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A FDMD GRID FOR VORTEX METHODS

Dalia Fishelov

Abstract. The purpose of this paper is to suggest a fixed grid for vortex methods.

Originally, vortex methods are grid-free methods, for which the initial uniform grid is

moving in time with the particles. It was observed in numerical experiments that there

wiul a deterioration in the accuracy of the vortex method as time progressed. This was

understood as lose of accuracy due to the distortion of the initial grid. We suggest a fixed

grid calculation for vortex methods to overcome this difrculty. We give error estimates

and prove stability for the linearized Euler and Navier-Stokes equations.
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1. Introduction

Vortex methods are numerical methods for the simulation of the incompressible Euler

and Navier-Stokes equations. In vortex methods, one uses the vorticity formulation of the

Euler and the Navier-Stokes equations. This representation has the advantage that some

physical phenomena, such as turbulence [8], [O], are better understood by the realization



of the evolution of the vorticity. Another feature of vortex methods, as suggested by

Rosenhead [zrl, is that for vortex methods we follow particle trajectories, arong which the

evolution of the vorticity is tracked"

Chor in [?] in t roducedtheblobvor texmethod, forwhichthekernel 'whichconnects

velocity and vorticity for incompressible flows' was smoothed' This was done by convolving

this singular kernel against a cutofi function, which approximated a delta function in the

sense of moments. stability and convergence of vortex methods was first proved by rrald

[fZ], and further improved by Beale and Majd" [2], [a], and Hald [16]' which introduced

high order cutofi firnctions for vortex methods'

It was observed numericaltv [4], that the formal accuracy of vortex methods is lost as

time progresses. Beale and Majda suggested, therefore' the rezoning for vortex methods'

Every several time steps the vorticity is interpolated into a uniform grid' For this purpose'

they used the natural continuous representation of the vorticity, which is given by the

discrete convolution of the vorticity against the cutoff firnction' As was suggested in [+]'

the rezoning should not be done too often in time, as it introduces numerical viscosity to

the vortex scheme.

To avoid the deterioration in the accuracy of vortex schemes, we suggest to approx-

imate the vorticity on a non-moving, for gxample uniform, grid. since the grid is fixed'

there is no need to interpolate the vorticity into a uniform grid as time progresses. For

t he f i xedg r i donehas to toapp rox ima te theconvec t i ve te rm .The idea i s toconvo l ve

the vorticity with a cutoff function, and then explicitly differentiate the cutoff function to

approximate the first order derivatives in the convective term. In fact, other numerical

methods, such as spectral methods, can be represented in a similar way [fSl' We prove

s tab i l i t y fo r the l i nea r i zedEu le requa t ionsandg ivee r ro res t ima tes . I t i ssu f f i c i en t to

require that the Fourier transform of the cutofi function is real to ensure the stability of
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l;e scheme. We also prove the consist"r,"y of this scheme and give error estimates. The

ijscretization error is determined by the order of the cutoff function. One may choose the

n'.off function, such that arbitrary order of convergence is obtained.

For the Navier-Stokes equations, we have to approximate the viscous term as well. The

-a.ii€r is approximated by a,n explicit differentiation of the cutoff function, as suggested in

i{ . this time on a fixed grid. In more detail, we approximate the vorticity by convolving

-: rith a cutoff function, and then approximate the Laplacian of the vorticity by explicit

:a-cuiation of the Laplacian of the cutoff function. Therefore, all the spatial derivatives

'-rolved in the Navier-Stokes equation are approximated in the same manner. We prove

::e stability for the linearized Navier-Stokes equations in case the Fourier transform of the

:::off function is non-negative (see [t+]). We prove the consistency of this scheme for the

-::earized Navier-Stokes equations and give error estimates.

\Ye applied the scheme to the Euler equations with iadially symmetric initial con-

i:li.ons, and for the Navier-Stokes equations with periodic initial conditions. For both

;mbie'.'. the analytical solution is known. The numerical results demonstrate the accu-

:ari' of the scheme, and in most cases the error from the fixed grid is smaller compared to

::e one from the moving grid.

