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A FIXED GRID FOR VORTEX METHODS

Dalia Fishelov

Abstract. The purpose of this paper is to suggest a fixed grid for vortex methods.
Originally, vortex methods are grid-free methods, for which the initial uniform grid is
moving in time with the particles. It was observed in numerical experiments that there
was a deterioration in the accuracy of the vortex method as time progressed. This was
understood as lose of accuracy due to the distortion of the initial grid. We suggest a fixed
grid calculation for vortex methods to overcome this difficulty. We give error estimates

and prove stability for the linearized Euler and Navier-Stokes equations.
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1. Introduction

Vortex methods are numerical methods for the simulation of the incompressible Euler
and Navier-Stokes equations. In vortex methods, one uses the vorticity formulation of the
Euler and the Navier-Stokes equations. This representation has the advantage that some

physical phenomena, such as turbulence [8], [9], are better understood by the realization



of the evolution of the vorticity. Another feature of vortex methods, as suggested by
Rosenhead [21], is that for vortex methods we follow particle trajectories, along which the

evolution of the vorticity is tracked.

Chorin [7] introduced the blob-vortex metimd, for which the kernel, which connects
velocity and vorticity for incompressible flows, was smoothed. This was done by convolving
this singular kernel against a cutoff function, which approximated a delta function in the
sense of moments. Stability and convergence of vortex methods was first proved by Hald
(17], and further improved by Beale and Majda [2], [3], and Hald (16], which introduced

high order cutoff functions for vortex methods.

It was observed numerically (4], that the formal accuracy of vortex methods is lost as
time progresses. Beale and Majda suggested, therefore, the rezoning for vortex methods.
Every several time steps the vorticity is interpolated into a uniform grid. For this purpose,
they used the natural continuous representation of the vorticity, which is given by the
discrete convolution of the vorticity against the cutoff function. As was suggested in 4],
the rezoning should not be done too often in time, as it introduces numerical viscosity to

the vortex scheme.

To avoid the deterioration in the accuracy of vortex schemes, we suggest to approx-
imate the vorticity on a non-moving, for example uniform, grid. Since the grid is fixed,
there is no need to interpolate the vorticity into a uniform grid as time progresses. For
the fixed grid one has to to approximate the convective term. The idea is to convolve
the vorticity with a cutoff function, and then explicitly differentiate the cutoff function to
approximate the first order derivatives in the convective term. In fact, other numerical
methods, such as spectral methods, can be represented in a similar way [15]. We prove
stability for the linearized Euler equations and give error estimates. It is sufficient to

require that the Fourier transform of the cutoff function is real to ensure the stability of
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the scheme. We also prove the consistency of this scheme and give error estimates. The
discretization error is determined by the order of the cutoff function. One may choose the

cutoff function, such that arbitrary order of convergence is obtained.

For the Navier-Stokes equations, we have to approximate the viscous term as well. The
latier is approximated by an explicit differentiation of the cutoff function, as suggested in
‘14, this time on a fixed grid. In more detail, we approximate the vorticity by convolving
% with a cutoff function, and then approximate the Laplacian of the vorticity by explicit
calculation of the Laplacian of the cutoff function. Therefore, all the spatial derivatives
imvolved in the Navier-Stokes equation are approximated in the same manner. We prove
the stability for the linearized Navier-Stokes equations in case the Fourier transform of the

cutoff function is non-negative (see [14]). We prove the consistency of this scheme for the

linearized Navier-Stokes equations and give error estimates.

We applied the scheme to the Euler equations with radially symmetric initial con-
ditions, and for the Navier-Stokes equations with periodic initial conditions. For both
problems the analytical solution is known. The numerical results demonstrate the accu-

racy of the scheme, and in most cases the error from the fixed grid is smaller compared to

the one from the moving grid.

The paper is organized as follows. In section 2 the new scheme for the Euler equations
= represented and in section 3 and 4 we prove the stability the consistency of the scheme
for the linearized equations. In section 5 we represent the new scheme for the Navier-
Stokes equation and in section 6 and 7 we prove stability and consistency for the linearized

Navier-Stokes equations. Numerical results are represented in section 8.
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2. A Fixed Grid for Euler Equations

The object of this paper is to construct a high-order numerical approximation for
the Euler and the Navier-Stokes equations, using a vortex method. The Euler equations,

formulated for the vorticity ¢ are given below.

