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a b s t r a c t

We present a high-order finite difference scheme for Navier–Stokes equations in irregular
domains. The scheme is an extension of a fourth-order scheme for Navier–Stokes equations
in streamfunction formulation on a rectangular domain (Ben-Artzi et al., 2010). The
discretization offered here contains two types of interior points. The first is regular interior
points, where all eight neighboring points of a grid point are inside the domain and not
too close to the boundary. The second is interior points where at least one of the closest
eight neighbors is outside the computational domain or too close to the boundary. In the
second case we design discrete operators which approximate spatial derivatives of the
streamfunction on irregular meshes, using discretizations of pure derivatives in the x, y
and along the diagonals of the element.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paperwe are interested in high-order discretizations of theNavier–Stokes equations. TheNavier–Stokes equations
play a central role in modeling fluid flows. Here we focus on incompressible flows. It is well-known that this systemmay be
represented in pure streamfunction formulation as follows (see [1,2]).

∂t∆ψ + ∇
⊥ψ · ∇∆ψ − ν∆2ψ = f (x, y, t),

ψ(x, y, t) = ψ0(x, y).
(1.1)

Recall that ∇
⊥ψ = (−∂yψ, ∂xψ) is the velocity vector. The no-slip boundary condition associated with this formulation is

ψ =
∂ψ

∂n
= 0, (x, y) ∈ ∂Ω, t > 0 (1.2)

and the initial condition is

ψ(x, y, 0) = ψ0(x, y), (x, y) ∈ Ω. (1.3)

In this paper we extend the fourth-order scheme [3] to irregular domains. The strategy used here is to present the
biharmonic operator ∂4x +2∂2x ∂

2
y +∂4y as a combination of pure fourth-order derivatives in the x, y and the diagonal directions

η = (x + y)/
√
2, ξ = (y − x)

√
2. Then, the pure fourth-order derivatives may be approximated via a compact scheme
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using the values of the function and its directional derivatives (see also [4,5]). An alternative approach is to construct a
two-dimensional polynomial which collocates the values of the function and its directional derivatives at the corners of the
irregular element and then approximate the biharmonic of the function by the biharmonic of this polynomial (see [6]).

The numerical resolution of the Navier–Stokes system, governing viscous, incompressible, time-dependent flow, has
been an important challenge of computational fluid dynamics. References belonging to the class of finite differencemethods
for the approximation of Navier–Stokes equations include projectionmethods [7–11]. The pure-streamfunction formulation
for the time-dependent Navier–Stokes system in planar domains has been used in [12–14] some twenty years ago. It has
been designed primarily for the numerical investigation of the Hopf bifurcation occurring in the driven cavity problem. Their
approach was based on a finite-difference method. The application of various compact schemes to the pure streamfunction
formulation is fairly recent [15–19].

We review some numerical methods for irregular domains. There are many references for finite elements methods for
irregular domain (see for the example [20,21]). Several references for finite difference methods include [22–24]. In [24] a
six-point scheme (star)was suggested. The disadvantage of the latter is its singularity and ill-conditioning. Several references
such as [25] use coordinates transformation, however this approach is not suited to multiple irregular boundaries and may
also impose singularities due to the coordinate transformation.

Liszka and Orkisz stated in [26] (1980) that ‘‘The fascination for FEM, however, caused by enormous successes or simply
by fashion, has resulted in a relative stagnation in some other methods, especially in finite difference methods’’. In [26] a
new mesh generation was constructed.

In [27,5] parabolic equations (in particular the heat equation) were solved in irregular domain, where a cartesian grid
was used to approximate the solution of a time-dependent diffusion problem. At near boundary points the derivatives ∂2x
and ∂2y were approximated using a non-uniform mesh, where one of the neighbors of the computational point was taken
as a boundary point. In [28] Colella et al. suggested an embedded boundary/volume method for Navier–Stokes equations
in irregular domains. It is a combination of finite differences, embedded boundary algorithm and finite volume methods.
Calhoun [29] approximates the vorticity–streamfunction formulation by adding a correction term to the Poisson equation
(which relates the streamfunction to the vorticity) using the immersed interfacemethod. The purpose of this correction is to
impose both boundary conditions on the streamfunction and the singular sources for the vorticity equation. The numerical
results show second-order convergence rates for the solution of the Navier–Stokes equations. In [30] a fast finite difference
method is proposed to solve the incompressible Navier–Stokes equations on a general domain. The method is based on the
vorticity stream-function formulation and a fast Poisson solver defined on a general domain using the immersed interface
method.

In [31] the discretization of the Poisson equation on irregular domains at near boundary points was carried out via
quadratic polynomials, which yields second-order accuracy of the scheme. In [32] second and fourth order Cartesian grid
finite difference methods were developed for second order elliptic and parabolic partial differential equations on irregular
domains. The information around an irregular point was completed via a two-dimensional Taylor expansion around a
boundary point using a local coordinate system. In [33] the immersed interface method is invoked for the application
of the boundary conditions to the velocity–pressure formulation of Navier–Stokes equations. The approximated rates of
convergence are between 2 and 3. In [34] the Poisson equation which relates the streamfunction to the vorticity was solved
in two steps in order to enhance the efficiency of the scheme.

In [6,2] a two-dimensional interpolating polynomial of degree 5 and a half was constructed to approximate the solution
of the biharmonic problem. This polynomial collocates the values of the function and its directional derivatives at the corners
of an irregular element near the boundary (as well as of regular inner elements) and then approximates the biharmonic of
the solution by the biharmonic of this polynomial. Fourth-order accuracy was achieved for the biharmonic problem in a
circle and an ellipse.

In this paper we approximate spatial derivatives of the Navier–Stokes equations in streamfunction formulation. Interior
points are treated via fourth-order discretizations as in [3]. Irregular elements are formed near the boundary, as in [6]. For
irregular elements we write the biharmonic operator, as well as the convective term, using pure derivatives only in the
directions of the axis and the diagonals of the element. Then, one-dimensional interpolating operators are used for these
elements. Note that in [35] we have proved that the solution of the one-dimensional biharmonic equation by our compact
high-order scheme is fourth-order accurate. Thus, it may be proved that reduction to our scheme to one dimension is fourth-
order accurate (see also [36]).

The outline of the paper is as follows. In Section 2 we describe fourth order approximations of the Navier–Stokes
equations in regular domains. All spatial operators appearing in the evolution equation, i.e., the Laplacian, the biharmonic
operator and the nonlinear convective term, are approximated via fourth-order schemes.We also describe a time-marching
scheme for the temporal evolution.

In Section 3we suggest a new scheme for the Navier–Stokes system in streamfunction formulation for irregular domains.
Here we assign different flags to the cartesian grid points in the rectangle, in which the irregular domain is embedded. At
near-boundary points we approximate the spatial operators via combinations of pure spatial derivatives in the directions
of the axis x, y and the diagonals.

In Section 4we detail the approximations of ∂xψ, ∂4xψ and ∂2xψ for an irregular element. Similar representations are valid
to ∂yψ, ∂4yψ and ∂2yψ . The fourth-order derivatives along the diagonals, ∂4ηψ and ∂4ξψ , are approximated in the same fashion.
In Section 5 we describe the approximation of the convective term at near boundary points. This involves discretizations
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of pure third-order derivatives in x, y and along the diagonals. We show in detail how to approximate ∂3xψ by a fifth-order
polynomial, which interpolates values as well as first-order derivatives of the function. Other pure third-order derivatives
are similarly discretized.

Finally, in Section 6 we present several numerical results, including results for the full Navier–Stokes system, which
demonstrate the high-order accuracy of the new scheme for irregular domains. Finally, in Section 7 conclusions are drawn.

