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Abstract. The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in
the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade
approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative
within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at
interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains
its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic
operator. A number of numerical examples corroborate this effect.

We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunc-
tions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of
of the related time-dependent problem ut =−uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related
to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction
(or eigenvectors) are computed and displayed graphically.

DERIVATION OF THREE-POINT COMPACT OPERATORS

We consider here the one-dimensional biharmonic equation on the interval [a,b]. For the simplicity of the presentation,
we choose homogeneous boundary conditions. The one-dimensional biharmonic equation is

{
u(4)(x) = f (x), a < x < b,
u(a) = 0, u(b) = 0, u′(a) = 0, u′(b) = 0.

(1)

We look for a high-order compact approximation to (1). We lay out a uniform grid a= x0 < x1 < ... < xN−1 < xN = b.
Here xi = ih for 0≤ i≤ N and h = (b−a)/N.

In what follows, we shall use the notion of grid functions. A grid function is a function defined on the discrete
grid {xi}N

i=0. We denote grid functions with bold letters such as We have u = (u(x0),u(x1), · · · ,u(xN−1),u(xN)). In
addition, we denote by u∗ = (u(x0),u(x1), · · · ,u(xN−1),u(xN)) the grid function, which consists of the values of u(x)
at grid points.

We denote by l2
h the functional space of grid functions. This space is equipped with a scalar product and an associated

norm (u,v)h = h∑N
i=0 u(xi)v(xi), |u|h = (u,u)1/2

h .

We define the difference operators δx,δ 2
x on grid functions by

δxui =
ui+1−ui−1

2h
, δ 2

x ui =
ui+1−2ui +ui−1

h2 , 1≤ i≤ N−1. (2)

In these definitions the boundary values u0,uN are assumed to be known.
Suppose that we are given data u∗i−1, u∗i , u∗i+1 at the grid points xi−1,xi,xi+1. In addition, we are given some

approximations u∗x,i−1,u
∗
x,i+1 for u′(xi−1),u

′(xi+1). We seek a polynomial of degree 4

p(x) = u∗i +a1(x− xi)+a2(x− xi)
2 +a3(x− xi)

3 +a4(x− xi)
4, (3)
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which interpolates the data u∗i−1,u
∗
i ,u

∗
i+1, u∗x,i−1,u

∗
x,i+1. The coefficients a1,a2,a3,a4 of the polynomial are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 =
3

4h (u
∗
i+1−u∗i−1)− ( 1

4 u∗x,i+1 +
1
4 u∗x,i−1),

a2 =
1
h2 (u

∗
i+1 +u∗i−1−2u∗i )− 1

4h (u
∗
x,i+1−u∗x,i−1) = δ 2

x u∗i − 1
2 (δxu∗x)i,

a3 =− 1
4h3 (u

∗
i+1−u∗i−1)+

1
4h2 (u

∗
x,i+1 +u∗x,i−1),

a4 =− 1
2h4 (u

∗
i+1 +u∗i−1−2u∗i )+

1
4h3 (u

∗
x,i+1−u∗x,i−1) =

1
2h2

(
(δxu∗x)i−δ 2

x u∗i
)
.

(4)

The coefficients above require the data u∗i and u∗x,i. In the case where only the values of u∗i are given, then
{

u∗x,i
}N−1

i=1
have to be evaluated in terms of {u∗i }N

i=0. Looking at the first equation in (4), we see that a natural candidate for u∗x,i is
u∗x,i = a1. This yields

1
6

u∗x,i +
2
3

u∗x,i +
1
6

u∗x,i+1 = δxu∗i . (5)

This is by definition the Hermitian derivative. If we introduce the three-point operator σx on grid functions by
σxvi =

1
6 vi−1 +

2
3 vi +

1
6 vi+1, 1≤ i≤ N−1, can rewrite (5) as

σxu∗x,i = δxu∗i , 1≤ i≤ N−1. (6)

This suggests that δ 4
x u∗i is an approximation to the fourth-order derivative of u at xi, namely,

δ 4
x u∗i =

12
h2

(
(δxu∗x)i−δ 2

x u∗i
)
. (7)

This approximation, called the discrete biharmonic approximation (see also [1, 2]). Note that, in the non-periodic
setting, boundary values of ux should be given in order to compute δ 4

x at near boundary points x1, xN−1.
We refer to δ 4

x as the discrete biharmonic operator (DBO). We define

Definition 1 (Discrete biharmonic operator (DBO)) Let u ∈ l2
h be a given grid function. The discrete biharmonic

operator is defined by

δ 4
x ui =

12
h2 (δxux,i−δ 2

x ui), 1≤ i≤ N−1. (8)

Here ux is the Hermitian derivative of u satisfying (6) with given boundary values ux,0 and ux,N.

Using (7) and (5), the solution of (1) may be approximated by the scheme⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(a) δ 4
x ui = f (xi) 1≤ i≤ N−1,

(b)
1
6

ux,i−1 +
2
3

ux,i +
1
6

ux,i+1 = δxui, 1≤ i≤ N−1,

(c) u0 = 0, uN = 0, ux,0 = 0, ux,N = 0.