0+ u-V)E—(£-V)u=0,
(2.1)
divu =0,

where £ = curl u, u = (u,v,w) is the velocity vector.

We first describe the convensional formulation of vortex methods, in which the grid
is moving with the particles. We follow the characteristic lines % = u, along which the
vorticity evolution is given by %f = (£-V)u (see (2.1)). Note that in the right hand side of
the last equation we have the stretching term, which vanishes in a two-dimensional problem.
In addition, the following relation between velocity and vorticity holds for incompressible

flows [10].

e = / K(x — x')€(x', t)dx'. (2.2)

Here, K = (—y,z)/27r? in two dimensions, and in three dimensions K is a matrix, which is
singular at the origin. See, for example, [1],[13] for the definition of K in three-dimensions.

Upon replacing u by the convolution of K with &, one finds
= f K(x — x)¢(x',t)ax’, (2.3)

—--s v / K(x — x')€(x', t)dx (2.4)

Equations (2.3)-(2.4) are a set of ordinary differential equations for the location of
the particles x and the vorticity £. We set an initial uniform grid x,(0),7 = 1,...,n with
spacing hy, kg, hs for a three-dimensional problem and h;,h, for a two-dimensional one.

For simlicity, we assume hy; = hg = hg = h. Let x;‘(t), f;‘(t) be the approximate particle
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locations and the approximate vorticity respectively at time ¢t. Equation (2.3) is discretized
5y (see [6],[7])

ilt) EK (3 () - x3(0)EH ()Y, (25)

where N = 2,3 is the dimension of the problem. Here we approximate the singular kernel
& (x) by a smoothed one K;(x), where K5 = ¢5 * K and ¢5(x) = 35 #(x/6). The function
@ x) is called a cutoff function. We also have to discretize spatial derivatives which appear
@ £ - Vu, which is the stretching term. For a three-dimensional problem we approximate
the stretching term by an explicit differentiation of the smoothed kernel, as was suggested

= 1. More explicitly, we approximate this term by
Er(E) - D VKs(x!(t) —x2(t) € (t)RY, (2.6)
i=1

where VK5 is an explicit differentiation of the smoothed kernel in Euleran coordinates.

To conclude, the three-dimensional vortex scheme on a moving grid is given by

i) ZK CAORE OO (2.7)
d£ (t) e‘ (t) - Z: V. K5 (xh (t) - xh (t))f"(t) AN (2.8)
1=1

We now represent the approximation for the non-moving grid. Let x;,7 = 1,...,n be
wnifomly distributed grid points in R¥. The stretching term is approximated as in (2.6),
tais time on a fixed grid. We describe now our approximation for the convective term
w - V£, The idea is to approximate the vorticity by convolving it with a cutoff function,
L2, £ is approximated by ¢s5 * £&. We then derive an approximation to the gradient of
t8e vorticity by differentiating this convolution, i.e., by V(¢s * ) = Vs * £. Finally, we

approximate the integrals involved in the convolution by the trapezoid rule, and obtain

h n
. ng(x. )€ RN . 3 Vg — )R
=1

(2.9)
+ €F - Z VKs(x: —x;) RN,

i=1




3. Stability for the Linearized Euler Equations
We prove stability for the linearized Euler equations in two dimensions
— = = VE, (3.1)

where a is a constant vector. In our proof, we consider the continuous representation of

the scheme, rather than the discrete one.

000 o (Vos) + £4(0x,1) (3.2

£"(x,0) = &o(x).

Let us define the Sobolev spaces
W™P = {f,8%f € L?(R"),|a| < m}

and the norm || - ||m,p
1/p

=1 0 @ fI5

0<lal<m

Stability Theorem 1. Let ¢ € W11(R?) and let the Fourier transform of the cutoff

function be real, i.e.,

#(s) is real (3.3)
then
[ (@ manax= [ (e*ex0)?x, (3.4)

i.e., (3.2) is stable.

