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1. Introduction

A general survey of methods for adapting standard finite
element methods to deal with singularities has been given by
Whiteman and Akin in [7]; that paper will henceforth be referred
to as WA and, when equations and sections are referenced, the
relevant numbers will have the prefix WA. In the present paper
we consider in detail the application of a conforming local mesh
refinement finite element technique, proposed by CGregory,
Fishelov, Schiff and Whiteman [2], to a model opening mode linear
elastic fracture problem. This problem has also been treated
using specially modified finite difference techniques by Bernal
and Whiteman [1], and, using collocation techniques by Gross,
Srawley and Brown [3] and by Whiteman [6]. In the model problem
a two dimensional rectangular elastic solid containing a single
edge crack is subjected to a uniform inplane load normal to the
two edges parallel to the crack, the remaining edges being stress
free. The problem is one of plane strain and can be formulated
in three different but equivalent ways; 1in terms of the Airy
stress function u(x,y), in terms of the x— and y-displacements
U(x,y) and V(x,y), in terms of stresses Oxx» Oxys» Oyy+

In WA(2.6) a singular biharmonic functlon was expressed in
the form of the series

= - 1 2
E [(_])n lazn_lr(n+2){_ COS(D"S)G +%—% cos(n+%)8}

n=1 (1.1)
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F: (_])naznr(n ){ cos(n—-1)0 Cos(n+1)8}},
where the {ai}'are unknown coefficients and (r,8) are local
polar coordinates about the point of singularity. For the model
fracture problem the series (1.1) can be used to represent the
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Alry stress function. As was indicated in [7] the opening mode
stress intensity factor K (see also [4]) is related to a, by the
expression K =—27 a_. Thus in the computations of this paper
we seek to approxima%e a, for the model problem, so producing
approximations to K.

The various formulations of the model problem are given in
Section 2, together with discussions of the finite element tech-
niques used. The techniques of local mesh refinement are des-
cribed in Section 3, and the results derived are given in Section
4. Although these techniques for each formulation produce
approximate solutions to the field equations, they do not give
approximations to the coefficients {ai}. We therefore derive
such approximations by least squares fitting to the appropriate
calculated nodal values, either of a truncated form of the series
(1.1) for the Airy stress function u(r,f8), or of the truncated
forms of the corresponding series which can be derived from (1.1)
for the displacements U and V. Results derived in this way are
also presented in Section 4.

2. Two Dimensional Fracture Problem

We consider the model problem of a two dimensional solid in
a plane strain situation. The solid is the cracked rectangle
OABCDEFGO of Fig. 1 with width 2a and crack of length a. This is
subjected to an inplane load A normal to BC and FE, so that the
normal and shearing stresses on 0A and 0G are zero. There is of
course symmetry about AOD.
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Fig. 1.
2.1. Airy Stress Function Formulation

In terms of the Airy stress function u(x,y) the model prob-
lem, which is of type WA(2.2), is defined in {I = OABCDEFGO of
Fig. 1 so that
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AZEU(X:Y)] =0, (X’Y) e,

u = %E =0, on OA and AB,
?2 , (2.1)
= RS a7y 8u
u = A\Z t ax + 5 ), o 0 on BC,
u = 2%&2, %% = 2xa on CD,

with the boundary conditions on the remainder of the boundary
being defined in the obvious way using the symmetry. In (2.1)
3/3n is the derivative in the direction of the outward normal to
the boundary. It is easily seen from (2.1) that the series (1.1)
satisfies the biharmonic equation and the boundary conditions on
the crack.

The finite element method will be applied to a variational
form of (2.1) defined on the Sobolev space H2(R), where

%
H2(2) = {v : v ¢ HZ(Q) and v satisfies the essential
boundary conditions of problem (2.1) on 30}.
We thus seek to solve the wvariational problem

gén Il[VJ,
where
Il(v) = Jj(ﬂv)zdxdy. (2.2)
Y

For the finite element method we partition { into rectangular el-
ements and, in the usual way, fgrm over this partition a finite
dimensional space contained in HZ?(f)) which consists of piecewise
bicubic functions with C}(§) continuity and satisfying the essem
tial boundary conditions of (2.1). In any element these Hermite-
bicubic functions have as degrees of freedom at any node the
values of the function and its x—, y— and xy-derivatives, giving
16 degrees of freedom per element.