2. Approximation of the Navier–Stokes equations on regular grids

Spatial derivatives in Eq. (1.1) are discretized as we describe next. The fourth order biharmonic ∆̃2
hψ operator introduced

in [3,2] is a perturbation of the second order operator∆2
hψ = (δ4x + δ4y + 2δ2x δ

2
y )ψ . It is designed as follows.

∆̃2
hψi,j = δ4xψi,j + δ4yψi,j + 2δ2x δ

2
yψi,j −

h2

6
(δ4x δ

2
yψi,j + δ4yδ

2
xψi,j) = ∆2ψi,j + O(h4), (2.1)

where δ4x and δ4y are the compact approximations of ∂4x and ∂4y , respectively.

δ4xψi,j =
12
h2


(δxψx)i,j − δ2xψi,j


, δ4xψ = ∂4xψ −

1
720

h4∂8xψ + O(h6), (2.2)

δ4yψi,j =
12
h2


(δyψy)i,j − δ2yψi,j


, δ4yψ = ∂4yψ −

1
720

h4∂8yψ + O(h6). (2.3)

Here, ψx, ψy are the fourth-order Hermitian approximations to ∂xψ, ∂yψ described as
(σxψx)i,j =

1
6
(ψx)i−1,j +

2
3
(ψx)i,j +

1
6
(ψx)i+1,j = δxψi,j, 1 ≤ i, j ≤ N − 1

(σyψy)i,j =
1
6
(ψy)i,j−1 +

2
3
(ψy)i,j +

1
6
(ψy)i,j+1 = δyψi,j, 1 ≤ i, j ≤ N − 1.

(2.4)

We use the standard central difference operators δx, δy, δ2x , δ
2
y .

The fourth order Laplacian ∆̃hψ operator introduced in [3,2] is a perturbation of the second order operator ∆hψ =

(δ2x + δ2y )ψ . It is designed as follows.

∆̃hψi,j = 2δ2xψi,j − δx(ψx)i,j + 2δ2yψi,j − δy(ψy)i,j

= 2∆hψi,j − (δx(ψx)i,j + δy(ψy)i,j) = (∆ψ)i,j + O(h4). (2.5)

Equivalently, the approximation of the Laplacian∆ψ is

∆̃hψi,j = δ̃2xψi,j + δ̃2yψi,j, (2.6)

where

δ̃2xψi,j = 2δ2xψi,j − δxψx,i,j = ∂2xψi,j + O(h4),

δ̃2yψi,j = 2δ2yψi,j − δyψy,i,j = ∂2yψi,j + O(h4).
(2.7)

The convective term in (1.1) is C(ψ) = −∂yψ∆(∂xψ)+ ∂xψ∆(∂yψ). Its fourth-order approximation needs special care.
The mixed derivative ∂x∂2yψ may be approximated to fourth-order accuracy by ψ̃yyx using a suitable combination of lower
order approximations.

(ψ̃yyx)i,j = (δ2yψx + δxδ
2
yψ − δxδyψy)i,j = (∂x∂

2
yψ)i,j + O(h4). (2.8)

For the pure third order derivative ∂3xψ we note that if ψ is smooth then

(ψxxx)i,j =
3

2h2


10δxψ − h2δ2x ∂xψ − 10∂xψ


i,j = (∂3xψ)i,j + O(h4). (2.9)

One needs to approximate ∂xψ to sixth-order accuracy in order to obtain from (2.9) a fourth-order approximation for ∂3xψ .
Denoting this approximation by ψ̃x, we invoke the Pade formulation [37], having the following form.

1
3
(ψ̃x)i+1,j + (ψ̃x)i,j +

1
3
(ψ̃x)i−1,j =

14
9
ψi+1,j − ψi−1,j

2h
+

1
9
ψi+2,j − ψi−2,j

4h
. (2.10)
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Fig. 1. Grid: ‘+’ computational point, ‘o’ eight neighbors of a computational point, ‘x’ point too close to the boundary.

At near-boundary points we apply a special treatment as in [37]. Carrying out the same procedure for ∂yψ , which yields the
approximate value ψ̃y, and combiningwith all othermixed derivatives, a fourth order approximation of the convective term
is

C̃h(ψ) = −ψy ·

∆hψ̃x +

5
2


6
δxψ − ψ̃x

h2
− δ2x ψ̃x


+ δxδ

2
yψ − δxδyψ̃y


+ψx ·


∆hψ̃y +

5
2


6
δyψ − ψ̃y

h2
− δ2y ψ̃y


+ δyδ

2
xψ − δyδxψ̃x


= C(ψ)+ O(h4). (2.11)

Our implicit time-stepping scheme is of the Crank–Nicholson type as follows.

(∆̃hψi,j)
n+1/2

− (∆̃hψi,j)
n

∆t/2
= −C̃hψ

(n)
+
ν

2
[∆̃2

hψ
n+1/2
i,j + ∆̃2

hψ
n
i,j] (2.12)

(∆̃hψi,j)
n+1

− (∆̃hψi,j)
n

∆t
= −C̃hψ

(n+1/2)
+
ν

2
[∆̃2

hψ
n+1
i,j + ∆̃2

hψ
n
i,j]. (2.13)

3. Approximation of the Navier–Stokes equations on irregular domains

In the previous section we described the approximation of the Navier–Stokes equations in streamfunction formulation
in rectangular domains. If the domain is not a rectangular, one can either map the domain onto a rectangle or design an
approximation of the equations on a cartesian grid embedded inside the domainΩ . In casewe chose tomap the domain onto
a rectangle, then the differential equations take a new form, as the derivatives of the new coordinate system are involved
in the equations, which may complicate the equations. In addition, the transformation (such as a polar coordinate system)
is sometimes singular at certain points and special treatment is needed near singular points.

In this paper we embed the domainΩ in a rectangle. Then, a uniform mesh is laid out inside the rectangle. Some of the
mesh points are outsideΩ , some are insideΩ and some may be on the boundary ∂Ω .

If a mesh point is outside the computational domainΩ (flag = −1), then an arbitrary value, such as zero, is given to this
point. Points which are outside the computational domain do not affect the values of the function at interior or at boundary
points.

If a mesh point is on the boundary of the domain ∂Ω (flag = 0), then the boundary values ψ of the function and its
first-order normal derivative ∂nψ are assigned to this point.

If a mesh point is inside the domain it may be labeled as follows.
Case 1: the point is in the center of a rectangle for which all the vertices are inside the domain (flag= 1). This point is labeled
by ‘+’ in Fig. 1 if in addition all its eight nearest neighbors are insideΩ or on the boundary and they are all on the Cartesian
grid. In this case the differential operators for this point are approximated as in Section 2.
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Case 2: the point is too close to the boundary (flag = 2) then this point is not included in the set of computational points.
It is labeled as ‘x’ in Fig. 1. In this case, neither the differential equations nor the boundary conditions are imposed at this
point. In our computations we have labeled a point with flag = 2 if its distance to the boundary was less then βh, where h
is the mesh size at the interior of the domain and 0 < β < 1. In practice we have picked β = 0.2.

Case 3: the point is not too close to the boundary, but at least one of its eight nearest neighbors is outside the computational
domain or at least one of its eight nearest neighbors is too close to the boundary (this point is labeled with flag = 3). This
point is labeled by ‘+’ in Fig. 1 if in addition all of its eight nearest neighbors are insideΩ or on the boundary and at least one
of them is not on the Cartesian grid. Its eight nearest neighbors are labeled as ‘o’ in Figs. 1 and 2. In this case the computational
point (denoted by ‘+’) is the center of an irregular element. Thus, special discretization of the differential operator is needed.