Proof. Taking the Fourier transform of (3.2) yields

%’:(Bat) = i(a-s)ds(8)ER(s, t).
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Multiplying the last equality by the complex conjugate of E‘)‘(s, t), we have

2800 fr(s,) = ia- s)dele)| M (53

Adding to (3.5) its complex conjugate, we find by (3.3) that

)
9¢"(s,)|?
AT A
f
¥ we integrate the last equality over s, we find by the parseval equality that
o f (¢"(x,t))%dx = 0.
) ot ’
Hence (3.4) results.
‘Remark: All the examples listed in [14], as well as other radially symmetric cutoff, satisfy
condition (3.3).
4. Consistency for the Linearized Euler Equations
We prove consistency for the linearized equation (3.1), and give error estimates. We
the following approximation to (3.1).
36"(", t) - hp2
e g =—a-§V¢5(x-X_f)Ejh . (4.1)
off o
tency Theorem 1. Let ¢ be of compact support and belongs to W4+1:2(R?) n
.3) (R?) for m > 1, and let the cutoff function ¢ satisfy the following conditions.
peWwm™tbL(RY) m>1 (4.2)
3.4)

/ Sk =1 / X*$(x)dx = 0,]a| < d -1, / Ix[Alox) < 00 - i(4:8)
R2 R3 R2
%,.7 = 1,...,n be unifomly distributed grid points in R2. Then, there exist a constant

C such that

leclloz = lla- V€ ~a- 3" Vas(x —x;)&ih%loz < C(6* + pogy).  (44)
3=l




Proof. We shall write the truncation error in the linearized version (4.1) as the sum of

the regularization and the discretization error.
et = er + €d,

where

e,=a-Vé—a- (Vs *§),

eq=a-(Vos*x€) —a- ZV¢5(X§ - x,-)f,’-‘(t)hz.

i=1
We approximate the regularization error by expanding its Fourier transform in Taylor

series ([1], [20, pp. 267]). This yields
llerlloz = lla- V& —a- (Vs * &)llo,z = lla- (V€ — ¢5 * VE)llo,2-
Therefore, we find that

lerllo,z < C8%lI€lla+1,2- (4.5)

The discretization error originates from the replacement of the integral involved in the
convolution by the trapezoidal rule. It was proven in [20, pp. 262] that if g € wW™P(R?)N
L'(R*) form<2orifge€ w™2(R?) n W™~ 1! (R?) for m > 3, then

[ adx =3 ale)h?] < A" lgllma: (49

i=1

Therefore, since ¢ is of compact support and belongs to W™2(R2) and Vs € W™ (R?),
lea| < R™||a- (Vs * £)llm,2-

We also apply the inequality
1 *gll2 < (I fll1llgll2s (4.7)

which was proved in (20, pp. 267], and find

a- (Vs * €)llm,2 < la- Vésllm,1ll€llm,2 < |6l m1,111€llm,2-
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g Since ||@5|lm+1,1 < C6~(m+1) (see [20, pp. 275]), we find

hm
lleallo,2 < C - (4.8)

Combining (4.5) and (4.8) yields the desired result.
5. A Fixed Grid for Navier-Stokes Equations

The Navier-Stokes equations, formulated for the vorticity ¢ are given below.

or 3¢E+(u~V)E—(E-V)u=R—1AE,
divu =0,
2ad A = V? is the Laplace operator. R = UL/v is the Reynolds number, where U and L
~are typical velocity and length, respectively, and v is the viscosity. We first describe the
formulation of vortex methods [14], in which the grid is moving with the particles. We
}5) follow the characteristic lines
% - (5.1)
the :
N ‘a2.ong which the vorticity evolution is given by
% =(¢-V)u+RTAE. (5.2)
4.6) | - . o .
In addition, we use the relation (2.2) between velocity and vorticity holds for incompressible
R?), Sow. We get the following system of ordinary differential equations. -
F = [ Kx-x)ew,ax, (53)
dE 1 ! ! -1
= =6V [ Kx—x)¢(,t)ax’ + R1AE (5.4)
(4.7)

We set an initial uniform grid x;(0),5 = 1,...,n with spacing hi, ha,h3 for a three-
ional problem and ki, h; for a two-dimensional one. For simlicity, we assume h; =

By = hg = h. Let x;.‘(t}, f,’-‘(t) be the approximate particle locations and approximate
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vorticity respectively at time ¢. Hence, the formulation of the vortex method for the

Navier-Stokes equations on a moving grid is (see [14])

el ZK (xh(6) = x2(6) EME)AY, (5.5)

L) _ ehe). Y xKa(eb () - Xh ) EHORY
J =1 (5.6)
+RTY Adslxh(6) ~xh ) EOAY.
=1

We now represent the approximation for the non-moving grid. Let x;,7 = 1,...,n
be unifomly distributed grid points in RN . The stretching and the conventive terms are
approximated as for the Euler equations. We describe the discretization for the viscous
term. The idea is similar to that in [14], but this time the convolution involved in the
discretization is taken on a fixed grid, rather on a moving one. We approximate the
vorticity by convolving it with a cutoff function, and then derive an approximation to the

"Laplacian of the vorticity by differentiating this convolution, i.e., by A(¢s * §) = Ads * &.

