x0))+11tanh3(k(x−𝑐𝑡−x0)), x ∈ [−30, 30], (7.37)

with no forcing term (i.e., f (x, t)= 0). Here c = −0.1, k = 0.5
√

11∕19 and x0 = − 10. The discrete
solution 𝔳 is again obtained by the scheme (7.35). In Table 7 we display numerical results for (7.35). for
the fourth-order scheme. We have picked Δt= h2, where h= 1/N, and the final time is t= 1. Observe
in the right panel that fourth-order accuracy is achieved for u and 𝜕u

𝜕x
. In Figure 12 we display the exact

solution u(x, t) at (solid line) t= 1 and the computed solution 𝔳 (circles) for N = 121 (left) and N = 961
(center) at t= 1. Notice that even with a coarse mesh N = 121 the match is very good. The right panel
shows the fourth order convergence rate for u and ux.
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APPENDIX A: TAYLOR EXPANSIONS

In this appendix we collect Taylor expansions of the finite difference operators introduced in the text.
For u(x) a regular function, we call u* the restriction of u(x) to the grid. For the Hermitian derivative
(u*)x, j we have2

(u∗
x )j = (𝜕xu)∗j −

h4

180
(𝜕5

x u)∗j + O(h6), (A1)

2The Taylor expansions are obtained using a symbolic package.
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and for the operator 𝛿x(u*)x:

𝛿x(u∗
x )j = (𝜕2

x u)∗j +
h2

6
(𝜕4

x u)∗j +
h4

360
(𝜕6

x u)∗j −
h6

15120
(𝜕8

x u)∗j + O(h8). (A2)

On the other hand the centered operator 𝛿2
x u∗

j has the expansion

𝛿2
x u∗

j = (𝜕2
x u)∗j +

h2

12
(𝜕4

x u)∗j +
h4

360
(𝜕6

x u)∗j +
h6

20160
(𝜕8

x u)∗j + O(h8). (A3)

Since the coefficient in factor of h4 is 1/360 in (A2) and (A3) there is a cancellation when evaluating
the DBO operator 𝛿4

x u∗
j = 12(𝛿xu∗

x,j − 𝛿2
x u∗

j )∕h2. This gives

𝛿4
x u∗

j = (𝜕4
x u)∗j −

h4

720
(𝜕8

x u)∗j + O(h6). (A4)

Finally the fourth-order accuracy of the modified operator 𝛿2
x in (3.10) is seen in the expansion

𝛿2
x u∗

j = (𝜕2
x u)∗j +

h4

360
(𝜕6

x u)∗j + O(h8). (A5)

The small constants in the truncation errors observed in (A1), (A4), and (A5) partly explain the
accuracy observed in the numerical results.


