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Abstract

Non-linear dimensionality reduction techniques such as
manifold learning algorithms have become a common way
for processing and analyzing high-dimensional patterns that
often have attached a target that corresponds to the value of
an unknown function. Their application to new points con-
sists in two steps: first, embedding the new data point into
the low dimensional space and then, estimating the function
value on the test point from its neighbors in the embedded
space.

However, finding the low dimension representation of a
test point, while easy for simple but often not powerful
enough procedures such as PCA, can be much more compli-
cated for methods that rely on some kind of eigenanalysis,
such as Spectral Clustering (SC) or Diffusion Maps (DM).
Similarly, when a target function is to be evaluated, averag-
ing methods like nearest neighbors may give unstable results
if the function is noisy. Thus, the smoothing of the tar-
get function with respect to the intrinsic, low-dimensional
representation that describes the geometric structure of the
examined data is a challenging task.

In this paper we propose Auto-adaptive Laplacian Pyra-
mids (ALP), an extension of the standard Laplacian Pyra-
mids model that incorporates a modified Leave One Out
cross validation (LOOCV) procedure that avoids the large
cost of standard LOOCV and offers the following advan-
tages: (i) it selects automatically the optimal function res-
olution (stopping time) adapted to the data and its noise,
(ii) it is easy to apply as it does not require parameteri-
zation, (iii) it does not overfit the training set and (iv) it
adds no extra cost compared to other classical interpolation
methods. We illustrate numerically ALP’s behavior on a
synthetic problem and apply it to the computation of the
DM projection of new patterns and to the extension to them
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of target function values on a radiation forecasting problem
over very high dimensional patterns.
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1 Motivation

An important challenge in data mining and machine learn-
ing is the proper analysis of a given dataset, especially for
understanding and working with functions defined over it.
In particular, manifold learning algorithms have become a
common way for processing and analyzing high-dimensional
data and the so called “diffusion analysis” allows us to find
the most appropriate geometry to study such functions [25].
These methods are based on the construction of a diffusion
operator that depends on the local geometry of the data,
which is then used to embed the high-dimensional points
into a lower-dimensional space maintaining their geomet-
ric properties and, hopefully, making easier the analysis of
functions over it. On the other hand, extending functions in
such an embedding for new data points may be challenging,
either because of the noise or the presence of low-density
areas that make insufficient the number of available train-
ing points. Also it is difficult to set the neighborhood size
for new, unseen points as it has to be done according to the
local behavior of the function.

The classical methods for function extension like Geomet-
ric Harmonics [8] have parameters that need to be carefully
set, and in addition there does not exist a robust method of
picking the correct neighborhood in the embedding for func-
tion smoothing and evaluation. A first attempt to simplify
these approaches was Laplacian Pyramids (LP), a multi-
scale model that generates a smoothed version of a function
in an iterative manner by using Gaussian kernels of decreas-
ing widths [21]. It is a simple method for learning functions
from a general set of coordinates and can be also applied to
extend embedding coordinates, one of the big challenges in
diffusion methods. Recently [1] introduced a geometric PCA
based out-of-sample extension for the purpose of adding new
points to a set of constructed embedding coordinates.

A näıve way to extend the target function to a new data
point could be to find the point’s nearest neighbors (NN)
in the embedded space and average their function values.
The NN method for data lifting was compared in [12] with
the LP version that was proposed in [21], and this last
method performed better than NN. Buchman et al. [3] also
described a different, point-wise adaptive approach, which
requires setting the nearest neighborhood radius parameter
for every point.

Nevertheless, and as it is often the case in machine learn-
ing, when we apply the previous LP model, we can overfit
the data if we try to refine too much the prediction during
the training phase. In fact, it is difficult to decide when to
stop training to obtain good generalization capabilities. A
usual approach is to apply the Cross Validation (CV) [13,
chap. 9] method to get a validation error and to stop when
this error starts to increase. An extreme form of CV is the
Leave One Out CV (LOOCV): a model is built using all
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the samples but one, which is then used as a single valida-
tion pattern; this is repeated for each sample in the dataset,
and the validation error is the average of all the errors. Al-
though LOOCV has a theoretical backing and often yields
good results, it has the drawback of a big computational
cost, though not in some important cases (see Section 3).

