Semi-discrete Time-Dependent Fourth-Order
Problems on an Interval: Error Estimate

Dalia Fishelov

Abstract We present high-order compact schemes for fourth-order time-dependent
problems, which are related to the “buckling plate” or the “clamping plate”
problems. Given a mesh size /, we show that the truncation error is O(h*) at
interior points and O(h) at near-boundary points. In addition, the convergence of
these schemes is analyzed. Although the truncation error is only of first-order at
near-boundary points, we have proved that the error of these schemes converges to
zero as h tends to zero at least as O (h). Numerical results are performed and they
calibrate the high-order accuracy of the schemes. It is shown that the numerical rate
of convergence is actually four, thus the error tends to zero as O (h*).

1 Introduction

Time-dependent fourth-order differential problems play an important role in various
areas of physics. In mechanics they are involved in plate problems, such as the
“buckling plate” or the “clamping plate” problem. In fluid dynamics they are used
in the Navier-Stokes equations. In this paper we are interested in two time dependent
problems, which are related to fourth-order problems.

The first one is

Uy = Uy + DUy +cuy +du+ f(x,1), O0<x<l1, t>0 (D
and the second is
U = —Upeex +b e +cuy +du+ f(x,1), 0<x<l1, >0. 2)
Both problems are supplemented with boundary conditions

u(0,¢) = 0,u(0,t1) =0, u(l,t) =0u(l,t) =0 3)
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and the initial condition
u(x,0) =g(x), 0<x<I. 4
Consider now the finite interval I = [0, 1] with the grid
Xo=0<x)1 <+ - <Xy <XNy_1 <xy=1, 5)
where x; = jh, j =1,---,N and h = 1/N. In order to approximate the solutions
of Problems (1) and (2) one needs to approximate the operators 9%, 3> and d,. We

approximate 3% by 8%, where §¢ is the three-point compact operator defined by (see
(3.4D.

12
Sty = = ﬁ(ngx,j—5ivj), (6)

12 (vejt1 = Vo1 Vi1 + V-1 —2v
h? 2h h?

for 1 < j < N — 1. The operator 8> is a approximated by 52, where

~ h?
82v; =282y, — 8wy, = 82v; — E(Sivj, 1<j<N-1. (7

Here v, ; is the Hermitian derivative of v at point x;. It is defined by

1 2 1 Vil —Vj—1
—Vejo1 4 TVej F oVl = o =,

l<j<N-1. 8
6 3 6 =7/ = ®)

This operator was extensively studied in previous works [2, 4]. Problem (1) is
approximated by the semi-discrete finite-difference scheme

d ~ -
ES%VJ‘ZS;‘V]‘-}-Z)(S%V]‘-}-CVXJ +dv; + f(x;,1) ®
and Problem (2) by
d -
Evj:—Sivj +b5§vj+cvx,j+dvj+f(xj,t). (10)

Let v, w be two discrete functions, defined on the grid (5) and vanishing at the
two endpoints xg, x. We define the discrete inner product (v, w),, and the discrete
norm |v|; as

N—1

v,w), = Zvjwjh, Vir= vV, (11D

Jj=1
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2 Consistency for Compact Operators on an Interval

2.1 The Truncation Error

Here we consider the truncation errors related to the operators &%, 8)2( and the
Hermitian derivative v,. Let oy be the (Simpson) operator [4]

1 2 1
OyV; = gvj‘_l + gvj + EVj+l- 12)

We consider first the truncation error related to §¢. We have the following
inequalities (see [4]):

o ius — o (W) *(x))] < Ch* |u®|| oo, 2<j <N 2. (13)
low8iut — o (D) (x))] < Chllu® | j=1.N—1. (14)

Consider now the operator 8)2(

~ h2
— 5?141 = —25)%1/!]‘ + SXMX’]‘ = —5§uj + ESiu] (15)
Operating with o, on the last equality, we have
52 2 R
— 0, 0u; = —0x 8 u; + onrsxuj. (16)
Using the truncation error for —§2, we have —82u; = —d2u(x;,1) — %3114()6]- )+
O(h*). Thus,
h2
- Uxé’)%uj = —oxa)z(u(xj,t) — onaiu(xj, 1)+ O(hh). a7
Inserting the last equality in (16), we have
~ h?
— 0X5§uj = —Uxaiu(xj,t) + E(&(Siuj - aiu(xj,t)) + O(h*). (18)
Combing the above with (13) and (14), we find that
— 0.82u; = —0,u(x;, 1) + O(h*), 2<j<N-2. (19)