The paper is organized as follows. In section 2 the new scheme for the Euler equations

i: :epresented and in section 3 and 4 we prove the stability the consistency of the scheme

io: lhe linearized equations. In section 5 we represent the new scheme for the Navier-

Srcies equation and in section 6 and 7 we prove stability and consistency for the linearized

f arier-Stokes equations. Numerical results are represented in section 8.



2. L Fixed Grid for Euler Equations

The object of this paper is to construct a high-order numerical approximation for

the Euler and the Navier-Stokes equations, using a vortex method. The Euler equations,

formulated for the vorticity { are given below.

ot€ + ( " '  V)€ -  (€ 'V)u :  o ,

div u :0,

where € : curl ll, ll _ (urrrur) is the velocity vector.

(2.1)

We first describe the convensional formulation of vortex methods, in which the grid

is moving with the particles. We follow the characteristic lines $ : u, along which the

vorticity evolution is given Uy *f - (€.V)u (see (2.1)). Note that in the right hand side of

the last equation we have the stretching term, which vanishes in a two-dimensional problem.

In addition, the following relation between velocity and vorticity holds for incompressible

flows [10].

u(x,t) = 
I 

*r*- x'){(x', t)d.x'. (2.2)

flere, K : (-y, x) f Zrr2 in two dimensions, and in three dimensions K is a matrix, which is

singular at the origin. See, for gxample, [1],[13] for the definition of I( in three-dimensions.

Upon replacing u by the convolution of K with {, one finds

(2"3)

(2.4)

Equations (2.3)-(2.4\ are a set of ordinary differential equations for the location of

the particles x and the vorticity €. We set an initial uniform grid x;(O),f :1,.,.,n with

spacing ht,hzrh3 for a three-dimensional problem and h1 ,h2 for a two-dimensional one.

For simlicity, we assume hr = hz - hg: h. Let xf(t),ff (t) be the approximate particle

#: I *r*-x')€(x', t)&',

f, : U." IK(* 
- x')€(x', t)&'.
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loca,tions and the approximate vorticity respectively at time t. Equation (2.3) is discretized

br (s* [6],[7])

(2.5)
t = 1

rhcrc N :2r3 is the dimension of the problem. Here we approximate the singular kernel

r{*) by a smoothed one Ko(*), where Ko:60*K ndda(*) - -u*felq" The function

@{,x) is called a cutoff function. We also have to discretize spatial derivatives which appear

a f . Vu, which is the stretching term. For a three-dimensional problem we approximate

;he stretching term by an explicit difierentiation of the smoothed kernel, as was suggested

b .l-. More orplicitly, we approximate this term by

€l(r) .f v*rotxl(r) - *f (r))€f (t)r,* ,,
i =L

rirere Y*Ko is an explicit differentiation of the smoothed kernel in Euleran coordinates.

To conclude, the three-dimensional vortex scheme on a moving grid is given by

+= ir5(xf (r) -*l(r))€l $)h*,

a.l(t) +
t: Lr(6(xl(t) -*l(t)) €f1t\nx,

t = 1

s t h t t \  n

ry = *(t) .Iv*ro(*l(r) -*l(r)) e!1t1nt.
i :L

We now represent the approximation for the non-moving grid. Let xi , j : L,..., rz be

u.rifomly distributed grid points in .Ril. The stretching term is approximated as in (2.6),

thkr time on a fixed grid. We describe now our approximation for the convective term

r" Yf. The idea is to approximate the vorticity by convolving it with a cutoff function,

ta. 5 is approximated by da * €. We then derive an approximation to the gradient of

thc vorticity by differentiating this convolution, i.e., bV V(do * €) = Y6o * {. Finally, we

rpproximate the integrals involved in the convolution by the trapezoid rule, and obtain

dl". ' n R

* : - D Ko(xr - *r)€fhrv . I oOu(xi - x;)$hN
, = 1  t = l

+€l ' ;o"r t* i -x i )€fhr.
t = 1

(2.6)

(2.7)

(2.8)

(2.e)



3. Stability for the Linearized Euler Equations

We prove stability for the linearized Euler equations in two dimensions

# :-a'v€, (3.1)

where a is a constant vector. In our proof, we consider the continuous representation of

the schemes rather than the discrete one.