In this paper we propose Auto-adaptive LP (ALP), a
modification in the LP training algorithm that merges train-
ing and approximate LOOCV in one single phase. To do so
we simply build the kernel matrix with zeros in its diago-
nal. As we shall see, with this change we can implement an
LOOCV approximation without any additional cost during
the training step. This reduces significantly training com-
plexity and provides an automatic criterion to stop training
so that we greatly avoid the risk of severe overfitting that
may appear in standard LP. This effect can be observed in
Figure 1 when our LP proposal is applied to the synthetic
example used in Section 4. The solid and dashed black lines
represent the LP training error and the LOOCV error per
iteration respectively, and the dashed blue line represents
the error for our proposed method. The blue line, that cor-
responds to the ALP training error attains its minimum at
the same iteration prescribed by LOOCV for LP.
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Figure 1: Training and LOOCV errors for the original and
modified LP models applied to a synthetic example consist-
ing on a perturbed sine shown in Section 4.

Therefore, ALP doesn’t overfit the data and, moreover,
doesn’t essentially require any parametrization or expert
knowledge about the problem, while still achieving a good
test error. Moreover, it adds no extra cost compared to
other classical neighbor-based interpolation methods.

This paper is organized as follows. In Section 2 we briefly
review the LP model and present a detailed analysis of its
training error. We describe ALP in Section 3, which we
apply to a synthetic example in Section 4 and to a real world
example in Section 5. The paper ends with some conclusions

in Section 6.

2 The Laplacian Pyramids

The Laplacian Pyramid (LP) is an iterative model that was
introduced by Burt and Adelson [4] for its application in
image processing and, in particular, image encoding. In the
traditional algorithm, LP decomposes the input image into a
series of images, each of them capturing a different frequency
band of the original one. This process is carried out by
constructing Gaussian-based smoothing masks of different
widths, followed by a down-sampling (quantization) step.
LP was later proved to be a tight frame (see Do and Vetterly
[10]) and used for signal processing applications, for example
as a reconstruction scheme in [19].

In [21], it was introduced a multi-scale algorithm in the
spirit of LP to be applied in the setting of high-dimensional
data analysis. In particular, it was proposed as a simple
method for extending low-dimensional embedding coordi-
nates that result from the application of a non-linear dimen-
sionality reduction technique to a high-dimensional dataset
(recently applied in [20]).

We review next the LP procedure as described in [21] (the
down-sampling step, which is part of Burt and Adelson’s al-
gorithm is skipped here). Let S = {xi}Ni=1 ∈ RN be the sam-
ple dataset; the algorithm approximates a function f defined
over S by constructing a series of functions {f̃i} obtained
by several refinements di over the error approximations. In
a slight abuse of language we will use the same notation f
for both the general function f(x) and also for the vector of
its sample values f = (f1 = f(x1), . . . , fN = f(xN )). The
result of this process gives a function approximation

f ' f̃ = f̃0 + d1 + d2 + d3 + · · ·

In more detail, a first level kernel K0
σ(x, x′) =

Φ (dist(x, x′)/σ) is chosen using a wide, initial scale σ and
where dist(x, x′) denotes some distance function between
points in the original dataset. A usual choice and the one
we will use here is the Gaussian kernel with Euclidean dis-
tances, i.e., to take dist(x, x′) = ‖x− x′‖ and then

K0(x, x′) = κe−
‖x−x′‖2

σ2 ,

where κ is the Gaussian kernel normalizing constant. As be-
fore, we will use the K0 notation for both the general contin-
uous kernel K0(x, x′) and for its discrete matrix counterpart

K
(0)
jk = K0(xj , xk) over the sample points.

The smoothing operator P 0 is constructed as the normal-
ized row-stochastic matrix of the kernel

P 0
ij =

K0
ij∑

kK
0
ik

. (1)

A first coarse representation of f is then generated by the
convolution f̃0 = f ∗P 0 that captures the low-frequencies of
the function. For the next steps we fix a µ > 1, construct
at step i a sharper Gaussian kernel P i with scale σ/µi, and
the residual

di−1 = f − f̃i−1,
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which captures the error of the approximation to f at the
previous i− 1 step, is used to generate a more detailed rep-
resentation of f given by

f̃i = f̃i−1 + di−1 ∗ P i = f̃i−1 + gi−1,

with g` = d` ∗ P `+1. The iterative algorithm stops once
the norm of di residual vector is smaller than a predefined
error. Stopping at iteration L, the final LP model has thus
the form

f̃L = f̃0 +

L−1∑
0

g` = f ∗ P 0 +

L−1∑
0

d` ∗ P `+1, (2)

and extending this multi-scale representation to a new data
point x ∈ RN is now straightforward because we simply set

f̃L(x) = f ∗ P 0(x) +

L−1∑
0

d` ∗ P `+1(x)

=
∑
j

fjP
0(x, xj) +

L∑
1

∑
j

d`−1;jP
`(x, xj).

where we extend the P ` kernels to a new x as

P `(x, xj) =
K`(x, xj)∑
kK

`(x, xk)
.