—0,82u; = 0, u(x;, 1) + O, j=1,N-1. (20)
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In addition (see [3,4]), we have

uyj = 0yu(xj,t)+ O(h*), 1<j<N-—1. (1)

3 The Time-Dependent Case
uxxt = uxxxx+buxx+cux +d u + f(th)

Consider the time-dependent fourth-order problem

Upyt = Uiy + D Uy +cuy +d u+ f(x,t), 0<x<1,t>0
w(0,2) =0, u(1,1) =0, uy(0,1) =0, u,(1,1) =0, >0 (22)

u(x,0)=g(x), 0=<x<1.

The canonical semi-discrete approximation of (22) on the grid (5) is
%Sivj(t) = Sivj(t) +b szcvj(t) +cevej+dvi(t)+ f;@), j=1,....,N—1,
V()(t) = 07 VN(I) = 07 VX,O([) = Os VX,N([) = O, t > 0

vi(0) = g = g(x;), j=0,....N.
(23)

Although the truncation error deteriorate at near-boundary points, we prove in the
following Proposition that the convergence of the approximate solution to the exact
one is of high accuracy. A similar result was shown in [1,6,7] in cases where the
accuracy of the scheme deteriorates near the boundary. In [6] and [7] a hyperbolic
system of first order and a parabolic problem were analyzed. In [1] it was proved for
a parabolic equation that if the scheme is of order O (h%) at inner points and of order
O (h“~*) near the boundary, then if s = 0, 1 the accuracy of the scheme is O(h%).
However, if s > 2 then the overall accuracy the scheme is O(h*~*13/2). In our case
o = 4 and s = 3 so this result yields a convergence rate of 2.5, but we actually
prove that the convergence rate is at least 3.5.

Theorem 1 Let u(x,t) be the exact solution of (1) satisfying the boundary condi-
tions (3) and the initial condition (4). Assume that u has continuous derivatives with
respect to x up to order eight on [0, 1] and up to order 1 with respectto t. Let v(t) be
the approximation to u, given by the (23). Then, the error e(t) = v;(t) —u(x;,t)
satisfies

max _|e(t)], < max |§Fe(t)|, < C(T)h*>, 24)
0<t<T 0<t<T

where C(T') depends onlyon f, gand T.
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Proof The error e () satisfies

— 282 (1) = =8j(t) —b 82e;(t) —cenj(t) —d e;(t) +r;(t), j=1,....N—1,

ar - x

eo(t) =0, eny(t) =0, exot) =0, exny(t) =0, >0,

e;(0)=0, j=0,....N,
(25)

where r; (¢) is the truncation error at point x; at time . Taking the inner product of
(25) with e(¢) and using

19

(B0 €0 = (e 2el@). e, 6)

we find that

13 (=82(t), e(t))n = —(8te(t), e(t))n — b (82e(t). e(t))n

e (en(t). et —d (). et + (rD). e D

First consider the term (e,(¢), e(t)),. Using the Cauchy-Schwartz inequality, we
have

1 1
(ex(t), e)n] < le(®)]n lex(®)|n < Ele(t)lﬁ + §|ex(t)|ﬁ. (28)

Since e, = a;l8xe and crx_l is bounded (see [2] Equation (51)), we have
that |e,()]? < C|8Fe(r)|?. By discrete integration by parts [§fe(r)|7 =

—(8%e(t),e(t)). Using the definition (7) of —g% and the coercivity of 8%, we
have

— (82e(t), e(1))n > —(82e(t), e(1))n. (29)

< —C(8%(1). e(1));. Therefore,

Thus, |e, (t)|i

(ex(t). e(t))n] < —C(82e(t). e(t)) + %(e(r),e(r»h. (30)
Combining (30) with (27) we obtain
12 (=82(t), e(t))n < —(8%e(r), e(t))n — Ci(82e(2), e(t))n