1€i#,0. = -a. (vdo(*) * gh(x,r))

€h(*,0) : €o(x).

Let us define the Sobolev spirces

W^'P : {f,8" f e Lo{Ro),l"l S *}

and the norm ll .ll-,"

(  \ ' / o
l l / l l-,o: I D lla'/l l6,o I

\o<lc l<m /

Stability Theorem 1. Lef 6 € Wr,t (.E2) anil let the Fourier transform of the cutoff

function be real, i.e.,

d(r) is real (3.3)

then

i.e., (3.2) is stable.

Proof. Ta^king the Fourier transform of (3.2) yields

afn

#( t ,  
t )  -  r (a '  t )d6( t )€^( t ,  t ) .

6

f G^ t*,t\)' e= / te^ t*, o))'&,



)

f

4

t.3)

;off

3.4)

I

lHttiltirrg the last equality by the complex conjugate of p(s,t), we have

a€^=G") 
&(r, r) - d(a . s){5(s)lgr,(s, t)12.

at  : r

le; to (3.5) its complex conjugate, we find by (e.S) that

the following approximatioa to (3.1).

S+/l = -a . i orrt x - x)Elh2.
irt Ll

j =1

alEt'(s,t)12-0 .

fn irtcgrate the last equality over s, we find by the parseval equality that

a  f  .  L .

atJG"t* ' t ))zdx=o'

be (3.4) results.

lrnrrl: All the s:(arnFles listed in [fa], as well as other radially symmetric cutoff, satisfy

rfitin (3.3).

I' Cosirtency for tbe Linearized Duler Equations

* W. prove consistency for the linearized equation (3.1), and give error estimates. We

(3.5)

(4.1)

(4.4)

Theorem l. Let f be of compact support and belongs to Wd+r,2(nz) n

) for m ) 1, and let the cutoff function { satisfy the following conditions.

6ew^+t" ( f t ' ) ,mlL (4.2)

lnO{*l* 
: ,, 

I*,*"f(*)al. 
: 0, lol S d - L, 

l*"4loOtx)e'( 
( oo. (4.3)

\,i : 1, ...,2 be unifomly distributed gdd points in R2. Then, there exist a constant

rch that

l l " , l lo, ,  -  l la.ve -". tVdo(x -* i)€ih| lo,,  < c(6d + #
,l

l : l

. -  
\

6m+r t '



proof. Weshall,write the truncationerror in,the linearized version (a.1) as the sum of

the regularization and the discretization error'

€ t :  C r  *  C d t

where

et = a 'V{ -  a ' '  (Vda * {) '

g-,,
ed :a. (Vde * €) - a' I  Vde(t - xi\gf(t1n'z'

j : l

We approximate the regula^rization error by expa,nding its Fourier transform in Taylor

seri€s ([f], {ZO, pp. 26?l). This vields

l lc, l lo,z = l la'V€ - a' (Vda * €)l lo,z : l la' (v€ - 6o * V{)l lo'z'

Therefore" we find that.

ll"'llo,z,s c6oll lla+t,r. t4.5)

The discretization error originates from the replacemeat of the integal involved in the

coavolution by the trapeaoidal rule. It was proven it [20, pp' 262lthat if I €Wn't1A') n

It(At) for m S2 or if g € W^''(R') n$17m-r';L(ft2) for m ) 3o then

t I oa,, 
,E 

g@ih1 < h-llsll-,2. (4.6)

Therefore, Fince { is of conpact support and belongl toWm'2{R') *d Y6d eW^'r (A')'

loal 5 ln-ll"' (Vdr * €)ll',,'r'

Wb,also apply, the inequalitY

l l f  *  gl lz s l l . f l l , l ls l l r ,  (4 '7)
i l .

which waa proved in [20, pp. 2671, and find

l la. (vdo * €)ll '.,r s lla. vdoll-,rl l€ll-,2 s lldall-+r,rl l€ll-,r'

8



fire lfdall-+r,r 1C6-Un+t) (see [zo, pp. zlll),we find

l l 'allo,, s"#r'

(+.f) ana (+,4) yields the d.esired. result.