2.2. Displacement Formulation

Problem (2.1) can be reformulated in terms of the x- and y-
displacements U and V of the body. These minimise the potential
energy functional

i _  pEy o 2 2 - 2
1,[u,v] H(a[uxwy] +EU Y, +Y[Uy+2Uy\X+VX])dxdy
1 B B (2.3)
- H (T ¥ Ty)ds,
o
over Hé(ﬂ) 5 Hé(Q), where the subscripts x and y in the integrand

denote derivatives.
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Hi(ﬂ) = {v : v e H1() and v satisfies essential
boundary conditions appropriate to *}, (2:4)

dfip 1s the part of the boundary over which the surface tractions

T% and Ty are applied and the constants o and B are given by

E(1-v) g = Ev i __E
2(1+v) (1-2v)° T (1) (1-2v)° T 41+

with E the Young's modulus and v the Poisson's ratio. The symm—
etry of the problem about AD, Fig. 1, is exploited, so that in
(2.3) and (2.4) Q is taken as OABCDO, and the essential boundary
condition V = 0 is imposed on OD. For this problem in the upper
rectangle all surface tractions used are zero with the exception
of T, = X on BC.

In applying the finite element method to (2.3) we again take
a partition of rectangular elements ?nd app{oximate U and V with
trial functionsg respectively from H;; and Hy, of the usual piece-
wise-bilinear/CY(Q)) type which satisfy the required essential
boundary conditions.

o =

2.3. Assumed Stress Hybrid Formulation

This formulation was originally developed by Pian et al. [5].
The starting point is the principle of minimum complementary
emnerygy, in which the functional to be minimized is

. [ o= = :
13(0) = ZJJCijklgijOkldxdy J (U TX + V Ty)ds (2.5Y
Q a0,

where the 0j; are the components of the stress temsor, Ty and T
are the corresponding tractions, and 8, is the portion of 3%
over which the displacements U and V are described. In the
stress hybrid scheme the domain § is divided into elements, and
the conforming condition that the tractions T = .0.n be continu—
ous over the interelement boundaries is replaced by the intro-
duction of Lagrange multiplier terms. The multipliers turn out
to be the corresponding displacement components. Thus indepen-—
dent trial functions may be assumed in each element for the
stresses 0;: and for the displacements U and V on the element
boundaries.” The energy functional may be written as a sum of
integrals over each element ZI%(U,ﬁ,V), where

=
€l By e d [[1Am¥By 0 2 B
L1,(0,U,V) = F”[ T g Hogs B (Lves, \JGXXny)]dxdy
Q’B
- J (U’JTX+VTy)ds + J (L’TX+VTy)ds
#la (aQT)e

in which T, and T, are the tractions corresponding to the assum-

ed stresses O, and TX, Ty are the prescribed tractions over
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(BQT)e, the part of 9Qp lying on 9{,. The finite element solu-
tion i1s obtained by assuming in each element polynomial approx-
imations for the stresses ¢jj; and f%r the displacements U, V.

Specifically, we take (Tyy,0%ys0yy)" = S(B),8,,...,8; )T, where

T
By )

is a vector of ng coefficients. Similarly, we take w,nT =
L(ql,qz,...,q )T, where L is a matrix of interpolation poly-

the elements of the matrix S are polynomials, and (B

nomials, and (ql,...,qn )T is the vector of the ng nodal values

specifying the displacements along 3Q,. Thus we obtain for each
element that

Ig(o,ﬁj) = —;-BTHB - gTcq + qT@®,

where

L, _1ff:1-v2 =
EHij"E“[_i' (84815%593857) * (1MW) (8;5,,798,;8,.) dxdy
[ s T
with G = | RTLd1 and Q° = J L Tdl.
Q

3 e (aﬂ‘r)e

As the conforming condition has been replaced by Lagrange
multiplier terms, the assumed stresses in each element are com-
pletely_ independent of one another. Hence we may make each
Ig(o,U,V) stationary with respect to its coefficients 85, i = I,
.+.yng. The resulting equations will be HB = Gq so that we may
substitute foi H in the expression for —Is, obtaining
-1¢(o,Uu,V) = Equeq—qTQe, where k® = GTHTG is the element stiff-
ness matrix, We note that IS is now expressed entirély in terms
of the nodal values for the aisplacements, in analogy to the
displacement formulation. We can now assemble, and make
I1(0,U,V) stationary with respect to the {q;}, resulting in the
usual set of equations Kq = Q. ' ~

In choosing the particular approximations to be used for o, U
and V, there is a restriction that ng 2 -2, where £ is the
number of rigid-body degrees of freedom (£ = 3 in two dimensions).
Computations have been carried out for the following two cases:

(i) o0j; bilinear (nB =7) in 4, U and V linear over the 02
(HQ=7 5
(ii) Gij biquartic (nB = 25) and U, V Lagrange cubic (nQ = 24).