Finally, we approximate the integrals involved in the convolution by the trapezoid rule,

and obtain
6Et = K L th = v gy th
Z 6 xj)f_f ' Z ¢6(xt xj)fj
j=1 =1
: (5.7)
=+ E:" . Z VK5 (X( = x,-)&'}-‘h” k] R_l Z Ang(x,- = XJ') f;&h‘N
6. Stability for the linearized Navier-Stokes Equations
We prove stability for the linearized Navier-Stokes equations in two dimensions.
o€ A
3t =-a-Vé+ RAE,
where a is a constant vector. We consider the continuous representation.
- Aeh(x,t
| D001 _ o (7gs(x) « €(x,0) + R Adalx) + €1(5,1) (6.1
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Eh(xs 0) = Eo(X)-

) ‘Siability Theorem 2. Let ¢ € W%!(R?) and let the Fourier transform of the cutoff
)
fanction be non-negative, i.e.,
d(s) 2 0, (6.2)
6) 2 (6.1) is stable, i.e.,
[enya < [ (o) (63
7 sof. Taking the Fourier transform of (6.1) yields
b ¢ i %
= r o s B e
. W(B’t) =i(a-8)ps(8)E"(s,t) — R™'(s - 8)ds(s) £R(s, ).
the Maultiplying the last equality by the complex conjugate of f"(s,t), we have
the a t
th 2 (s )51(, t) = i(a-8)ds(s) €M (s,t)|* — R (s - 5)B(8)|€R (s, 2)|* (6.4)
e
« £ ing to (6.4) its complex conjugate, we find that
‘h 2
& A O — —2m=1(s - 8)(59)|€4(s, 1)
¥ we integrate the last equality over s and use condition (6.2) and the parseval equality,
5.7)

% f |68 (x, £)[2dx < o.
2, (6.3) results.

ark: All the examples listed in [14] satisfy condition (6.2).
' Consistency for Navier-Stokes Equations

We prove consistency for the linearized scheme.

(6.1) s (x - . ZWs(x x;)E8h? + R“‘ZAcﬁs{x — ;) EMh2,

j=1 =1
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Consistency Theorem 2. Let ¢ be of conlpact support and belongs to W2+%2(R2) n
W™2(R?) for m > 1, and let the cutoff function ¢ be in W™*+%1(R2),m > 1, and satisfy
condition (4.3). Let x;,j = 1,...,n be unifomly distributed grid points in R?. Then, there

exist a constant C such that

n n
leclloz =l —a-VE+a- Y Vas(x —x;)¢h + RTHAE = D Ads(x —%;)€h%][lo,2
i=1 J=1
e R
d - d
<016 + gy + B6+ ).

Proof. We shall write the truncation error in the two-dimensional linearized version of

(5.7) as the sum of the convective error and the viscous error.
€t = €c 1+ €y,

where

ec=a-Vé—a- Y Ves(x —x;)éh?,

=1

ey = R7I[A¢ - z": Ags(x —x;)€;h%)]-

i=1

The error from the convective term e, is bounded by (4.4). We shall bound now the
error e, from the viscous term. By composing the viscous error to the regularization error

and discretization error, we find
e, = ¢, + €4,

where

€r = R“I[AE — Ags * f]!

ea =R [Ads x £ = ) _ Ads(x —%;)&RN].

ij=1
We rewrite the regularization error in the form

R|lesllo,z = |AE — Ags * €llo,2 = ||AE — &5 * Allo,2,
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and expand it in Taylor series ([1], [20, pp. 267]). This yields

Rller[lo2 < C8%AE]4,2.

re
Rlerllo2 < C8%(|€]la+2,2- (7.3)
:
The discretization error originates from the replacement of the integral involved in
covolution by the trapezoidal rule. By (4.6), since £ is of compact support and belongs
, of %0 W™2(R?) and A¢s € W™'(R?),
Rleq| < h™||A¢s * ]|m,2-
also apply the inequality (4.7), and find
1A¢5 * €lim,2 < |As]lm,111€llm,2 < lB6]lm+2,1[1€ Im,2-
e 105]lm+2,1 < C§—(m+2) (see [20, pp. 275]), we find
hm
Rl|eallo,z < Comra (7.4)
v the abining (7.3) and (7.4) yields
error B

llevllo,2 < CR™(8% +

) (7.5)

v, by (4.4) and (7.5) we get the desired result.