The overall cost is easy to analyze. Computing the convo-
lutions f̃0 = f ∗ P 0, g` = d` ∗ P `−1 has a O(N2) cost for a
size N sample, while that of obtaining the d` is just O(N).
Thus, the overall cost of L LP steps is O(LN2).

We observe that if we set a very small error threshold
and run afterwards enough iterations, we will end up having
f̃` = f over the training sample. In fact, f̃` = f̃`−1 + g`−1
and, therefore,

f̃` = f̃`−1 + g`−1 = f̃`−1 + (f − f̃`−1) ∗ P `

= f ∗ P ` + f̃`−1 ∗ (I − P `),

with I denoting the identity matrix. Now, if we have f̃ ` →
φ, it follows taking limits that

φ = f ∗ limP ` + φ ∗ lim(I − P `)

i.e., φ = f , for P ` → I.

In practice, we will numerically have P ` = I as soon as ` is
large enough so that we have K`(xi, xj) ' 0. We then have
d`;j = 0 for all j and the LP model doesn’t change anymore.
In other words, care has to be taken when deciding to stop
the LP iterations to avoid overfitting. In fact, we show next
that when using Gaussian kernels, as we do, the L2 norm of
the LP errors d̂` decay extremely fast.

First notice that working in the continuous kernel setting,
we have P = K for a Gaussian kernel, for then the denomi-
nator in (1) is just

∫
K(x, z)dz = 1. Assume that f is in L2,

so
∫
x
f2(x) dx <∞. The LP scheme is a relaxation process

for which in the first step the function f is approximated by

G0(f) = f ∗ P 0 (x). For all `, P ` (x) is an approximation to
a delta function satisfying∫

P ` (x) dx = 1,∫
xP ` (x) dx = 0, (3)∫
x2P ` (x) dx ≤ 2C.

In the second step f is approximated by G0(f) + G1(d0),
where d0 = G0(f)− f and G1(d0) = d0 ∗ P 1 (x), and so on.
Taking the Fourier transform of P ` (x), we have (see [15])∣∣∣P̂ ` (ω)

∣∣∣ ≤ 1 +
σ2

2

∫
x2P ` (x) dx ≤ 1 + Cσ2, (4)

where we have used (3).
We first analyze the error d0(x) in the first step, which

is defined by d0(x) = f ∗ P 0 (x) − f . Taking the Fourier
transform of d0(x) and using (4) we have∣∣∣d̂0(ω)

∣∣∣ =
∣∣∣f̂(w)

∣∣∣ ∣∣∣P̂ 0(ω)− 1
∣∣∣ ≤ Cσ2

0

∣∣∣f̂(ω)
∣∣∣ . (5)

The error in the second step is

d1(x) = d0 − G1(d0) =
(
f ∗ P 0 − f

)
− d0 ∗ P 1. (6)

Taking the Fourier transform of (6) yields∣∣∣d̂1(ω)
∣∣∣ =

∣∣∣d̂0(ω)− d̂0(ω)P̂ 1(ω)
∣∣∣

=
∣∣∣d̂0(ω)

∣∣∣ ∣∣∣P̂ 1(ω)− 1
∣∣∣ .

Using (4) and (5) we obtain∣∣∣d̂1(ω)
∣∣∣ ≤ C ∣∣∣d̂0(ω)

∣∣∣σ2
1 ≤ Cσ2

0σ
2
1

∣∣∣f̂(ω)
∣∣∣ .

Since σ1 = σ0

µ with µ > 1, then
∣∣∣d̂1(ω)

∣∣∣ ≤ Cσ2
0
σ2
0

µ2

∣∣∣f̂(ω)
∣∣∣ .

Similarly, for the `th step the error is bounded by∣∣∣d̂`(ω)
∣∣∣ ≤ Cσ2

0

(
σ2
0

µ2

)` ∣∣∣f̂(ω)
∣∣∣ .

By Parseval’s equality we obtain

‖d`‖L2 ≤ Cσ2
0

(
σ2
0

µ2

)`
‖f‖L2 .

Thus, the error’s L2 decays faster than any algebraic rate.
We see next how we can estimate a final iteration value

L that prevents overfitting without incurring on additional
costs.