We first have to describe how one constructs the element around such a computational point. Suppose the point under
consideration is (xi, yj). If, for example (xi+1, yj) is outside the domain, then we define by (xeast , yj) the point which is the
closest on the right to (xi, yj) lying on the line y = yj and intersects with the boundary. We note by h1 the distance from
xeast to xi, i.e., h1 = xeast − xi. Similarly in the case where (xi−1, yj) is outside Ω , for which we define h2 = xi − xwest . In
the same fashion we treat the cases where (xi, yj+1) and (xi, yj−1) are outside the domain and define h3 = ynorth − yj and
h4 = yj − ysouth, respectively.

We also look at points along the line x − xi = y − yj. If (xi+1, yj+1) is outside the domain Ω , then we denote by
(xnorth−east , ynorth−east) the intersection of the line x − xi = y − yj going north-east of (xi, yj) with the boundary. We denote
by h5 the distance of (xnorth−east , ynorth−east) to (xi, yj), thus (xnorth−east , ynorth−east) = (xi + h5/

√
2, yj + h5/

√
2). Similarly

(xsouth−west , ysouth−west) = (xi − h6/
√
2, yj − h6/

√
2). We also treat the points along the line x − xi = yj − y, thus defining

h7 as the distance of the point (xnorth−west , ynorth−west) to (xi, yj) and h8 is the distance from (xsouth−east , ysouth−east) to (xi, yj).
Now we have to approximate ∆2ψ at (xi, yj) in case where (xi, yj) is a computational point which is in the center of an

irregular element.
Define a new coordinate system

η = (x + y)/
√
2, ξ = (y − x)/

√
2. (3.1)

This yields

y = (η + ξ)/
√
2, x = (η − ξ)/

√
2. (3.2)

Expressing ψηηηη and ψξξξξ in terms of ψxxxx, ψxxyy and ψyyyy, we have

ψη =
1

√
2
(ψx + ψy),

ψηη =
1
2
(ψxx + 2ψxy + ψyy)

ψηηη =
1

2
√
2
(ψxxx + 3ψxxy + 3ψxyy + ψyyy),

ψηηηη =
1
4
(ψxxxx + 4ψxxxy + 6ψxxyy + 4ψxyyy + ψyyyy).

(3.3)



ψξ =
1

√
2
(ψy − ψx),

ψξξ =
1
2
(ψxx − 2ψxy + ψyy),

ψξξξ =
1

2
√
2
(−ψxxx + 3ψxxy − 3ψxyy + ψyyy),

ψξξξξ =
1
4
(ψxxxx − 4ψxxxy + 6ψxxyy − 4ψxyyy + ψyyyy).

(3.4)

Therefore,

2(ψηηηη + ψξξξξ ) = ψxxxx + 6ψxxyy + ψyyyy. (3.5)

Thus,

2ψxxyy =
2
3
(ψηηηη + ψξξξξ )−

1
3
(ψxxxx + ψyyyy). (3.6)
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Fig. 2. Single computational element: ‘+’ computational point, ‘o’ eight neighbors of a computational point.

This yields

∆2ψ = ψxxxx + 2ψxxyy + ψyyyy

=
2
3
(ψηηηη + ψξξξξ + ψxxxx + ψyyyy). (3.7)

Thus, the operator ∆2 can be expressed via pure fourth-order derivatives in the directions of x, y and η, ξ . We can
therefore approximate∆2ψ by ∆̃2

hψ , where

∆̃2
hψ =

2
3
(δ4ηψ + δ4ξψ + δ4xψ + δ4yψ). (3.8)

The discretizations of ψxxxx, ψyyyy by δ4xψ, δ
4
yψ and those of ψηηηη, ψξξξξ by δ4ηψ, δ

4
ξψ , respectively, are carried out via

one-dimensional approximations of pure fourth-order derivatives.
We describe now the approximation of the convective term C(ψ) = ∇

⊥ψ · ∇∆ψ . This may be written as

C(ψ) = ∇
⊥ψ · ∇∆ψ = −(∂yψ) · ∂x(∆ψ)+ (∂xψ) · ∂y(∆ψ).

Thus,

C(ψ) = −(∂yψ) · (∂xxxψ + ∂xyyψ)+ (∂xψ) · (∂xxyψ + ∂yyyψ). (3.9)

The mixed third-order derivatives ψxxy and ψxyy may be written using (3.3)–(3.4) by

ψxxy =

√
2
3
(ψηηη + ψξξξ )−

1
3
ψyyy (3.10)

and

ψxyy =

√
2
3
(ψηηη − ψξξξ )−

1
3
ψxxx. (3.11)

Inserting Eqs. (3.10)–(3.11) in Eq. (3.9), we obtain

C(ψ) = −ψy ·
2
3
ψxxx +

√
2
3
(ψηηη − ψξξξ )


+ ψx ·

2
3
ψyyy +

√
2
3
(ψηηη + ψξξξ )


. (3.12)

In Section 4 we concentrate on the approximation of the biharmonic and the Laplacian operators. We discuss the
truncation error due to the various discretizations. In Section 5 we describe the approximation of the convective term at
near-boundary points.

4. Approximation of ∂xψ, ∂4xψ and ∂2xψ on an irregular mesh

We describe how to approximate ∂xψ, ∂4xψ and ∂2xψ in case the mesh is irregular. Let (xi, yj) be a grid point where at
least one of its neighbors to the right or to the left is inside the domain or on the boundary but its distance to (xi, yj) is not
h. Define the neighbor of (xi, yj) to the right by (xeast , yj) and its neighbor to the left by (xwest , yj). Let h1 = xeast − xi and
h2 = xi − xwest .

By the requirements we set in Section 2 on a computational point, we find that there exist positive constants, which does
not depend on the mesh size, such that

β ≤ h1/h ≤ 1 + β, β < h2/h ≤ 1 + β, 0 < β < 1. (4.1)
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Therefore,

γ ≤
h2

h1
≤

1
γ
, γ ≤

h1

h2
≤

1
γ
, γ =

β

1 + β
. (4.2)

Let Q (x) be a polynomial of degree less or equal to 4.

Q (x) = a0 + a1(x − xi)+ a2(x − xi)2 + a3(x − xi)3 + a4(x − xi)4. (4.3)

The interpolating data is

ψ(xwest , yj), ψ(xi, yj), ψ(xeast , yj), ψx(xwest , yj), ψx(xeast , yj). (4.4)

Then, a1 is set as an approximation to ∂xψ at (xi, yj) and is denoted by ψx,i,j. We also set 24a4 as an approximation to ∂4xψ
at (xi, yj) and denote it by δ4xψi,j. In a similar manner one approximates the first order derivative with respect to y and the
pure fourth-order derivatives with respect to y, ξ and η.

4.1. Approximation of the first-order derivatives

We now describe in detail the approximation of ∂xψ at (xi, yj). Define

c =
4h1h3

2 − 4h3
1h2 + 2h4

2 − 2h4
1

h1h2(h1 + h2)3
,

cp =
2h4

2 + 4h1h3
2

h1h2(h1 + h1)3
,

cm =
2h4

1 + 4h2h3
1

h1h2(h1 + h2)3
,

cx,p =
h3
2h

2
1 + h4

2h1

h1h2(h1 + h2)3
,

cx,m =
h2
2h

3
1 + h4

1h2

h1h2(h1 + h2)3
.

(4.5)

Then, the approximation ψx,i,j to ∂xψi,j is given by

ψx,i,j + cx,p · ψx(xeast , yj)+ cx,m · ψx(xwest , yj) = cp · ψ(xeast , yj)− cm · ψ(xwest , yj)− c · ψi,j. (4.6)

Note that in case h1 = h2 = h then (4.6) is equivalent to (2.4).
Suppose the values of ψ are known exactly on the points (xwest , yj), (xi, yj) and (xeast , yj). We analyze the error due to

the approximation (4.6), which supplies an approximation ∂xψ to the exact first-order derivative ∂xψ .