(31)
+ Cle(t),e(®)n + (r(t),e(®))n.
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Let us now consider the term C (e(?), e(t)),. Using the definition (7) of —gi, and
the coercivity of §%, we have

— (BFe(),e(t)n = —(83e(t), e()n = (8Fe(0), 8} e()n- (32
By the discrete Poincaré inequality, we find
(e(t).e()n < C (8 e(r).8F e(t))n. (33)

Therefore, (e(t),e(t)), < —C (S,%e(l),e(l))h. Combining (31) with the last
inequality, we obtain

13 (=82e(t), e(t))n < —(8te(t). e(t))y — Ci (B2e(t), e(t))n + (e(t), 7 (1))
(34)

Consider now the term (r(¢),e(t));. Using the Cauchy-Schwartz inequality, we
have

|(r (@), e@)n] = ((67H'2r (), (6" e(®)n
< 1EH2r@)]n [6De@)n < 50r(1). 874 + 5(8e(@).e@)n  (35)
= Lo (1), 078 o our (1) + (8te(r), e())n.

Combining the truncation errors (13) and (14) for UXSi, (19) and (20) for ng,% and
(21) for the Hermitian derivative e,, we have

(PR(t))T =[0(h), O(hY), ..., 0", O(h)]. (36)

Here, P is the matrix representing the operator 60, and R(¢) is the vector
corresponding to r(¢). As a result of [S] Equations (111) and (116), we have

(a) [(P7'S~'P7IPR);| < Ch*, 2<i <N -2,

(37)
(b) [((P7'S~'PIPR);| < CH, i =1,N —1,
where S the matrix representing 8;4(. Using (37) (a),(b) and (36), we find that
|(PR(t)" P'ST'R(t)| < CHE. (38)

Therefore, |0, r(t), 0 '8 *o ‘o, r(t)| < Ch’. Combining the last inequality with
(35), we obtain

[(r(1). e(t))n] < $(8te(t). e(t))n + CH'. (39)
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Inserting (39) in (34), we have
sa(=82e,e); < —3(8te(r), e(n)y — C1 (82e(1), e(t)) + CH’

< Cl(—gﬁe, e + CcH.
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(40)

By Gronwall’s inequality —(82e(t), (7)), < C(z)h’. Using the coercivity property

—(e(1). 82e@)n = (8 e (). 8 et
and the discrete Poincaré inequality, we obtain the estimate

le@)]n < Cl6Fe@)n < C(TK?, 0<1<T.

4 The Time-Dependent Case
U = —Upyyx T DUy +cuy +du+ f(x,t)

Consider the time-dependent biharmonic problem
U = Uy + bty +cuy +d u+ f(x,1), 0<x <1,
u(0,t) =0, u(1,t) =0, u(0,t) =0, u,(1,1) =0, >0
u(x,0)=g(x), 0<x<I.

The canonical semi-discrete approximation of (43) on the grid (5) is

MO — g4 () + b8 v () +d v @)+ £, J=1,...

vo(t) =0, vy(t) =0, Vx,()(t) =0, Vx,N(t) =0, t>0

vi(0) =gj =g(x;). j=0.....N.

Define the error e (t) by e; (t) = v; () — u(x;,1).

(41)

(42)

(43)

(44)

Theorem 2 Let u(x,t) be the exact solution of (2) satisfying the boundary condi-
tions (3) and the initial condition (4). Assume that u has continuous derivatives with
respect to X up to order eight on [0, 1] and up to order 1 with respectto t. Let v(t) be
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the approximation to u, given by the (44). Then, the error e;(t) = v;(t) —u(x;,t)
satisfies

[max le(t)]n < C(T)h33, (45)
<t=

where C(T') depends onlyon f, gand T.