3 Auto-adaptative Laplacian Pyra-
mids

The standard way to prevent overfitting is to use an indepen-
dent validation subset and to stop the above ` iterations as

3



soon as the validation error on that subset starts to increase.
This can be problematic for small samples and introduces a
random dependence on the choice of the particular valida-
tion subset; k-fold cross validation is then usually the stan-
dard choice, in which we randomly distribute the sample in
k subsets, and iteratively use k− 1 subsets for training and
the remaining one for validation. In the extreme case when
k = N , i.e., we use just one pattern for validation, we ar-
rive at Leave One Out Cross Validation (LOOCV) and stop
the training iterations when the LOOCV error starts to in-
crease. Besides its simplicity, LOOCV has the attractive of
being an almost unbiased estimator of the true generaliza-
tion error (see for instance [5, 14]), although with possibly
a high variance [18]. In our case LOOCV can be easily ap-
plied using for training a N × N normalized kernel matrix
P(p) which is just the previous matrix K where we set to
0 the p-th rows and columns when xp is held out of the
training sample and used for validation. The most obvious
drawback of LOOCV is its rather high cost, which in our
case is N × O(LN2) = O(LN3) cost. However, it is often
the case for other models that there are ways to estimate
the LOOCV error with a smaller cost. This can be done
exactly in the case of k-Nearest Neighbors [16] or of Ordi-
nary Least Squares ([17], Chapter 7), or approximately for
Support Vector Machines [6] or Gaussian Processes [22].

In order to alleviate it, notice first that when we removed
xp from the training sample, the test value at xp of the f (p)

extension built is

f
(p)
L (xp) =

∑
j 6=p

fjP
0(xp, xj) +

L∑
`=1

∑
j 6=p

d
(p)
`−1;jP

`(xp, xj)

=
∑
j

fjP̃
0(xp, xj) +

L∑
`=1

∑
j

d
(p)
`−1;jP̃

`(xp, xj),

where d
(p)
` are the different errors computed using the P `(p)

matrices and where P̃ is now just the matrix P with its
diagonal elements set to 0, i.e. P̃i,i = 0, P̃i,j = Pi,j when
j 6= i.

This observation leads to the modification we propose on
the standard LP algorithm given in [21], and which simply
consist on applying the LP procedure described in Section
2 but replacing the P matrix by its 0-diagonal version P̃ ,
computing then f̃0 = f ∗ P̃ 0 at the beginning, and d̃` =
f − f̃`, g̃` = d̃` ∗ P̃ `+1 and f̃` vectors at each iteration. We
call this algorithm the Auto-adaptative Laplacian Pyramid
(ALP).

According to the previous formula for the f
(p)
L (xp), we

can take the ALP values f̃L,p = f̃L(xp) given by

f̃L(xp) =
∑
j

fjP̃
0(xp, xj) +

L∑
`=1

∑
j

d̃`−1;jP̃
`(xp, xj),

as approximations to the LOOCV validation values f
(p)
L (xp).

But then we can approximate the square LOOCV error at
iteration L as∑
p

(f(xp)− f (p)L (xp))
2 '

∑
p

(f(xp)− f̃L,p)2 =
∑
p

(d̃L;p)
2,

which is just the training error of ALP. In other words, work-
ing with the P̃ matrix instead of P , the training error at step
L gives in fact an approximation to the LOOCV error at this
step. The cost of running L steps of ALP is just O(LN2)
and, thus, we gain the advantage of the exhaustive LOOCV
without any additional cost on the overall algorithm. The
complete training procedure is presented in Algorithm 1 and
the test algorithm is shown in Algorithm 2.

Algorithm 1 The ALP Training Algorithm
Input: xtr, ytr, σ0, µ.
Output: ({di}, σ0, µ, k) % The trained model.
1: σ ← σ0; d0 ← ytr.
2: f̃0 ← 0; i← 1.
3: while (erri < erri−1) do

4: K ← e−‖xtr − xtr‖
2/σ2 .

5: Pi ← normalize(K).
6: P̃ ← P with 0-diagonal. % LOOCV.
7: f̃i ← f̃i−1 + di−1 ∗ P̃i.
8: di ← f − f̃i.
9: erri ← di/str, with str the number of patterns in xtr.
10: σ ← σ/µ; i← i+ 1.
11: end while
12: k ← mini di. % Optimal iteration.

Algorithm 2 The ALP Testing Algorithm
Input: xtr, xte, ({di}, σ0, µ, k).
Output: ŷte.
1: ŷte ← 0; σ ← σ0.
2: for i=0 to k-1 do
3: K ← e−‖xtr − xte‖

2/σ2 .
4: Pi ← normalize(K).
5: ŷte ← ŷte + di ∗ Pi.
6: σ ← σ/µ.
7: end for

The obvious advantage of ALP is that when we evaluate
the training error, we are actually estimating the LOOCV
error after each LP iteration. Therefore, the evolution of
these LOOCV values tells us which is the optimal iteration
to stop the algorithm, i.e., just when the training error ap-
proximation to the LOOCV error starts growing. Thus, we
do not only remove the danger of overfitting but can also use
the training error as an approximation to the generalization
error. This effect can be seen in Figure 1 which illustrates
the application of ALP to the synthetic problem described
in the next section and where the optimum stopping time
for ALP is exactly the same that the one that would give the
LOOCV error and where training error stabilizes afterwards
at a slightly larger value.