Lemma 4.1. Suppose the values of ψ are known exactly on the points (xwest , yj), (xi, yj) and (xeast , yj). Let ψx,i,j be defined
by (4.6). Then the truncation error, T , of this approximation is given by

|T | ≤ Ch4
∥ψ (5)

∥L∞ . (4.7)

Proof. Suppose the values of ψ are known exactly on the points (xwest , yj), (xi, yj)(xeast , yj). Inserting the exact derivatives
of ψ in (4.6) then the truncation error, T , satisfy

∂xψi,j + cx,p · ∂xψ(xeast , yj)+ cx,m · ∂xψ(xwest , yj)− cp · ψ(xeast , yj)+ cm · ψ(xwest , yj)+ c · ψi,j + T , (4.8)

where T is the truncation error. Taylor expansion yields

ψ(xi + h1) = ψi + h1∂xψi +
h2
1

2
∂2xψi +

h3
1

3!
∂3xψi +

h4
1

4!
∂4xψi +

h5
1

5!
∂5xψ(x

(1)
i ),

ψ(xi − h2) = ψi − h2∂xψi +
h2
2

2
∂2xψi −

h3
2

3!
∂3xψi +

h4
2

4!
∂4xψi −

h5
2

5!
∂5xψ(x

(2)
i ),

∂xψ(xi + h1) = ∂xψi + h1∂
2
xψi +

h2
1

2
∂3xψi +

h3
1

3!
∂4xψi +

h4
1

4!
∂5xψ(x

(3)
i ),

∂xψ(xi − h2) = ∂xψi − h2∂
2
xψi +

h2
2

2
∂3xψi −

h3
2

3!
∂4xψi +

h4
2

4!
∂5xψ(x

(4)
i ).

(4.9)
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Inserting (4.9) in (4.8) and collecting the terms that multiply ψi, ∂xψi ∂
2
xψi, ∂

3
xψi and ∂4xψi, we have

ψi : c − cp + cm = 0,

∂xψi : 1 + cx,p + cx,m − h1cp − h2cm = 0,

∂2xψi : h1cx,p − h2cx,m −
h2
1

2
cp +

h2
2

2
cm = 0,

∂3xψi :
h2
1

2
cx,p +

h2
2

2
cx,m −

h3
1

3!
cp −

h3
2

3!
cm = 0,

∂4xψi :
h3
1

3!
cx,p −

h3
2

3!
cx,m −

h4
1

4!
cp +

h4
2

4!
cm = 0.

(4.10)

Using (4.1) the truncation error T satisfies

∂xψi,j + cx,p · ∂xψ(xeast , yj)+ cx,m · ∂xψ(xwest , yj) = cp · ψ(xeast , yj)− cm · ψ(xwest , yj)− c · ψi,j + T , (4.11)

where |T | ≤ Ch4
∥ψ (5)

∥L∞ . �

Suppose that for a given j there areM+1 grid points x0, x1, . . . ., xM insideΩ . Define the error in the first-order derivative
as

ex,i,j = ψx,i,j − ∂xψ(xi, yj), (xi, yj) ∈ Ω, i = 1, 2, . . . ,M − 1, . (4.12)

The error at the two end-points i = 0,M is zero.
In the next lemma we bound the error in the approximation of the first-order derivative.

Lemma 4.2. Suppose the values of ψ are known exactly on the points (xwest , yj), (xi, yj) and (xeast , yj). Let ψx,i,j be defined
by (4.6). Then the error in ex = ψx − ∂xψ is bounded as follows.

|ex|l∞ ≤ Ch4
∥ψ (5)

∥L∞ . (4.13)

Proof. Extracting (4.8) from (4.6) and noting that the values ofψ are given exactly in both equations, we find that the error
ex satisfies

ex,i,j + c(i)x,p · ex(xeast , yj)+ c(i)x,m · ex(xwest , yj) = −T , i = 1, 2, . . . ,M − 1ex,0,j = 0, ex,M,j = 0. (4.14)

This tridiagonal system (4.14) is diagonally dominant, since

|c(i)x,p| + |c(i)x,m| =
h2
2h1 + h3

2 + h2h2
1 + h3

1

(h1 + h1)3
< 1. (4.15)

Letting h2/h1 = α, we have

|c(i)x,p| + |c(i)x,m| = 1 − 2
α + α2

(1 + α)3
= 1 − 2α

1
(1 + α)2

= 1 − 2
1

(1 + α)
(1 −

1
(1 + α)

). (4.16)

Define

q = 1 − 2
1

(1 + α)
(1 −

1
(1 + α)

. (4.17)

Using (4.2) we have

γ

1 + γ
≤

1
1 + α

≤
1

1 + γ
. (4.18)

Therefore,

0 < q < 1 − 2
 γ

γ + 1

2
. (4.19)

Since γ = β/(1 + β), it follows from the last inequality that

0 < q < 1 − 2
 γ

γ + 1

2
= 1 − 2

 β

1 + 2β

2
< 1. (4.20)
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Using (4.16), (4.17), (4.20) and 0 < β < 1, it results that

|c(i)x,p| + |c(i)x,m| = q < 1. (4.21)

Therefore, the matrix above is invertible and its inverse is bounded in the maximum norm. Thus,

|ex,i,j| ≤ Ch4
∥ψ (5)

∥L∞ . � (4.22)

Similar representations are valid for ∂yψ . The derivatives along the diagonals ∂ηψ and ∂ξψ are approximated using the
chain rule

ψη =
1

√
2
(ψx + ψy),

ψξ =
1

√
2
(ψy − ψx).

(4.23)

4.2. Approximation of the fourth-order derivatives

For the approximation of ∂4xψ at an irregular point we define

b = 24
(h1 + h2)

3

h2
1h

2
2(h1 + h2)3

,

bp = 24
h2 + 3h1

h2
1(h1 + h2)3

,

bm = 24
h1 + 3h2

h2
2(h1 + h2)3

,

bx,p = 24
h1 + h2

h1(h1 + h2)3
,

bx,m = 24
h1 + h2

h2(h1 + h2)3
.

(4.24)

Then, the approximation δ̄4xψi,j to ∂4xψ is given by

δ̄4xψi,j = bx,p · ψx(xeast , yj)− bx,m · ψx(xwest , yj)− (bp · ψ(xeast , yj)+ bm · ψ(xwest , yj)− b · ψi,j). (4.25)

Note that in case h1 = h2 = h then (4.25) is equivalent to (2.2). Similar representations are valid to ∂4yψ , and to derivatives
along the diagonals ∂4ηψ and ∂4ξψ , given that ∂ηψ and ∂ξψ are approximated by (4.23).

Lemma 4.3. Suppose the values of ψ are known exactly on the points (xwest , yj), (xi, yj) and (xeast , yj). In addition, suppose that
the values of ψx(xeast , yj) and ψx(xwest , yj) are taken as the exact values of ∂xψ at xeast , yj) and ψx(xwest , yj), respectively. Let
δ4xψi,j be defined by (4.25). Then, the truncation error T̃4 of this approximation is given by

∂4xψi,j = bx,p · ∂xψ(xeast , yj)− bx,m · ∂xψ(xwest , yj)

− (bp · ψ(xeast , yj)+ bm · ψ(xwest , yj)− b · ψi,j)+ T̃4 (4.26)

and satisfies

|T̃4| ≤ Ch∥ψ (5)
∥L∞ . (4.27)

Proof. Using the Taylor expansion (4.9) we find that

ψi : b − bp + bm = 0,

∂xψi : bx,p − bx,m − h1bp + h2bm = 0,

∂2xψi : h1bx,p − h2bx,m −
h2
1

2
bp −

h2
2

2
bm = 0,

∂3xψi :
h2
1

2
bx,p −

h2
2

2
bx,m −

h3
1

3!
bp +

h3
2

3!
bm = 0,

∂4xψi :
h3
1

3!
bx,p +

h3
2

3!
bx,m −

h4
1

4!
bp −

h4
2

4!
bm = 1.