3. Local Mesh Refinement

In order to deal effectively with the singularity at the
crack tip O of the problem of Section 2 we have applied the
technique of local mesh refinement with rectangular elements,
proposed by Gregory, Fishelov, Schiff and Whiteman [2] and des-
cribed in WA Section 4.2.This produces in the mesh transitional
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elements, each containing five nodal points, see WA Fig. 2. For
the Airy stress function formulation of Section 2.1 the C! form
of the local trial function [2,eq.6] is used in these elements,
thus giving 20 degrees of freedom in the element. The corres-—
ponding C% form of [2,eq.6]lhas been used in these elements for
the displacement formulation of Section 2.2. Tor the stress
hybrid formulation of Section 2.3 the stresses in a transitional
element are treated as for a standard four node element, whilst
the displacements over the edge containing the extra nodal point
are taken to be linear between each pair of nodal points.

4. DNumerical Results

All the computations have been carried out with BC=2a=10.8
and AB=0.7. The load A is taken to be unity and the partition
consists of elements of size 0.1x0.1(x~ and y-directions) for the
Alry stress function calculations and 0.1 x0.0875 for all others.

Table 1 lists results obtained using the Airy stress function
formulation (2.1) and (2.2). The approximations to the stress
function u, obtained using various levels of local mesh refine-
ment, are given at representative points in the domain. The
last column of the Table contains results obtained by Whiteman,
[6], using a collocation technique involving the fitting of a
truncated form of the series (1.1) to the boundary data at a
large number of points on AB, BC and CD and solwing the result-
ing overdetermined linear system for the values {aj} with linear

TABLE 1

Values of Airy Stress Function (Multiplied by 10%)

From Airy Stress Function Formulation From
Position Using Hermite Bicubic Elements Collocation

Levels of Refinement Using L.P,[6]

X y 0 4 Tk 14
-0.1 0.1 19.0 20.1 20.2 20.2 20.2
0 0.1 133.1 145.7 146.4 146.5 146.6
0.1 0.1 586.8 615.5 617.1 617.3 617.3
0.1 0 470.4 505.7 507.8 508.1 508.1
-0.2 0.2 23.0 23.8 23.8 23.8 23.9
0 0.3 495.8 503.1 503.5 503.5 503.7
92 022 1501.2 1514.6 1515.4 1515.5 1515.5
0.3 * 0.l 2313.7 2321.3 2321.7 2321.8 2321.6
=02 0.4 122.4 123.4 123.4 123.4 123.4
0 0.5 720.5 722.4 722.5 222w h 722.8
0.2 0.4 1699.5 1703.0 1703.1 1703.2 1703.2
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programming methods. These collocation values are treated as
benchmark results for the model problem. The agreement between
the results of the last two columns of Table 1 is particularly
satisfactory in view of the fact that the two methods used for
their derivation are completely unrelated.

TABLE 2

Values of U and V obtained with stress hybrid formulation
(Bilinear stresses and linear displacements)

Position Levels of Refinement

x v 2 6 10 15 20
-0.05 0 U -0.0321 0.0046 0.0142 0.0169 0.0174
* Vv  0.8488 0.8651 0.8661 0.8662 0.8662
0 0.04375 U 0.3391] 0.3793 0.3892 0.3919 0.3924
vV 0.3643 0.3780 0.3788 0.3788 0.3788
0.05 0 U 0.2088 0.2457 0.2553 0.2580 0.2584
-0.2 0.175 U 0.9189 0.9633 0.9734 0.9761 0.9766
v 1.8717 1.8912 1.8925 1.8926 1.8926
0 0.35 U 1.5529 1.6048 1.6154 1.6181 1.6186
v 1.0264 1.0366 1.0373 1.0373 1.0373
0.2 0.175 U 0.7238 0.7678 0.7779 0.7806 0.7811
v 0.1241 0.1250 0.1251 0.1251 0.1251

The values of U and V obtained with the stress hybrid method
and local mesh refinement using bilinear and linear trial func-
tions respectively for the stresses and displacements are given
in Table 2, where we have used values E = 5/4 and v = 1/4. The
convergence of the results with successive levels of refinement,
although satisfactory, is not as rapid as in the Airy stress
function formulation. However, less computation is required
because there are now only two degrees of freedom per node (U,V)
instead of four (u, ug, Uy, “xy)'

The use of local mesh refinement in the finite element solu-
tion of (2.2), (2.3) and (2.4) does not produce approximations
to any of the coefficients {a:} in the series of (1.1). 1In
order to calculate such approximations we perform least squares
fittinpgs of a truncated form of (1.1) to the calculated values
of r‘gu and of modified truncated forms of (1.1) to U and V. 1In
the fitting to the wvalues of the Airy stress function the factor
r 2 is introduced in order to compensate for the smallness of u
near 0. Table 3 lists values so obtained together with values
from [6]. Convergence is again more rapid with the Airy stress
function approach.