Moreover, ALP achieves an automatic selection of the
width of the Gaussian kernel which makes this version of LP
to be auto-adaptative as it does not require costly param-
eter selection procedures. In fact, choosing as customarily
done µ = 2, the only required parameter would be the ini-
tial σ but provided it is wide enough, its σ/2` scalings will
yield an adequate final kernel width.

4 A Synthetic Example

For a better understanding of this theory, we first illustrate
the proposed ALP algorithm on a synthetic example of a
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Figure 2: Evolution of the Auto-adaptative Laplacian Pyramids model for the first example.

composition of sines with different frequencies plus additive
noise.

We consider a sample x with N points equally spaced over
the range [0, 10π]. The target function f is then

f = sin(x) + 0.5 sin(3x) · I2(x) + 0.25 sin(9x) · I3(x) + ε,

where I2 is the indicator function of the interval
(10π/3, 10π], I3 that of (2 ·10π/3, 10π] and ε ∼ U([−δ, δ]) is
uniformly distributed noise. In other words, we have a sin-
gle frequency in the interval [0, 10π/3], two frequencies in
(10π/3, 2 · 10π/3] and three in (2 · 10π/3, 10π]. We run two
different simulations, the first one with 4, 000 points with
small δ = 0.05 noise and the second one with 2, 000 points
and a larger δ = 0.25 (observe that |f | ≤ 1.75). In both
cases, odd indexed points form the training set and even
points form the test set.

Recall that the ALP model automatically adapts its mul-
tiscale behavior to the data, trying to refine the prediction
in each iteration using a more localized kernel, given by a
smaller σ. This behavior can be observed in Figure 2, which
shows the evolution of the prediction of the ALP for small
noise experiment. As we can see, at the beginning, the
model approximates the function just by a coarse mean of
the target function values; however in the subsequent itera-
tions that start using sharper kernels and refined residuals,
the approximating function starts capturing the different
frequencies and amplitudes of the composite sines. In this
particular case the minimum LOOCV value is reached after
7 iterations, a relatively small number which makes sense as
we have a simple model with small noise.

When we repeat the same synthetic experiment but now
enlarging the amplitude of the uniform distribution to δ =

0 5 10 15 20 25 30 35
−2

−1.5

−1

−0.5

0

0.5

1

1.5

XTest

Target

Prediction

Figure 3: Prediction of the Auto-adaptative Laplacian Pyra-
mids model for the second example.

0.25, the predicted function is represented in Figure 3 and
it is obtained after 6 iterations. As it was to be expected,
the number of LP iterations is now slightly smaller than in
the previous example because the algorithm selects a more
conservative, smoother prediction in the presence of noisier
and, thus, more difficult data.

In any case, we can conclude that the ALP model captures
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very well the essential behavior underlying both samples,
catching the three different frequencies of the sine and their
amplitudes even when the noise level increases.

5 ALP for Eigenvector Estimation
in Spectral Clustering and Diffu-
sion Maps

5.1 Spectral Manifold Learning

A common assumption in many big data problems is that al-
though original data appear to have a very large dimension,
they lie in a low dimensional manifold M of which a suit-
able representation has to be given for adequate modeling.
How to identifyM is the key problem in manifold learning,
where the preceding assumption has given rise to a number
of methods among which we can mention Multidimensional
Scaling [9], Local Linear Embedding [23], Isomap [26], Spec-
tral Clustering (SC) [24] and its several variants such as
Laplacian Eigenmaps [2], or Hessian eigenmaps [11]. Diffu-
sion methods (DM) [7] also follow this set up and we center
our discussion on them.

The key assumption in Diffusion methods is that the met-
ric of the low dimensional Riemannian manifold where data
lie can be approximated by a suitably defined diffusion met-
ric. The starting point in DM (and in SC) is a weighted
graph representation of the sample with a similarity ma-
trix wij given by the kernel e−‖xi − xj‖

2/2σ2 . In order to
control the effect of the sample distribution, a parameter
α ∈ [0, 1] is introduced in DM and we work instead with the

α-dependent similarity w
(α)
ij = wij/gαi g

α
j , where gi =

∑
j wij

is the degree of vertex i. The new vertex degrees are now
gαi =

∑
j w

α
ij and we define a Markov transition matrix

W̃ (α) = {w̃(α)
ij = w

(α)
ij /g

α
i }. Fixing the number t of steps

considered in the Markov process, we can take into account
t neighbors of any point in terms of the t-step diffusion dis-
tance given by

Dt
ij = ‖w̃(α;t)

i,· − w̃(α;t)
j,· ‖L2(1/φ0),

where φ0 is the stationary distribution of the Markov process
and w̃(α;t) the transition probability in t steps (i.e., the t-th
power of w̃α). We will work with t = 1 and use α = 1. As it
is shown in [7], when α = 1, the infinitesimal generator L1 of
the diffusion process coincides with the manifold’s Laplace–
Beltrami operator ∆ and, thus, we can expect the diffusion
projection to capture the underlying geometry.