(4.28)
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Using (4.1), we find that the truncation error T̃4 satisfies

|T̃4| ≤ Ch∥ψ (5)
∥L∞ . � (4.29)

Lemma 4.4. Suppose the values of ψ are known exactly on the points (xwest , yj), (xi, yj) and (xeast , yj). In addition, suppose that
the values of ψx(xeast , yj) andψx(xwest , yj) are taken as the discrete first-order derivative given in (4.6), then the truncation error
T4 for the approximation of the ∂4xψ for an irregular element is bounded as follows.

|δ̄4xψi,j − ∂4xψ | ≤ Ch∥ψ (5)
∥L∞ . (4.30)

Proof. Relating T4 with T̃4 and using (4.1), and the bounds |bx,p| ≤ C/h3 and |bx,m| ≤ C/h3, we obtain that

|T4| ≤ |T̃4| + |bx,p||ex(xeast , yj)| + |bx,m||ex(xwest , yj)|

≤ (Ch + C1
h1 + h2

h1(h1 + h2)3
h4

+ C2
h1 + h2

h2(h1 + h2)3
h4)∥ψ (5)

∥L∞ ≤ Ch∥ψ (5)
∥L∞ . (4.31)

Therefore, the truncation error for the approximation of the ∂4xψ for an irregular element is bounded as follows.

|δ̄4xψi,j − ∂4xψ | ≤ Ch∥ψ (5)
∥L∞ . � (4.32)

4.3. Approximation of the second-order derivatives

For the approximation of ∂2xψ at an irregular point we define

d = 2
8(h2

2h
3
1 + h3

2h
2
1)+ h2h4

1 + h4
2h1 − h5

2 − h5
1

h2
2h

2
1(h1 + h2)3

,

dp = 2
h2(−h2

2 + 8h2
1 + h2h1)

h2
1(h1 + h2)3

,

dm = 2
h1(−h2

1 + 8h2
2 + h2h1)

h2
2(h1 + h2)3

,

dx,p = 2
h2(2h2

1 + h2h1 − h2
2)

h1(h1 + h2)3
,

dx,m = 2
h1(2h2

2 + h2h1 − h2
1)

h2(h1 + h2)3
.

(4.33)

Then, the approximation δ̄2xψi,j to ∂2xψ is given by

δ̄2xψi,j = dp · ψ(xeast , yj)+ dm · ψ(xwest , yj)− d · ψi,j − (dx,p · ψx(xeast , yj)− dx,m · ψx(xwest , yj)). (4.34)

Note that in case h1 = h2 = h then (4.34) is equivalent to the approximation of δ2xψ in (2.5). Similar representations are
valid for ∂2yψ .

One can show, using Taylor expansion and (4.1), that if the values of ψx are chosen as the exact values of the first-order
derivative, then the truncation error for the approximation of the ∂2xψ for an irregular element is bounded as follows.

Lemma 4.5. Suppose the values of ψ are known exactly on the points (xwest , yj), (xi, yj) and (xeast , yj). In addition, suppose that
the values of ψx(xeast , yj) andψx(xwest , yj) are taken as the discrete first-order derivative given in (4.6), then the truncation error
T2 for the approximation of the ∂2xψ for an irregular element is bounded as follows.

|δ̄2xψi,j − ∂2xψ | ≤ Ch3
∥ψ (5)

∥L∞ . (4.35)

Proof. First assume that the values of the first-order derivatives are given exactly. Then using the Taylor expansion (4.9) we
find that
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ψi : dp + dm − d = 0,

∂xψi : dx,p + dx,m + h1dp − h2dm = 0,

∂2xψi : − h1dx,p − h2dx,m +
h2
1

2
dp +

h2
2

2
dm = 1,

∂3xψi : −
h2
1

2
dx,p +

h2
2

2
dx,m +

h3
1

3!
dp −

h3
2

3!
dm = 0,

∂4xψi : −
h3
1

3!
dx,p −

h3
2

3!
dx,m +

h4
1

4!
dp +

h4
2

4!
dm = 0.

(4.36)

Using (4.1) the truncation error T̃2 satisfies

|T̃2| ≤ Ch3
∥ψ (5)

∥L∞ . (4.37)

Relating the error in the approximation of the second-order derivative may be related with T̃2. Using (4.1), we find that

|δ̄2xψi,j − ∂2xψ | ≤ |T̃2| + |dx,p||ex(xeast , yj)| + |dx,m||ex(xwest , yj)|. (4.38)

Since |dx,p| and |dx,m| are bounded by C/h, we obtain that

|δ̄2xψi,j − ∂2xψ | ≤ Ch3
∥ψ (5)

∥L∞ . � (4.39)

The proof is similar to the proof of Lemma 4.4.

5. Approximation of convective term on an irregular mesh

In order to approximate the convective term (3.9) (or its equivalent form (3.12)), we have to discretize pure third-order
derivatives of ψ in x, y and in ξ, η. Note that we have already obtained fourth-order approximations to ∂xψ and ∂yψ (see
(4.6)).

In [3,2] we have constructed a sixth-order approximation to the first-order derivative, using a sixth-order interpolating
polynomial based on the interpolating values ψi−2,j, ψi−1,j, ψi,j, ψi+1,j, ψi+1,j and ψx,i−1,j, ψx,i,j, ψx,i+1,j. Then we inserted
these values into an approximation of ∂3xψ , based on a fifth-order polynomial. The latter interpolates the values
ψi−1,j, ψx,i−1,j, ψi,j, ψx,i,j, ψi+1,j, ψx,i+1,j and the resulting approximation was fourth-order accurate for ∂3xψ .

We first describe the approximation to ∂3xψ and then showhow to obtain a higher-order approximation to the first-order
derivative. Let (xi, yj) be a grid point where two of its neighbors to the right (xwest , yj) and to the left (xeast , yj) are inside the
domain or on the boundary. Define h1 = xeast − xi and h2 = xi − xwest .

Define

q = 12
h3
2 − 4h2

2h1 + 4h12h2 − h3
1

h3
1h

3
2

,

qp = 12
h2(h1h2 − h2

2 + 5h2
1)

h3
1(h1 + h2)3

,

qm = −12
h1(h1h2 − h2

1 + 5h2
2)

h3
2(h1 + h2)3

,

qx = 6
h2
2 − 4h1h2 + h2

1

h2
1h

2
2

,

qx,p = −6
h2(2h1 − h2)

h2
1(h1 + h2)2

,

qx,m = −6
h1(2h2 − h1)

h2
2(h1 + h2)2

.

(5.1)

Then, the approximation δ̄3xψi,j to ∂3xψ is given by

δ̄3xψi,j = q · ψi,j + qp · ψ(xeast , yj)+ qm · ψ(xwest , yj)

+ qx · ψx(xi, yj)+ qx,p · ψx(xeast , yj)+ qx,m · ψx(xwest , yj)). (5.2)
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Other pure third-order derivatives may be similarly discretized. Note that in case h1 = h2 = h then (5.2) is equivalent to
the approximation of δ3xψ in Eq. (3.29) of [3].

One may show, using Taylor expansion and (4.1), that if the values ofψx are chosen as the exact values of the first-order
derivative, then the truncation error for the approximation of the ∂3xψ for an irregular element is bounded as follows.

|δ̄3xψi,j − ∂3xψ | ≤ Ch3
∥ψ (6)

∥L∞ . (5.3)

When we approximated ∂3xψ to fourth-order accuracy on a uniform mesh we need to approximate ∂xψ to sixth-order
accuracy, so that by using these values for the first-order derivative, one can obtain a fourth-order approximation to ∂3xψ .
Now we construct the analogue of the sixth-order approximation to ψx, derived this time for a non-uniform grid.