Proof The error e () satisfies
% =—8e;j(t)+b Sfej(t) +cecj(t)+de;jt)—r;t), j=1,...,N—1,
eo(l) =0, eN(t) =0, ex,()(l) =0, ex,N(t) =0, t>0

ej(0)=0, j=0,....,N,

(46)
where r; (¢) is the truncation error at point x; at time . Taking the inner product of
(46) with e(¢), and using

L2 e el = (oet). (1) @)
X AR TR
we find that

Ld(e(t).e(t)n = —(Ste(t).e(t)n + b (2e(t), e(t))n
(48)
+ ¢ (ex(t),e(®)n +d (e(t),e(t))n — (r(1), e(t))n-

Considering first the term (e, (¢), e(¢));. Combining (30) with (48) we obtain

L2 e(t), e(t)n = —(8*e(t), () + b (B2e(t), e(t)i o)
+d (e(t),e(®))n — (r(t),e(t))n.

Let us now consider the term (52e(z), e(1));. Using the definition of —§2, we
have

~ 2
— (82e(t),e(t))n = —(82e(t), e(t))n + %(Sie(t),e(t))h. (50)
Therefore,

L3 (e().e()n = —(1+bB)(Se(t). e(t)n + b (82e(r). e(1)) 1)
+d (e(t),e(®))n — (r(t),e(t))n.
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Consider now the term (82e(#), e(7))s. Using Cauchy-Schwartz inequality, we
have

1
— (8Fe(t), e < le(®)]n |8e()]n < Zle(t)lﬁ + §|8§e(z)|ﬁ. (52)

Using the coercivity property [82e()|? < C(e(t), 8e())s, we obtain

1 C
— Be(0). e = 5le®} + 5 Ele(r). ). (53)
Inserting (53) in (51), we obtain that for i1 < hy and € < ¢,
L3 (et), e()n < —1(Ste(t).e()n + Ca (e(t). (@) — (r(t).e)n. (54

Inserting (39) in (54), we have

L ). e = Co (ele). ety + CH. (55)

By Gronwall’s inequality |e|? < Ch’. Thus, |e(t)|s < C(T)h**, 0<:<T. O

5 Numerical Results

Consider the exact solution u(x, ) = e™"e* of the problem

Upg = Uy + Une + f(x,2), O0<x <1, >0,
u(0,t) =e™, uy(0,t) =e™, >0,

u(l,t)y =e'™", u(l,t)=e""", t>0,
u(x,0)=¢e*, 0<x<=<1.

(56)

Here u and u, are given on the boundary points and f(x,¢) is chosen as u(x, ) =
e 'e* is the solution of the differential equation above. The results are given in
Table 1. They demonstrate the fourth-order accuracy of the scheme.

Table 1 Compact scheme for uy; = Uy + U + f with exact solution: 4 = e 'e* on
[0,1],# > 0. We present |ey|, the error in u, and |e, |, the error in u, in the [, norm at t = 0.5
Mesh |N=8 Rate |N=16 Rate |N=32 Rate |N=64

le]n 1.5742(=7) |4.07 |9.3544(—9) |4.02 |5.77490(—10) [4.00 |3.5844(—11)
lex|n 1.5500(—6) |4.00 |9.7033(—8) |4.00 |6.0672(—9) 4.00 |3.7893(—10)
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Table 2 Compact scheme for iy = e + Uy + f With exact solution: u = e~ sin(wx)/7>
on [0, 1],7 > 0. We present |e|;, the error in u, and |e,|;, the error in u, in the [, norm at ¢ = 0.5

Mesh | N=8 Rate |N=16 Rate |N=32 Rate |N=64

lels 52800(—6) |4.01 |3.2679(=7) |4.00 |2.0381(—8) |4.00 |1.2732(—9)
lexln 2.0038(=6) |4.07 |1.1926(=7) |4.02 |7.3451(=9) |4.01 |4.5737(=10)

Next we consider the solution u(x, ) = e 'sin(rx)/n? of the problem

Up = Uy + Une + f(x,2), O0<x <1, >0,
u(,t) =0, uy(0,t) =e"/m, >0,

u(l,t) =0, wuy(l,t) =—e'/m, >0,

u(x,0) = sin(wx)/7?, 0<x<I.

(57)

Here u and u, are given at the two boundary points and f(x, ¢) is chosen such that
u(x,t) = e~' sin(mx)/m? if the exact solution of the problem above. The numerical
results are shown in Table 2. The calibrate the fourth-order accuracy of the scheme.
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