(4.8)

DT

fhd Grtd for Navier-stokes Squations

Ttc Naviet-stokes equations, formulated for the vorticifi € are given below.

dr{ * (" . v){ - (€ .V)u = 8-'A€,

d ivu :0 ,

A '= V2 is the Laplace operatot. R: ULlv is the Reynotds number, where u and L

ttficd velocity and leagth, recpectiveln and y is the viscocity. We first describe the

of vorte* methods [14], in which the grid is moviag with the particles. We

the cha,racteristic lines

(5.1)
the

, )n

S:o.
dt

rhich the vorticity evolution is given by

# ={{.v)u + E-raf. (5.?)

rlditbn, w.e rute the relation (2.2) between velocity and vorticity holds for incompressible

We get the following system of ordinary diferential equations. '

# : f *r* x,){(x,n t)&,, (5.3)

(5.4)

Sc act an initial uniform.grid x;{0),1 : 1,...,n with spacing huhz,hs for a three-

problem and h1rh2 for a two-dimensional one. For sitnlicity, rrye assume h1 =

: f,e: h. tet xf(r),*(t) U* the appro:cinate pa.rticle locations and approximate

I

4.6)

Br),

(4.7)
# = €.o IK(* 

- x,)€(x,, t)&, + R-1a€.



vorticiff respectively at time t. Ilence, the formulation

Navier-stokes equations on a moving grid is (see [1a])

of the vortex method for the

4 : i ro(*l(4 - *l(t))€i(r)h",
dt ?.

1 = t

r  r L  / . \  ' t

ry: €f (r) .Ivxno(*l(r) -*f (r))€f(r)h'
: : ,

(5.5)

(5"6)

+ ,a-l I oor(*l(r) - xf (t)) €l1t1n't
i= l

We now represent the approximation for the non-moving grid' Let x1''l : L'"''rL

be unifomly distributed grid points in RN. The stretching a-nd the conventive terms are

approxinated as for the Euler equations. We describe the discretization for the viscous

term. The idea is similar to that in [r+], but this time the convolution involved in the

discretization is taken on a fixed grid, rather on a moving one" We approximate the

vorticity by convolving it with a cutoff function, and then derive an approximation to the

'Laplacian 
of the vorticity by differentiating this convolution, i.e., by a(do * €) : Ado * €'

Finally, we approximate the integrals involved in the convolution by the trapezoid rule,

and obtain

: - i Ko(x; - *r)€fht . 1 vOr(xi - xi) efh"ae!
at

t = 1 i = L (5.7)
,l

I fl .i o*r(*r - xi)€ihtr + R-r I odt(* - xr) 4'fh*
i : l  t : l

6. stability for the linearized Navier-stokes Equations

We prove stability for the linearized Navier-stokes equations in two dimensions'

a€,
E 

:  -a.Vg +.R- lAf ,

where a is a constant vector. We consider the continuous representation'

ry: 
-a.(vdo(x) * €h(x,t)) + f t- lado(x) * gh(x,t) (6 .1)

10



Theorem 3. Let rd g

fr(*,o) = fo(x).

Wz"(n\ and let the Fourier transform of the eutoff

6)

be aon-negative, i.e.,

d(r) > o,

(6.1) is stable, i.e.,

I G^ {*,r))' d*s / te^ t*, o) )'&..