Let (xi, yj) be a grid point where its nearest two neighbors to the right and to the left are inside the domain, but its next
neighbor to the right or to left is on the boundary. The neighbor of (xi, yj) to the right is (xi+1, yj) and its neighbor to the left
is (xi−1, yj). We denote its second neighbor to the right by (xeast2, yj) and its second neighbor to the left by (xwest2, yj). Let
h1 = xeast2 − xi+1, h2 = xi+1 − xi = h, h3 = xi − xi−1 = h and h4 = xi−1 − xwest2.

By the requirements we set in Section 2 on a computational point, we find that there exist positive constants, which does
not depend on the mesh size, such that

β ≤ h1/h ≤ 1 + β, β < h4/h ≤ 1 + β, 0 < β < 1. (5.4)
Let Q (x) be a polynomial of degree less or equal 6.

Q (x) = a0 + a1(x − xi)+ a2(x − xi)2 + a3(x − xi)3 + a4(x − xi)4 + a5(x − xi)5 + a6(x − xi)6. (5.5)

The interpolating data is

ψ(xwest2, yj), ψ(xi−1, yj), ψx(xi−1, yj), ψ(xi, yj), ψ(xi+1, yj), ψx(xi+1, yj), ψ(xeast2, yj). (5.6)

Then, a1 is set as an approximation to ∂xψ at (xi, yj) and is denoted by ψ̄x,i,j.
Define

r = 2
−3h2

3h2 − 3h4h3h2 − 2h2
3h1 − 2h4h3h1 + 3h3h2h1 + 3h3h2

2 + 2h4h2h1 + 2h4h2
2

h3h2(h1 + h2)(h3 + h4)
,

rp =
(h3 + h4)h2

3(h1 + h2)(5h1h2
2 + 7h3h2h1 + 2h2

3h1 + 4h4h2h1 + 2h4h3h1 − h3
2 − 2h3h2

2 − h2
3h2 − h4h2

2 − h4h3h2)

h2(h2 + h3 + h4)2(h2 + h3)3h2
1

,

rm =
(h3 + h4)h2

2(h1 + h2)(−2h4h2h1 − 2h4h2
2 − 7h4h3h2 − 4h4h3h1 − 5h4h2

3 + h3h2h1 + h3h2
2 + 2h2

3h2 + h2
3h1 + h3

3)

h3h2
4(h2 + h3)3(h1 + h2 + h3)2

,

rx,p =
(h1 + h2)(h3 + h4)h2

3

(h2 + h3 + h4)(h2 + h3)2h1
,

rx,m =
(h1 + h2)(h3 + h4)h2

2

(h1 + h2 + h3)(h2 + h3)2h4
,

rp2 =
(h3 + h4)h2

3h
2
2

(h1 + h2 + h3 + h4)(h1 + h2 + h3)2(h1 + h2)h2
1
,

rm2 =
(h1 + h2)h2

3h
2
2

(h1 + h2 + h3 + h4)(h2 + h3 + h4)2(h3 + h4)h2
4
.

(5.7)

Then, the approximation ψ̄x,i,j to ∂xψ is given by

ψ̄x,i,j + rx,p · ψ̄x,i+1,j + rx,m · ψ̄x,i−1,j

= r · ψi,j + rp · ψi+1,j + rm · ψi−1,j + rp2 · ψ(xeast2, yj)+ rm2 · ψ(xwest2, yj) (5.8)

Other pure first-order derivativesmay be discretized similarly. Itmay be shown, using the error of the interpolation problem
above and (5.4), that if the values of ψ̄x,i−1,j, ψ̄x,i+1,j are chosen as the exact values of ∂xψ at (xi−1, yj), (xi+1, yj) respectively,
then the truncation error in ψ̄x,i,j for an interior point may be bounded by

|ψ̄x,i,j − ∂xψ | ≤ Ch6
∥ψ (7)

∥L∞ . (5.9)
Suppose that the point (xi, yj) is close to the boundary, such that it has only one neighbor to the right (xeast , yj) inside the

computational domain or on the boundary, but two neighbors to the left (xi−1, yj) and (xwest2, yj). In this case we construct
a polynomial of degree 5 at most, which interpolates

ψ(xwest2, yj), ψ(xi−1, yj), ψx(xi−1, yj), ψ(xi, yj), ψ(xeast , yj), ψx(xeast , yj). (5.10)

Let h1 = xeast − xi, h2 = xi − xi−1 = h and h3 = xi−1 − xwest2.
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By the requirements we set in Section 2 on a computational point, we find that there exist positive constants, which does
not depend on the mesh size, such that

β ≤ h1/h ≤ 1 + β, β < h3/h ≤ 1 + β, 0 < β < 1. (5.11)
Define

s =
−2h2

2 − 2h3h2 + 3h1h2 + 2h1h3

h1h2(h2 + h3)
,

sp =
(h2 + h3)h2

2(5h
2
1 + 7h1h2 + 2h2

2 + 4h1h3 + 2h2h3)

(h1 + h2 + h3)2(h1 + h2)3h1
,

sm =
(h2 + h3)h2

1(−2h1h3 − 4h2h3 + h1h2 + h2
2)

h2h2
3(h1 + h2)3

,

sx,p =
(h2 + h3)h2

2

(h1 + h2 + h3)(h1 + h2)2
,

sx,m =
(h2 + h3)h2

1

h3(h1 + h2)2
,

sm2 = −
h2
1h

2
2

h2
3(h2 + h3)(h1 + h2 + h3)2

.

(5.12)

Then, the approximation ψ̄x,i,j to ∂xψ is given by

ψ̄x,i,j + sx,p · ψ̄x(xeast , yj)+ sx,m · ψ̄x,i−1,j = s · ψi,j + sp · ψ(xeast ,yj) + sm · ψi−1,j + sm2 · ψ(xwest2, yj) (5.13)

It may be shown, using the error of the interpolation problem above and (5.11), that if the value of ψ̄x,i−1,j is chosen as
the exact value of ∂xψ at (xi−1, yj), then the truncation error in ψ̄x,i,j for a near-boundary point may be bounded by

|ψ̄x,i,j − ∂xψ | ≤ Ch5
∥ψ (6)

∥L∞ . (5.14)
The case where the point (xi, yj) is close to the boundary, such that it has only one neighbor to the left (xwest , yj) inside the
computational domain or on the boundary, but two neighbors to the right (xi+1, yj) and (xeast2, yj) is treated similarly.

6. Numerical accuracy of the scheme in irregular domains

In order to verify the spatial fourth order accuracy of the scheme, we performed several numerical tests. The time-step
was set to dt = Ch2.

In Tables 1–10 we present the error, e, and the relative error, where
e2 = ∥ψcomp − ψexact∥l2 ,

e∞ = ∥ψcomp − ψexact∥l∞ .

Similarly,
(ex)2 = ∥(ψx)comp − (ψx)exact∥l2 ,

(ex)∞ = ∥(ψx)comp − (ψx)exact∥l∞ .

Here, ψcomp, (ψx)comp and ψexact , (ψx)exact are the computed and the exact streamfunction and of ψ and its x-derivative,
respectively.

6.0.1. Case 1: ψ(x, y, t) = ex+y−t in a unit circle

Here

f (x, y, t) = ∂t∆ψ −∆2ψ, (6.1)
where ψ(x, y, t) = ex+y−t .

Our aim is to recover ψ(x, y, t) from f (x, y, t). Thus, we resolve numerically
∂t∆ψ −∆2ψ = f (x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) = ex+y, (x, y) ∈ Ω

ψ(x, y, t) = ex+y−t , (x, y) ∈ ∂Ω
∂ψ(x, y, t)

∂n
=
∂ex+y−t

∂n
, (x, y) ∈ ∂Ω.