sumerical Results

We show numerical results for two test problems. The first is the two-dimensional
2er equations for a radially symmetric flow. The second is the two-dimensional Navier-
wes equation for a periodic flow. For both problems we used the fourth-order cutoff of

and Majda [4]

Hedi= 2—1”-[4:*" el (8.1)
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In this case (see [14], [22, pp. 393])
6(8) = 28—3“/4 o A e—a3/2 6_32/4[2 ! e-—s’/-i] > 0.

Therefore, the Fourier transform of the cutoff function is real and non-negative, hence it

satisfies conditions (3.3) and (6.2).

The first test problem is the Euler equations with radially symmetric initial conditions.
The set of radially symmetric problems is often used in vortex methods to check the
accuracy of the vortex schemes. As was pointed in [4], this set might not be general
enough to represent arbitrary situations for the Euler equations. We chose the initial

conditions to be

£(x,0) = {gl — [x[*)? ?xf?l_xl‘.s 1

This problem was solved numerically by Beale and Majda [4], by Nordmark (18], and

Perlman [19]. In all those tests, lose of the high accuracy, that was expected from the

vortex schemes, was detected.

We represent numerical results for the fixed grid scheme (2.9) and compare them with
the moving-grid results (2.7)-(2.8). One has to compute the gradient of the cutoff function
in (2.9). This is given by

1
2164

Vs = sz (z,y) (45 = ).

In table 1 the discrete Lj error e(t) is shown for different time-levels, where
1 n
“eﬂg = ;; Z |E¢zact =3 Ecomputlz.
i=1

For both schemes we used initial spacing between the particles h = hy = hy = 0.1. We
chose the cutoff parameter & to be v/&, since it was observed numerically (18], [14], that in

this way, the accuracy of the scheme is kept for a longer time. We stepped the equation
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= time via the second-order Modified Euler scheme [11],[12], for which the time step was
chosen as At = 1,0.5,0.1 in Tables 1, 2 and 3 respectively.

time moving grid fixed grid
) =5 0.6167E-3 | 0.2698E-5
18 =10 0.1220E-2 | 0.5294E-5
t=15 0.1819E-2 0.7703E-5
=20 0.2446E-2 0.9875E-5
ons. Table 1. At =1
- time moving grid fixed grid
eral =5 0.8166E-4 | 0.2696E-5
ttial =10 0.1631E-3 0.5289E-5
' t=15 0.2682E-3 | 0.7928E-5
=20 0.5774E-3 0.9871E-5
Table 2. At =0.5
and time moving grid fixed grid
1 the =35 0.8822E-6 0.2690E-5
=10 0.2145E-5 0.5278E-5
=15 0.1008E-3 0.7685E-5
=20 0.4694E-3 0.9848E-5
Vit Table 3. At = 0.1
ction
One can learn from Tables 1-3 that the fixed-grid results are more accurate than the
-grid ones, for this test problem. Furthermore, one can hardly notice any change in
Sxed-grid error as we decrease the time step. Therefore, the error is mainly a spatial
However, for the moving grid, the errors get smaller when one decreases the time
but the improved accuracy is not kept for a long time, as is evident from Table 3.
the moving grid we lost three digits in the accuracy of the numerical solution over the
time of integration, whereas for the fixed grid we lost less that one digit throughout
1. We same period of time.
that in
quation
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The second problem for which we checked the accuracy of our scheme is a periodic
one. This problem served as a test problem for Chorin’s finite-difference scheme for the
Navier-Stokes equations [5]. The initial vorticity is given by &(z,y,0) = 2cos(z)cos(y).
We perfomed our computations for 0 < z,y < 27. The exact solution for this problem is
&(z,y,t) = 2¢~?*/Rcos(z)cos(y). We ran the scheme for R = 1000. The Laplacian of the

cutoff function is

Ads(r) = [16( 1)/ 4 (2- ;‘2518"”“"°]-

26‘

The periodic boundary conditions were imposed as follows. For each computational particle
we added the contributions of another eight particles, located at (z+2m,y), (z,yx27), (z£
2m,y + 2m),(z £+ 27,y F 27). This is reasonable, since the further are the particles from

the computational domain the smaller is their contribution.