Now, the eigenanalysis of the Markov matrix W̃ (α) gives
an alternative representation of the diffusion distance as

Dt
ij =

∑
k

λ2tk (ψ
(k)
i − ψ

(k)
j )2,

with λk the eigenvalues and ψ(k) the left eigenvectors of the

Markov matrix W̃ (α) and ψ
(k)
i = ψk(xi) are the eigenvec-

tors’ components [7]. The eigenvalues λk decay rather fast,
a fact we can use to perform dimensionality reduction by
setting a fraction δ of the second eigenvalue λ1 (the first

one λ0 is always 1 and carries no information) and retaining
thus a number d = dt of those λk for which λtk > δλt1. This
δ is a parameter we have to choose besides the previous α
and t. Usual values are either δ = 0.1 or the more strict
(and larger dimension inducing) δ = 0.01. Once fixed, we
would thus arrive to the diffusion coordinates

Ψ =

λ
t
1ψ1(x)

...
λtdψd(x)


and we can approximate the diffusion distance as

Dt
ij ∼

d∑
1

λtk(ψki − ψkj )2 = ‖Ψ(xi)−Ψ(xj)‖2.

In other words, the diffusion distance in M can be approx-
imated by Euclidean distance in the DM projected space.
This makes DM a very useful tool to apply procedures in
the projected space such as K-means clustering that usually
rely on an implicit Euclidean distance assumption. All the
steps to compute DM are summarized in Algorithm 3.

While very elegant and powerful, DMs have the draw-
back of relying on the eigenvectors of the Markov matrix.
This makes it difficult to compute the DM coordinates of a
new, unseen pattern x. Moreover, the eigenanalysis of the
W̃ (α) matrix would have in principle a potentially very high
O(N3) cost, with N sample’s size. However, both issues can
be addressed in terms of function approximation. The stan-
dard approach is to apply the Nyström extension formula
[27] but LPs [21] and, hence, ALPs, can also be used in this
setting, as we discuss next.

To do so we consider the eigenvalue components ψ
(k)
j as

the values ψ(k)(xj) at the points xj of an unknown function
ψ(k)(x) which we try to approximate by an ALP scheme.

The general LP formula (2) for the eigenvector ψ̂(k) ex-
tended to an out-of-sample point x becomes now

ψ̂(k)(x) = ψ(k) ∗ P 0(x) +
L−1∑
0

d` ∗ P `+1(x)

=

N∑
i=1

P0(x, xi)ψ
(k)(xi) +

H∑
h=1

N∑
i=1

Ph(x, xi)d
(k)
h (xi),

(7)

with the differences d
(k)
h given now by d

(k)
h (xi) = ψ(k)(xi)−∑h−1

`=0 (̂ψ(k))(`)(xi).
We illustrate next the application of these techniques to

the analysis of solar radiation data where we relate actual
aggregated radiation values with Numerical Weather Pre-
diction (NWP) values.

5.2 Diffusion Maps of Radiation Data

A current important problem that is getting a growing at-
tention in the Machine Learning community is the predic-
tion of renewable energies, particularly solar energy and,
therefore, of solar radiation. We will consider here the pre-
diction of the total daily incoming solar energy in a series
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Algorithm 3 Diffusion Maps Algorithm.

Input: S = {x1, . . . , xN}, the original dataset.
Parameters: t, α, σ, δ.

Output: {Ψ(x1), . . . ,Ψ(xN )}, the embedded dataset.
1: Construct a graph G = (S,W ) where

Wij = w(xi, xj) = e
−‖xi−xj‖

2

2σ2 .

2: Define the initial density function as

g(xi) =

N∑
j=1

w(xi, xj).

3: Normalize the weights by the density:

w(α)(xi, xj) =
w(xi, xj)

gαi g
α
j

.

4: Define the transition probability

W̃
(α)
ij = w̃(α)(xi, xj) =

w̃(α)(xi, xj)

g
(α)
i

,

where g
(α)
i =

∑n
j=1 w

(α)(xi, xj) is the graph degree.
5: Obtain eigenvalues {λr}r>0 and eigenfunctions {ψr}r>0

of W̃ (α) such that{
1 = λ0 > |λ1| > · · ·

W̃ (α)ψr = λrψr.