(6.2)
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Table 1
Compact scheme with exact solution:ψ = ex+y−t on x2 + y2 ≤ 1. We present e and ex , the l2 errors for the streamfunction and for ∂xψ . Here∆t = 0.25h2

and t = 0.25.

mesh 9 × 9 Rate 17 × 17 Rate 33 × 33

e2 1.0366E−04 4.31 5.2399E−06 4.10 3.0546E−07
e∞ 1.6352E−04 4.58 6.8480E−06 3.61 5.5991E−07
(ex)2 3.2905E−04 4.45 1.5105E−05 3.80 1.0811E−06
(ex)∞ 7.1337E−04 4.17 3.9506E−05 3.13 4.5110E−06

Table 2
Compact scheme with exact solution: ψ = (1 − x2)3(1 − y2)3e−t on x2 + y2 ≤ 1. We present e and ex , the l2 errors for the streamfunction and for ∂xψ .
Here∆t = 0.25h2 and t = 0.25.

mesh 9 × 9 Rate 17 × 17 Rate 33 × 33

e2 1.103E−02 4.55 4.6820E−04 4.06 2.8002E−05
e∞ 1.201E−02 4.56 5.0703E−04 4.18 2.5776E−05
(ex)2 2.730E−02 4.29 1.4000E−03 4.65 5.5899E−05
(ex)∞ 3.7960E−02 4.12 2.1864E−03 4.10 1.2735E−04

Table 3
Compact scheme with exact solution:ψ = (1 − (x2 + y2))3e−t/192 on x2 + y2 ≤ 1. We present e and ex , the l2 errors for the streamfunction and for ∂xψ .
Here∆t = 0.25h2 and t = 0.25.

mesh 9 × 9 Rate 17 × 17 Rate 33 × 33

e2 3.8146E−05 3.55 3.2473E−06 5.77 5.9640E−08
e∞ 3.7433E−05 3.39 3.5759E−06 6.04 5.4332E−08
(ex)2 1.2305E−04 4.48 5.5097E−06 3.89 3.7099E−07
(ex)∞ 1.2827E−04 4.08 7.5821E−06 3.29 7.7447E−07

Table 4
Compact scheme for the Navier–Stokes equation with exact solution:ψ = ex+y−t on x2 + y2 ≤ 1. We present e and ex , the l2 errors for the streamfunction
and for ∂xψ . Here∆t = 0.25h2 and t = 0.25. In Fig. 3 the solution and the error for Case 4 are plotted.

mesh 9 × 9 Rate 17 × 17 Rate 33 × 33

e2 9.955E−05 4.31 5.0042E−06 4.01 2.998E−07
e∞ 1.6792E−04 4.70 6.4755E−06 3.55 5.5991E−07
(ex)2 3.0959E−04 4.40 1.4634E−05 3.80 1.0508E−06
(ex)∞ 6.6237E−04 4.09 3.8936E−05 3.11 4.5138E−06

Table 5
Compact scheme for Navier–Stokes equation with exact solution:ψ =

1
288 (1 − x2)3(1 − y2)3e−t on x2 + y2 ≤ 1. We present e and ex , the l2 errors for the

streamfunction and for ∂xψ . Here∆t = 0.25h2 and t = 0.25. In Fig. 4 the solution and the error for Case 5 are plotted.

mesh 9 × 9 Rate 17 × 17 Rate 33 × 33

e2 1.1040E−02 4.56 4.6817E−04 4.06 2.8002E−05
e∞ 1.2010E−02 4.57 5.0701E−04 4.30 2.5781E−05
(ex)2 2.7300E−02 4.33 1.3530E−03 4.60 5.5872E−05
(ex)∞ 3.7950E−02 4.12 2.1861E−03 4.10 1.2750E−04

Table 6
Compact scheme for Navier–Stokes equation with exact solution: ψ = (1 − (x2 + y2))3e−t/192 on x2 + y2 ≤ 1. We present e and ex , the l2 errors for the
streamfunction and for ∂xψ . Here∆t = 0.25h2 and t = 0.25. In Fig. 5 the solution and the error for Case 6 are plotted.

mesh 9 × 9 Rate 17 × 17 Rate 33 × 33

e2 3.8146E−05 3.55 3.2473E−06 5.77 5.9640E−08
e∞ 3.7433E−05 3.39 3.5759E−06 6.04 5.4332E−08
(ex)2 1.2305E−04 4.48 5.5097E−06 3.89 3.7099E−07
(ex)∞ 1.2827E−04 4.08 7.5821E−06 3.29 7.7447E−07

6.0.2. Case 2: ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t on a unit circle

Here

f (x, y, t) = ∂t∆ψ −∆2ψ, (6.3)
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Table 7
Compact scheme for Navier–Stokes equation with exact solution: ψ = (0.81 − (x2 + y2)2)e−t/64 on D. We present e and ex , the l2 errors for the
streamfunction and for ∂xψ . Here∆t = 0.25h2 and t = 0.16. In Fig. 6 the solution and the error for Case 7 are plotted.

mesh 11 × 11 Rate 21 × 21 Rate 41 × 41

e2 6.7927E−09 3.97 4.3433E−10 3.98 2.7595E−11
e∞ 1.1452E−08 3.99 7.2237E−10 3.97 4.6112E−11
(ex)2 1.8151E−08 3.95 1.1759E−09 3.99 7.3986E−11
(ex)∞ 3.12494E−08 3.88 2.1241E−09 3.99 1.3374E−10

Table 8
Compact scheme for Navier–Stokes equation with exact solution: ψ = ex+y−t onΩ . We present e and ex , the l2 errors for the streamfunction and for ∂xψ .
Here∆t = 0.25h2 and t = 0.16. In Fig. 7 the solution and the error for Case 8 are plotted.

mesh 11 × 11 Rate 21 × 21 Rate 41 × 41

e2 9.5923E−06 4.05 5.5957E−07 4.85 1.9380E−08
e∞ 1.9296E−05 3.95 1.2704e-06 5.08 1.9380E−08
(ex)2 6.1783E−05 4.29 3.1745e-06 4.59 1.3202E−07
(ex)∞ 1.3602e-04 3.14 1.5512e-05 4.01 9.6381E−07

Table 9
Compact scheme for Navier–Stokes equation with exact solution:ψ = (1/64)e−t ((x2 + y2)2 + cos(x) · cos(y)) onΩ . We present e and ex , the l2 errors for
the streamfunction and for ∂xψ . Here∆t = 0.25h2 and t = 0.16. In Fig. 8 the solution and the error for Case 9 are plotted.

mesh 11 × 11 Rate 21 × 21 Rate 41 × 41

e2 5.1468E−08 4.02 3.1644E−09 4.68 1.2311E−10
e∞ 1.0385E−07 3.94 6.7449E−09 4.80 2.4166E−10
(ex)2 3.1049E−07 4.28 1.5965E−08 4.61 6.5458E−10
(ex)∞ 7.1207E−07 4.25 3.7389E−08 3.85 2.5906E−09

Table 10
Compact scheme for Navier–Stokes equation with exact solution: ψ = (1/64)e−t ((x2 + y2)2 + ex cos(y)) onΩ . We present e and ex , the l2 errors for the
streamfunction and for ∂xψ . Here∆t = 0.25h2 and t = 0.16. In Fig. 9 the solution and the error for Case 10 are plotted.

mesh 11 × 11 Rate 21 × 21 Rate 41 × 41

e2 3.0809E−08 4.02 1.8993E−09 4.33 9.4105E−11
e∞ 9.6878E−08 4.21 5.2525E−09 4.25 2.7563E−10
(ex)2 2.8732E−07 4.17 1.5968E−08 4.16 8.9395E−10
(ex)∞ 5.6380E−07 4.28 2.8971E−08 3.63 2.3323E−09

where ψ(x, y, t) =
1

288 (1 − x2)3(1 − y2)3e−t . Our aim is to recover ψ(x, y, t) from f (x, y, t). Thus, we resolve numerically

∂t∆ψ −∆2ψ = f (x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) =
1

288
(1 − x2)3(1 − y2)3, (x, y) ∈ Ω

ψ(x, y, t) =
1

288
(1 − x2)3(1 − y2)2e−t , (x, y) ∈ ∂Ω

∂ψ(x, y, t)
∂n

=
1

288
∂(1 − x2)3(1 − y2)2e−t

∂n
, (x, y) ∈ ∂Ω.