We checked the error in the discrete L, norm, and chose the initial spacing between
the particles to be h = hy = hy = 27 /16. It is possible to pick a different cutoff-parameter
(61) for smoothing the singular kernel by replacing it with K5 in (5.5)-(5.6) or (5.7), and
a different one (6;) for the smoothing of the vorticity by the convolution with a cutoff-
function ¢5 in (5.5)-(5.6) or (5.7). We chose &§; = Bﬁ, and 8, = vh. Choosing larger §;
smoothes further the singular kernel K, and therefore decreases the discretization error.
On the other hand, it should not be taken too large, since it increases the regularization
error. The particular constant C, where §; = C+vh, might depend on the differential
problem. Tables 4, 5 and 6 refer to At = 1,0.5,0.1 respectively. In all tables we give the
error when we applied the scheme once for the moving grid (5.5)-(5.6) and once for the

fixed grid (5.7).
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lic moving grid fixed grid
| 0.1412E-1 0.6189E-4
e 0.2503E-1 | 0.1227E-3
y). 0.3524E-1 0.1823E-3
0.4476E-1 0.2409E-3
1 is
k. Table 4. At =1,h = 27/16, 6, = 8v/h.
moving grid fixed grid
0.1240E-1 0.6189E-4
0.2326E-1 0.1227E-3
0.3362E-1 0.1823E-3
0.4349E-1 0.2409E-3
ticle
(z+ Table 5. At = 0.5,h = 27/16,6; = 8v/h.
from moving grid fixed grid
0.1220E-1 0.6189E-4
0.2337E-1 0.1227E-3
0.3384E-1 0.1824E-3
ween 0.4377E-1 0.2409E-3
t
s Table 6. At = 0.1,h = 27/16,6; = 8V/k.
, and
atoff- One can deduce from Tables 4-6 that the error is smaller for the fixed-grid calculations,
ger 61 the given choices of At. Note that results on the moving grid [14] were of order
error. ¥ or 1072 for t = 1 to t = 4, but they increase as time progresses. In this case, as for
zation viscous one, the error for the fixed grid is almost indepent of the time step, and
rential the error is mostly a spatial one.
ive the
Tables 7, 8 and 9 we show similar results as in Tables 4, 5 and 6, except §; = 50.
for the

8, to be a large constant, since it keeps the grid less distorted, which improves
geuracy of the moving-grid scheme. Note that the moving-grid errors are smaller in

#s 7-9, compared to those in Tables 4-6, but are not that different for the fixed grid.
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time moving grid fixed grid
t= 5 0.1308E-2 0.4854E-4
t=10 0.2255E-2 0.9612E-4
t=15 0.3232E-2 0.1427E-3
=20 0.4183E-2 0.1885E-3
Table 7. At =1,h = 27/16,6; = 50v/h.

time moving grid fixed grid

=D 0.1151E-2 0.4854E-4
t=10 0.2185E-2 0.9612E-4
t=15 0.3192E-2 0.1474E-3
t=20 0.4159E-2 0.1885E-3

Table 8. At = 0.5,h = 27/16,6; = 50v/h.

time moving grid fixed grid
t=5 0.1112E-2 0.1952E-4
t=10 0.2177E-2 0.9614E-4
t=15 0.3195E-2 0.1428E-3
t=20 0.4168E-2 0.1885E-3

Table 9. At = 0.1,k = 27/16,6; = 50v/h.

9. Conclusions

The numerical experiments performed here show that it is preferable to use a fixed
grid rather than a moving grid for vortex methods. One should note, however, that the test
problems that we used might not represent an arbitrary flow, and therefore the fixed-grid
schemes should be further checked for more complicated flow problems. It is advisable to
use the fixed grid in problems in which the vorticity is smooth and is not concentrated
in a small region. For this set of problems spatial derivatives can be accurately resolved
on a fixed grid. We found theoretical support for our fixed-grid scheme for the linearized
Euler and Navier-Stokes equations. Furthermore, it is easy to construct a highly accurate
stable cutoff function, and therefore an accurate stable vortex method on a fixed grid. If

we choose a cutoff function whose Fourier transform is real or positive for the Euler or

18




Navier-Stokes equations respectively, stability is assured. The rate of convergence can be

made as high as desired by choosing a high-order cutoff function.
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