Taking the Forrier transform of (6.1) yields

ein

#(",t) 
: r{a . *)dr(r)gt(",t} - .R-l(s . r)Oa(r)*t(r,t).

the last equality by the complor co4iugate of fl(s,t), we have

a€lLl' 4 & (e, r) = r:(a . s)f6 (") | S(r, r) l, - B-, (, . s).|(os) lfi (", r).1,

to (6.4) ita coaplex conjugate, we find that

n t . ! * t  . \ r t
d lFn l s -  t l l 's 

llt'lt- : -za-r(s . s)g(os)lfo(r, r)1,
oa

ffr prove consistency for the linearized scheme.

9{${I = -a.i otr,x -xr)€l h2 + R-t Iotr(* -*)€!hr.

(6.2)

(6.3)

(6.4)

, n

lre

tus

bhe

the

the

* { .

ule,

intcgrate the last equality ov€r 8 and use conditisn (6.2) and the pa.rseval equality,

(6.3) results.

All th€ exa.mples licted in [14] satisfy condition (6.2).

for Navier-Stokeg Equatione

* Il€r(*,t)126( 
< o.

j =1 j : l



<cl6o.#+R-r(60+ ffin.
Proof. We shall write the truncation error in the two-dimensional linearized version of

(5.7) as the sum of the convective error and the viscous error.

Consistency Theorem 2. Let f be of compact support and belongs to Wd+2'z(E') n

W^''(R') fot m > 1, and let the cutoff function t' be in 171'n+2'r(R')r* > 1, and satisfy

condition (4.3). Let xi,J : 1r..., z be unifomly distributed grid points in R2. Then, there

exist a constant C such that 

n

l lr, l lo,, : l l  - a' v€ + "' i  
vdo(x - x)€ih2+ -E-1[a{ - I orr(* -xi) $h2ll lo,z

j : 1 i :L

C t : € c t e u ;

where 
E

ec:  a .  v{  -  
" .  I  

Vdo(x -  x i \€ i \2 ,
j =1

|t

.  co :n-1[af - t  Ado(x - xi) €ih')| .
j =1

The error from the convective term e, is bounded by (a.a). We shall bound now the

error eu from the viscous term. By composing the viscous error to the regularization error

and discretization error, we find

C t t : C r t C d ,

where

4 : R-t [a€ - Ado r, €1,

,a : R-l[Ado * g - i  Ado(x - xi)€rt t ] .
j = 1

We rewrite the regularization error in the form

Ell t , l lo, ,  :  l lAf -  L6o* €l lo,z :  l lAe - 6o *A{l lo,z,

L2
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rei orpand it in Taylor series ([1], [20, pp. 267]). This yields

Rll r , l lo , ,  < COdl lA€l la,z.

Pllr, llo,, < c 6oll€lla+2,2.

Ell 'al lo,, sc#'

C.m.bining (7.3) and (7.a) yields

l lu"llo,, ScR-'(60+ ffil

fmrly. by (n.a) and (7.5) we get the desired result.

t Sunerical Results

(7.3)

The discretization error originates from the replacement of the integral involved in

tlnr 66"o1otion by the trapezoidal rule. By (1.0), since f is of compact support and belongs

!o W''n,2(.R2) and Ada eW^,r(R'),

Rl"al  < h^ l laOu * { l l - ,2.

f-e also apply the inequality (a.7), and find

l lAdo * €l l - ,2 < l lAdol l - , r l l€ l l - ,2 S l ldol lm+z,r l l€ l l - , r .

srce 6all,,.+z,t 3 C6-@+z) (see [20, pp. 275]), we find

(7.4)

ll'e show numerical results for two test problems. The first is the two-dimensional

Iub equations for a radially syttttt'stric flow. The second is the two-dimensional Navier-

lhies equation for a periodic flow. For both problem" we used the fourth-order cutoff of

Drl.€ and Majda [a]

(7.5)

(8 .1)

l: lr ffi'

d(r) : fiVr-" - ,-'" 
/21.



In this case (see [U], [Ze, pp. 393])

d(r) : 2e-"'lt - e-"" lz - e-82 /412 - 
"-a2 

lef ) o.

Therefore, the Fourier transform of the cutoff function is real and non-negative, hence it

satisfies conditions (3.3) and (6.2).