6: Compute the embedding dimension using a threshold
d = max{` : |λ`| > δ|λ1|}.

7: Formulate Diffusion Map:

Ψ =

λ
t
1ψ1(x)

...
λtdψd(x)

 .

of meteorological stations located in Oklahoma in the con-
text of the AMS 2013-2014 Solar Energy Prediction Contest
hosted by the Kaggle company.1 While the ultimate goal
would be here to obtain best predictions, we will use the
problem to illustrate the application of ALP in the previ-
ously described DM setting.

The input data are an ensemble of 11 numerical weather
predictions (NWP) from the NOAA/ESRL Global Ensem-
ble Forecast System (GEFS). We will just use the main
NWP ensemble as being the one with the highest probabil-
ity of being correct. Input patterns contain five time-steps
(from 12 to 24 UCT-hours in 3 hour increments) with 15
variables per time-step for all points in a 16 × 9; each pat-

1American Meteorological Society 2013-2014 Solar En-
ergy Prediction Contest (https://www.kaggle.com/c/
ams-2014-solar-energy-prediction-contest).

tern has thus a very large 10, 800 dimension. The NWP
forecasts from 1994–2004 yield 4, 018 training patters and
the years 2005, 2006 and 2007, with 1, 095 patterns, are
used for testing.

Our first goal is to illustrate how applying ALP results in
good approximations to the DM coordinates of new points
that were not available for the first eigenanalysis of the ini-
tial Markov matrix. To do so, we normalize training data
to 0 mean and a standard deviation 1 and use the DM ap-
proach explained above, working with a Gaussian kernel,
whose σ parameter has been established as the 50% per-
centile of the Euclidean distances between all sample points.
We recall that we fix the diffusion step t to 1 and also the α
parameter, so that data density does not influence diffusion
distance computations. To decide the best dimensionality
for the embedding, the precision parameter δ has been fixed
at a relatively high value of 0.1, i.e., we only keep the eigen-
values that are bigger than the 10% of the first non trivial
eigenvalue. This choice yields an embedding dimension of 3,
which enables to visualize the results. We apply DM with
these parameters over the training set and obtain the corre-
sponding eigenvectors, i.e., the sample values ψ(k)(xi) over
the training patterns xi, and the DM coordinates of the
training points. We then apply Algorithm 1 to decide on
the ALP stopping iteration and to compute the differences

d
(k)
h (xi) in (7) and finally apply Algorithm 2 to obtain the

approximations to the values of ψ(k) over the test points.
In order to measure the goodness of the new coordinates,

we have also performed the DM eigenanalysis to the entire
NWP data, i.e., to the training and test inputs together. In
this way we can compare the extended embedding obtained
using ALP with the one that would have been obtained if
we had known the correct diffusion coordinates.

5.3 Results

For this experiments the results have been obtained com-
puting a DM embedding only over the training sample, and
using ALP first to extend DM to the test sample and then
for radiation prediction. In Figure 5 training and test results
are shown. The three diffusion coordinates for this example
are colored by the target, i.e. by the solar radiation (first
and third), or by the prediction given by ALP (second and
fourth). In the first and third image we can see that DM
captures the structure of the target radiation in the sample,
with the low radiation data (blue) appearing far apart from
the points with high radiation (red). If we compare this with
the prediction-colored embeddings (second and fourth) we
can observe that the radiation values have been smoothed
across color bands and that the general radiation trend is
captured approximately along the second DM feature even
if not every detail is modeled (recall that measured radi-
ation is the target value and, thus, is not included in the
DM transformation). This behavior can be observed for the
training points in first and second plots but also for the
test ones in the third and fourth ones, where it can be seen
that the ALP method makes a good extension of the target
function for new points.

For comparison purposes training and test ALP results
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(b) Training ALP Prediction.
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(d) Test ALP Prediction.

Figure 4: Training and test results when the DM embedding is computed over the entire sample and ALP used only for
radiation prediction.

−0.015

−0.01

−0.005

0

0.005

0.01

−6

−4

−2

0

2

4

6

x 10
−3

−2

−1

0

1

2

3

4

5

6

x 10
−3

ψ
1

ψ
2

ψ
3

(a) Training Radiation.

−0.015

−0.01

−0.005

0

0.005

0.01

−6

−4

−2

0

2

4

6

x 10
−3

−2

−1

0

1

2

3

4

5

6

x 10
−3

ψ
1

ψ
2

ψ
3

(b) Training ALP Prediction.
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(d) Test ALP Prediction.