Table 4 outlines the situation for the first seven coeffi-

cients, Ay eeey A, which includes results from the stress



TABLE 3

o

' Values of 2 obtained by stress hybrid and Aivy stress function formulations

Stress Hybrid Stress Hybrid Airy Stress Function Collocation,

Values obtained from Values obtained from Formulation [6].

Displacement U Displacement V

Levels of Refinement Levels of Refinement Levels of Refinement

2 10 20 2 10 20 0 7 14

a, -0.990 -1.234 =1.250 =} 210 -1.254 =14:255 =1.1707 -1.2642 -1.2649 =1.2651
a, 0.056 -0.114 =0 125 -0.079 0.028 0.028 -0.1093 -0.0946 -0.0945 -0.0944
a, -1.495 -0.848 -0.802 2 b 0 =0.803 -0.801 =0.6004 -0.9329 =0.9354 -0.9361
a, -0.102 =0.015 =0.010 -0.065 =0.418 -0.420 -0.0456  -0.1004 -0.1007 -0.1004
ag -0.031 0.734 0.788 0.950 0.532 0.530 0.3954 0.7983 0.8013 0.7985
a, =0.440 0.583 0.657 0.591 0.587 0.587 0.2513 0.4668 0.4684 0.4603
a -1.884 -1.210 =1.164 -0.196 =0.917 -0.920 -0.0107 -0.9962 -1.0040 -0.9961
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TABLE 4
Coefficients a obtained by the various methods
Displacement Stress Hybrid Stress Hybrid Alry Stress
Formulation Formulation Formulation (Cubic Formulation
(Bilinear) with (Linear) with Displacement with Mesh

Mesh Refinement  Mesh Refinement Biquartic Stresses) Refinement

U v U v U v
a, -1.170 =-1.212 -1.250 -1.255 -1.308 -1.309 -1.265
a, -0.089 -0.051 -0.125 0.028 -0.103 -0.089 -0.095
33 -(.885 -0.886 -0.802 =-0.801 -0.933 -0.950 -0.935
a, 0.029 -0.175 -0.010 =-0.420 =-0.096 -0.141 -0.101
ag 0.590 0.640 0.788 0.530 0.809 0.907 0.801
a, 0.652 0.568 0.657 0.587 0.429 0.418 0.468
a, -2.118 -1.040 =-1.164 -0.920 =-0.893 -0.89%4 -1.004
TABLE 5
FPinal values for the coefficient a,
Me thod 'al

Displacement:Bilinear Displacements with Refinement U -1.1699
Vv -1.2122
Stress Hybrid: Linear Displacements and Bilinear U -0.9897
Stresses vV —1.2095
Linear Displacements and Bilinear U ~=1.2502
Stresses with Refinement V -1.2545
Cubic Displacements, Biquartic U -1.3080

Stresses vV -1.3091
Airy Stress Function: Hermite Bicubic =153 07
Hermite Bicubic with -1.2649

Refinement -1.2651

Collocation, [6]

hybrid scheme using biquartic trial functions for the stre

55e8

and Lagrange cubics for the displacements, but without mesh re-

finement. It will be noted that these results give better

approximations to a:, j > | than those obtained using bilinear/
linear trial functions, plus mesh refinement. Thus, since we are

primarly interested in the stress intensity factor K=(=V/2.

al)
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it seems that the bilinear/linear technique produces the best
approximation. The results obtained from the displacement
formulation converge less rapidly than the corresponding results
for the stress hybrid case. The results for the coefficient a,
are summarised in Table 5.

From the above we conclude that the results obtained for the
stress intensity factor are sufficiently accurate for all prac-
tical purposes. The Airy stress function formulation leads to
results of higher accuracy, but at the cost of a larger comput—
ing time on account of the C! conforming condition, which
necessitates the use of piecewise bicubic trial functions with
the resulting large matrices. The excellent agreement of the
Airy stress function results with the bench mark solutions [6]
suggests the definitive value of —-1.265 for a; in the model
problem. ’
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