The first test problem is the Euler equations with radially symmetric initial cond'itions.

The set of radially symmetric problems is often used in vortex methods to check the

accuracy of the vortex schemes. As was pointed in [+], this set might not be general

enough to represent arbitrary situations for the Euler equations. We chose the initial

conditions to be

€(x,o):  {  ! t -  l * l ' ) t  oJ lx l  l1
\o lx l  21.

This problem was solved numerically by Beale and Majda [4J, by Nordmark [18], and

periman [fO]. In all those tests, lose of the high accuracy' that was expected from the

vortoc schemes, was detected.

We represent numerical results for the fixed grid scheme (2.9) and compare them with

the moving-grid results (2.?)-(2.8). One has to compute the gradient of the cutoff function

in (2.9). This is given by

Y dt :  #{r,v)( le-" 
1a2 - 

"- tz 
/262 1'

In table 1 the discrete -L2 error e(t) is shown for different time'levels, where

1 n

l lt l l l : ; f l€",o"t - €"o^putl2
i = L

For both schemes we used initial spacing between the particles h : ht : h2 : O'L' We

chose the cutoff parameter 6 to be 16, since it was observed numerically [fa]' [ta], that in

this way, the accuracy of the scheme is kept for a longer time. We stepped the equation

L4
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- :ims via the second-order Modified Euler scheme [f f],[fZ], for which the time step was

:-3sen as At:1,0.5,0.1 in Tables 1,2 and 3 respectively.

i : m e moving grid fixed grid

-  - c n

0.6167F-3
o.L220E-2
0.1819F-2
0.24468-2

0.26988-5
0.5294F-5
0.7703E-5
0.9875E-5

Table 1.  At :  1

: : m g moving grid fixed grid

- - 1 n

- - t n

0.8166F-4
0.1631E-3
0.2682E-3
0.5774F-3

0.2696E-5
0.5289E-5
0.7928E-5
0.9871E-5

Table 2. Lt: 0.5

moving grid fixed grid

- -  I t l

- _  I  ^

-  - r n

0.8822F-6
0.2145F-5
0.1008F-3
0.46948-3

0.26908-5
0.5278E.5
0.76858-5
0.9848E-5

fab le 3.  At  :0 .1

One can learn from Tables 1-3 that the fixed-grid results are more accurate than the

nci' irg-grid ones, for this test problem. Furthennore, one can hardly notice any change in

;nc ied-grid error iul we decrease the time step. Therefore, the error is mainly a spatial

@€, Eowever, for the moving grid, the erronr get smaller when one decreases the time

*,ry. lut the improved accuracy is not kept for a long time, as is evident from Table 3.

Ir ::e moving grid we lost three digits in the accutitcy of the numerical solution over the

rca.a- '.:me of integration, whereas for the fixed grid we lost less that one digit throughout

Ghla :a-=,e period of time.

15



The second problem for which we checked the accuracy of our scheme is a periodic

one. This problem served as a test problem for Chorin's finite-difference scheme for the

Navier-stokes equations [5]. The initial vorticity is given by €(c,y,O) : 2cos(r)cos(g).

We perfomed our computations for 0 ( z, y 3 2r. The exact solution for this problem is

€(r,g,t) - Zs-zt/Rcos(x)cos(y). We ran the scheme for .8 = 1000. The Laplacian of the

cutoff function is

Ade(r) = #W(# 
- L)e-r2 /02 + Q - #)"

The periodic boundary conditions were imposed as follows. For each computational particle

we added the contributions of another eight particles, located at (nt2r,A),(r,yt?r),(xt

2r,gL?r),(z*.2r,V+2r). This is reasonable, since the further are the particles from

the computational domain the smaller is their contribution.