Figure 5: Training and test results when the DM embedding is computed only on the training sample and ALP is used
first to extend DM to the test sample and then for radiation prediction.
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(b) DM Training Sample.
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(d) Test Expanded by ALP.

Figure 6: Clusters over the embedded data.

when the DM embedding is computed over the entire sample
are shown in Figure 4 (we could consider this as the “true”
DM embedding). Comparing with Figure 5 we can see that
the two DM embeddings are very similar and that the target
and prediction colors seem to be more or less the same.
This shows that when we apply ALP to compute the DM
coordinates of new test sample points we get an embedding
quite close to the ideal one obtained jointly over the train
and test patterns.

In order to give a quantitative measure of the quality of
the ALP projections, we perform Euclidean K-means with
K = 3 over the three-dimensional embeddings of the test
sample. We want to compare the clusters obtained over the
ideal DM embedding computed with the entire sample and
the ones obtained over the train DM embedding and then
extended for the test coordinates. The resulting clusterings
can be seen in figure 6. Notice that these clusters do not re-
flect radiation structure; instead more weight is apparently

given to the first DM feature (that should have the largest
feature values and, thus, a bigger influence when Euclidean
distances are computed). Anyway, recall that this embed-
ding was made with 15 different variable types, from which
just 5 are radiation variables. Because of this, the cluster
structure doesn’t have to reflect just radiation’s effect on
the embedding, but the overall variable behavior.

To obtained a concrete metric we will compare the cluster
assignments of the test points over the extended embedding
(the “predicted” assignments) with those made over the full
embedding (the “true” assignments). Looking at this as a
classification problem, the accuracy, i.e., the percentage of
test points assigned to their “real” clusters, measures how
well the ALP extensions match the “true” embedding struc-
ture. As the confusion matrix in Table 1 shows, ALP does
this quite well, with a total accuracy of 97.53%. Thus, if
clustering of the embedded features is desired, ALP makes
it possible for new patterns with a very high accuracy.
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Table 1: Confusion Matrix of the K-means classification for
the extended test coordinates.

P. 1 P. 2 P. 3
∑

R. 1 294 4 0 298

R. 2 9 342 2 353

R. 3 0 12 432 444∑
303 358 434 1095

Getting back to radiation prediction over the test sample,
once the embedding is obtained, we try to predict over it
the total daily incoming solar energy using now a two step
ALP procedure. To do so, DM are applied over the training
sample to obtain the DM embedded features and then a first
ALP model ALPF is built to extend the DM features to
the test sample and a second ALP ALPR to build the ALP
function approximation to the target radiation. Given a new
NWP test pattern, we apply ALPF to obtain its extended
DM features and, next, ALPR over them to obtain the final
radiation prediction.

In Figure 8, left, we have depicted for the second test
year the real radiation in light blue and the ALP prediction
in dark blue. Although the winning models in the Kaggle
competition followed different approaches, it can be seen
that ALP captures radiation’s seasonality. In the right plot
we zoom in and it can be appreciated how ALP tracks the
radiation variations. Even if not every peak is caught, ALP
yields a reasonably good approximation to actual radiation
without requiring any particular parameter choices nor any
expert knowledge about the problem we wanted to address.
Figure 7 shows the evolution of standard LP training error,
its associated LOOCV error and the LOOCV estimation
given by ALP when they are applied for radiation forecast-
ing. It illustrates the robustness of the ALP model against
overfitting. Again, the ALP model requires here the same
number of 15 iterations suggested by applying full LOOCV
to standard LP.

Finally, Figure 9 shows for a test point x, plotted as a
black dot, the evolution as ALP advances of the influence
of sample points on x, larger for red points and smaller for
blue ones. As it can be seen, as σ gets smaller, the number
of high influence red points also decreases sharply and so
does the possibility of overfitting.

6 Conclusions

The classical Laplacian Pyramid scheme of Burt and Adel-
son have been widely studied and applied to many problems,
particularly in image processing. However, it has the risk
of overfitting and, thus, requires the use of rather costly
techniques such as cross validation to prevent it.

In this paper we have presented Auto-adaptative Lapla-
cian Pyramids (ALP), a modified, adaptive version of LP
training that yields at no extra cost an estimate of the

kALP = kLOOCV = 15
0
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Figure 7: Training error for the solar example of ALP, stan-
dard LP and its associated LOOCV.
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Figure 8: Prediction of the daily incoming solar energy over
the second test year, and in a zoom over 100 days.

LOOCV value at each iteration, allowing thus to automati-
cally decide when to stop in order to avoid overfitting. We
have illustrated the robustness of the ALP method over a
synthetic example and shown on a real radiation problem
how to use it to extend Diffusion Maps embeddings to new
patterns and to provide simple, yet reasonably good radia-
tion predictions.
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