(9)

OPTIMAL RATE OF CONVERGENCE OF THE ONE-DIMENSIONAL STEPHENSON
SCHEME

In order to prove the fourth-order convergence of the scheme, we invoke the matrix representation fo the discrete
biharmonic operator. In [3] we carried out an error analysis based on the coercivity of δ 4

x . The analysis presented there
was based on an energy (l2) method and led to a "sub-optimal" convergence rate of h

3
2 . In [4] we have improved this

result by showing that the convergence rate is almost three (the error is bounded by Ch3 log(|h|). Here we prove the
optimal (fourth-order) convergence of the scheme. Let u be the exact solution of (1) and let u be its approximation
by the Stephenson scheme (9). Let u∗ be the grid function corresponding to u. We consider the error between the
approximated solution v and the collocated exact solution u∗, e = v−u∗. We prove the following error estimate.
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Downloaded 01 Oct 2012 to 132.66.11.212. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



Theorem 2 Let u be the exact solution of (1) and assume that u has continuous derivatives up to order eight on [a,b].
Let v be the approximation to u, given by the Stephenson scheme (9). Let u∗ be the grid function corresponding to u.
The, the error e = v−u∗ satisfies

|e|h ≤Ch4, (10)

where C depends only on f .

EIGENFUNCTIONS AND EIGENVALUES OF FOURTH-ORDER OPERATORS

Eigenfunction Approach for uxxxx = νu

Consider the eigenvalue problem for the one-dimensional biharmonic problem.

φ (4) = λφ , φ(0) = φ ′(0) = φ(1) = φ ′(1) = 0. (11)

It may be easily checked that the eigenfunctions for this problem are

φk(x) = (sinωk− sinhωk)
(

cos(ωkx)− cosh(ωkx)
)

−(cosωk− coshωk)
(

sin(ωkx)− sinh(ωkx)
)

x ∈ [0,1], k = 1,2, ..., (12)

and λk = ω4
k , k = 1,2, ... , where ωk satisfy

cos(ωk)cosh(ωk) = 1, k = 1,2, .., ωk > 0. (13)

We consider now the discrete problem. Let v be the solution of the discrete biharmonic problem.

δ 4
x v = λv, v(0) = vx(0) = v(1) = vx(1) = 0, (14)

where vx is the Hermitian derivative of v.

Claim 3 A complete set of (N−1) linearly independent eigenfunctions (in l2
h,0) for problem (14) is given by

v(k)i =

(
sin(ω(k)

1 )−Tk sinh(ω(k)
2 )

)
·
(

cos(ω(k)
1 xi)− cosh(ω(k)

2 xi)

)

−
(

cos(ω(k)
1 )− cosh(ω(k)

2 )

)(
sin(ω(k)

1 xi)−Tk sinh(ω(k)
2 xi)

)
, k = 1, ..,N−1,

(15)

where Tk =
sinh3(ω(k)

2 h)

sin3(ω(k)
1 h)

and ω(k)
1 ,ω(k)

2 satisfy the following set of equations.

sin4(
ω(k)

1 h

2 )

3−2sin2(
ω(k)

1 h

2 )

=
sinh4(

ω(k)
2 h

2 )

3+2sinh2(
ω(k)

2 h

2 )

, (16)

2cos(ω(k)
1 )cosh(ω(k)

2 )+Rk sin(ω(k)
1 )sinh(ω(k)

2 ) = 2, Rk = Tk− 1
Tk
. (17)

The eigenvalues λk are λk =
48
h4

sin4(
ω(k)

1 h

2 )

3−2sin2 ω(k)
1 h

2

, k = 1, ...,N−1.

Eigenfunction Approach for uxxt = νuxxxx

We consider a simple linear one-dimensional model for the Navier-Stokes equations in streamfunction formulation

uxxt = νuxxxx, (18)

1103
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where u(x, t) is a function defined for (x, t) ∈ [0,1]× [0,∞). We define an eigenfunction φ(x) to (18) as a function
satisfying, for some real number μ (which is the associated eigenvalue),

μφ ′′(x) = φ (4)(x), x ∈ [0,1], (19)

along with the boundary conditions
φ(0) = φ ′(0) = φ(1) = φ ′(1) = 0. (20)

Claim 4 A complete set of orthogonal eigenfunctions and their associate eigenvalues is given by the union of the
following two families

φ (1)
k (x) = 1− cos(2πkx), μ(1)

k =−(2πk)2 k = 1,2, ...,
φ (2)

k (x) = 1
πqk

sin(2qkπx)− cos(2qkπx)−2x+1, μ(2)
k =−(2πqk)

2,

k = 2,3, ...,
(21)

where (for the second family), qk is the (unique) solution of

tan(qkπ) = qkπ, qk ∈ (k−1,k− 1
2
). (22)

In the discrete problem the second-order and fourth-order spatial derivatives are replaced by their three-point
counterparts, δ 2

x and δ 4
x , respectively.We look for the discrete eigenvalues and eigenfunctions, namely, grid functions

satisfying
μδ 2

x v = δ 4
x v, (23)

subject to the homogeneous boundary conditions

v(x0) = vx(x0) = v(xN) = vx(xN) = 0. (24)

Claim 5 Suppose that N is even. Then a complete set of (N−1) linearly independent eigenfunctions (in l2
h,0) is given

by the union of the following two families

v(1)k (xi) = 1− cos(2πkxi), 0≤ i≤ N, k = 1,2, ..., N
2 ,

v(2)k (xi) = Ak sin(2rkπxi)− cos(2rkπxi)−2xi +1, 0≤ i≤ N, k = 2, ..., N
2 ,

(25)

where (for the second family), Ak,rk are uniquely determined by the pair of equations

1
Ak

= tan(rkπ), Ak =
2h

3
2+ cos(2rkπh)

sin(2rkπh)
, rk ∈ (k−1,k− 1

2
). (26)

Figure 1 displays the eigenvalues of Problem (19) versus the discrete spectrum N = 64, using a Log-Log scale.
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FIGURE 1. Spectral problem (19). Continuous (’x’) versus discrete (’o’) eigenvalues with N = 64 in Log-Log scale.
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