We checked the error in the discrete tr2 nonnl and chose the initial spacing between

the particles to be h : ht : hz : 2r lL6. It is possible to pick'a different cutoff-parameter

(61) for smoothing the singular kernel by replacing it with Ko in (5.5)-(5.6) or (5.7), and

a different one (62) for the smoothing of the vorticity by the convolution with a cutoff-

function 6o in (5.5)-(5.6) or (S.Z). We chose h:8fr, and 6z - rt. Choosing larger 61

smoothes further the singular kernel K, and therefore decrea.ses the discretization error"

On the other hand, it should not be ta.ken too large, since it increases the regularization

ertor. The particular constant C, where h - C{8, might depend on the differential

problem. Tables 4, 5 and 6 refer to Af : 1,0.5,0.1 respectively. In all tables we give the

error when we applied the scheme once for the moving grid (5.5)-(5.6) and once for the

fixed grid (5.7).

16



lic

he

v).

r i s

the

ticle

{ + *

from

;ween

meter

f , and

:utoff-

ger 61

error"

ization

rrential

,ive the

for the

tim m.oving grid fixed grid

E=5
t:10
t.:15
3:20

0.1412E-1
0.2503F-1
0.3524D1
0.4476F-L

0.6r.89E-4
o.L227E-3
0.1823F-3
0.2409E-3

0.124081
0.2326F-1
0.3362F-1
0.4349F-1

0.6189E-4
o.L227F-3
0.1823E.3
0.2409E 3

0.1220F-1
0.2337F-1
0.3384F-1
0.4377T-L

0.6189F-4
o.L227F-3
0.1824F-3
0.24098-3

Table 4. At : L, h : Zr lLG,, h : 8JE.

Table 5. At : 0.5, h - 2r lL6,6r : Ert.

Table 6. A, - 0.1, h:Ztr1L6,61 : }r,fh.

One can deduce from Tables 4-6 that the eror is smaller for the fixed-grid calculations,

ell the given choices of At. Note that results on the moving grid [1a] were of order

or 10-2 for t : 1 to t : 4, but they increase il:l time progresses. In this case, as for

rc-viscous one, the error for the fixed grid is almost indepent of the time step, and

the error is mostly a spatial one.

h Tables 7, 8 and 9 we show sirnila3 results as in Tables 4, 5 and 6, except 6r : 50.

61 to be a large constant, since it keeps the grid less distorted, which improves

rsurircy of the moving-grid scheme. Note that the moving-grid errors are smailer in

7-9, compared to those in Tables 4-6, but are not that different for the fixed grid.
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time moving grid fixed grid

t :5
t:.10
t :15
t-20

0.1308E-2
o.22558-2
0.32328-2
0.4183F-2

0.4854F-4
0.9612F-4
0.1427F,-3
0.1885F-3

time moving grid fixed grid

t :5
t:10
t :15
l:2O

0.115t F-2
0.2185E-2
0.3192E-2
0.4159F-2

0.4854E-4
0.9612E-4
0.1474F-3
0.1885F-3

Table 7. At : L,h - 21 116,61 - lQ{fr..

Table 8. At - 0.5, h :Ztr 1L6,61 : l}\n"

time moving grid fixed grid

t :5
t :10
t :15
t:2O

0.1112E-2
o.2L77F-2
0.3195F-2
0.4168E-2

0.1952F-4
0.9614F-4
0.1428F-3
0.1885F-3

Table 9. At : 0.1, h - 2r lL6, dr : lO\/F^

9. Conclusiong

The numerical experiments performed here show that it is preferable to use a fixed

grid rather than a moving grid for vortex methods. One should note, howevet, that the test

problems that we used might not represent an arbitrary flow, and therefore the fixed-grid

schemes should be further checked for more complicated flow problems. It is advisable to

use the fixed grid in problems in which the vorticity is smooth and is not concentrated

in a small region. For this set of problems spatial derivatives can be accurately resolved

on a fixed grid. We found theoretical support for our fixed-grid scheme for the linearized

Euler and Navier-stokes equations. Furthermore, it is easy to construct a highly accurate

stable cutoff function, and therefore an accurate stable vortex method on a fixed grid. ff

we choose a cutoff function whose Fourier transform is real or positive for the Euler or

-ffiF
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