(6.4)

6.0.3. Case 3: ψ(x, y, t) =
1

192 (1 − (x2 + y2))3e−t on a unit circle

Here

f (x, y, t) = ∂t∆ψ −∆2ψ, (6.5)

where ψ(x, y, t) =
1

192 (1 − (x2 + y2))3e−t . Our aim is to recover ψ(x, y, t) from f (x, y, t). Thus, we resolve numerically
∂t∆ψ −∆2ψ = f (x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) =
1

192
(1 − (x2 + y2))3, (x, y) ∈ Ω

ψ(x, y, t) = 0,
∂ψ(x, y, t)

∂n
= 0, (x, y) ∈ ∂Ω.

(6.6)
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Fig. 3. Case 4. Left: Approximation for ψ = ex+y−t . Right: The error.

6.0.4. Case 4: Navier–Stokes with exact solution ψ(x, y, t) = ex+y−t in a unit circle

Here

f (x, y, t) = ∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ, (6.7)

where ψ(x, y, t) = ex+y−t .
Our aim is to recover ψ(x, y, t) from f (x, y, t). Thus, we resolve numerically

∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ = f (x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) = ex+y, (x, y) ∈ Ω

ψ(x, y, t) = ex+y−t , (x, y) ∈ ∂Ω
∂ψ(x, y, t)

∂n
=
∂ex+y−t

∂n
, (x, y) ∈ ∂Ω.

(6.8)

6.0.5. Case 5: Navier–Stokes equation with exact solution ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t on a unit circle

Here

f (x, y, t) = ∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ, (6.9)

where ψ(x, y, t) =
1

288 (1 − x2)3(1 − y2)3e−t . Our aim is to recover ψ(x, y, t) from f (x, y, t). Thus, we resolve numerically

∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ = f (x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) =
1

288
(1 − x2)3(1 − y2)3, (x, y) ∈ Ω

ψ(x, y, t) =
1

288
(1 − x2)3(1 − y2)2e−t , (x, y) ∈ ∂Ω

∂ψ(x, y, t)
∂n

=
1

288
∂(1 − x2)3(1 − y2)2e−t

∂n
, (x, y) ∈ ∂Ω.

(6.10)

6.0.6. Case 6: Navier–Stokes equation with exact solution ψ(x, y, t) =
1

192 (1 − (x2 + y2))3e−t on a unit circle

Here

f (x, y, t) = ∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ, (6.11)

where ψ(x, y, t) =
1

192 (1 − (x2 + y2))3e−t . Our aim is to recover ψ(x, y, t) from f (x, y, t). Thus, we resolve numerically
∂t∆ψ + ∇

⊥ψ · ∇∆ψ −∆2ψ = f (x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) =
1

192
(1 − (x2 + y2))3, (x, y) ∈ Ω

ψ(x, y, t) = 0,
∂ψ(x, y, t)

∂n
= 0, (x, y) ∈ ∂Ω.

(6.12)
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Fig. 4. Case 5. Left: Approximation for ψ =
1

288 (1 − x2)3(1 − y2)3e−t . Right: The error.

Fig. 5. Case 6. Left: Approximation for ψ(x, y, t) =
1

192 (1 − (x2 + y2))3e−t . Right: The error.

6.1. Intersection of two non-concentric circles

In this subsection the domainΩ is the intersection of two non-concentric circles.

Ω = {(x, y)|(x − 0.4)2 + y2 < 0.5} ∪ {(x, y)|(x + 0.4)2 + y2 < 0.5} (6.13)

6.1.1. Case 7: Navier–Stokes equation with exact solution ψ(x, y, t) =
1
64 (0.81 − (x2 + y2)2)e−t on two circles intersection

Here

f (x, y, t) = ∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ, (6.14)

where ψ(x, y, t) =
1
64 e

−t(0.81 − (x2 + y2)2). Our aim is to recover ψ(x, y, t) from f (x, y, t). Thus, we resolve numerically

∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ = f (x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) =
1
64
(0.81 − (x2 + y2)2), (x, y) ∈ Ω

ψ(x, y, t) =
1
64
(0.81 − (x2 + y2)2)e−t , (x, y) ∈ ∂Ω

∂ψ(x, y, t)
∂n

=
1
64
∂((0.81 − (x2 + y2)2)e−t)

∂n
, (x, y) ∈ ∂Ω.

(6.15)
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Fig. 6. Case 7. Left: Approximation for ψ(x, y, t) =
1
64 (0.81 − (x2 + y2)2)e−t . Right: The error.

6.1.2. Case 8: Navier–Stokes equation with exact solution ψ(x, y, t) = ex+y−t on two circles intersection
Here

f (x, y, t) = ∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ, (6.16)

where ψ(x, y, t) = ex+y−t . Our aim is to recover ψ(x, y, t) from f (x, y, t). Thus, we resolve numerically
∂t∆ψ + ∇

⊥ψ · ∇∆ψ −∆2ψ = f (x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) = ex+y, (x, y) ∈ Ω

ψ(x, y, t) = ex+y−t , (x, y) ∈ ∂Ω
∂ψ(x, y, t)

∂n
=
∂ex+y−t

∂n
, (x, y) ∈ ∂Ω.

(6.17)

6.1.3. Case 9: Navier–Stokes equation with exact solution ψ(x, y, t) = (1/64)e−t((x2 + y2)2 + cos(x) · cos(y)) on two circles
intersection

Here

f (x, y, t) = ∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ, (6.18)

whereψ(x, y, t) = (1/64)e−t((x2 + y2)2 + cos(x) · cos(y)). Our aim is to recoverψ(x, y, t) from f (x, y, t). Thus, we resolve
numerically

∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ = f (x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) = (1/64)((x2 + y2)2 + cos(x) · cos(y)), (x, y) ∈ Ω

ψ(x, y, t) = (1/64)e−t((x2 + y2)2 + cos(x) · cos(y)), (x, y) ∈ ∂Ω

∂ψ(x, y, t)
∂n

=
∂(1/64)e−t((x2 + y2)2 + cos(x) · cos(y))

∂n
, (x, y) ∈ ∂Ω.

(6.19)

6.1.4. Case 10: Navier–Stokes equation with exact solution ψ(x, y, t) = (1/64)e−t((x2 + y2)2 + ex cos(y)) on two circles
intersection

Here

f (x, y, t) = ∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ, (6.20)

where ψ(x, y, t) = (1/64)e−t((x2 + y2)2 + ex cos(y)). Our aim is to recover ψ(x, y, t) from f (x, y, t). Thus, we resolve
numerically

∂t∆ψ + ∇
⊥ψ · ∇∆ψ −∆2ψ = f (x, y, t), (x, y) ∈ Ω

ψ(x, y, 0) = (1/64)((x2 + y2)2 + ex cos(y)), (x, y) ∈ Ω

ψ(x, y, t) = (1/64)e−t((x2 + y2)2 + ex cos(y)), (x, y) ∈ ∂Ω

∂ψ(x, y, t)
∂n

=
∂(1/64)e−t((x2 + y2)2 + ex cos(y))

∂n
, (x, y) ∈ ∂Ω.

(6.21)
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Fig. 7. Case 8. Left: Approximation for ψ(x, y, t) = ex+y−t . Right: The error.

Fig. 8. Case 9. Left: Approximation for ψ(x, y, t) = (1/64)e−t ((x2 + y2)2 + cos(x) · cos(y)). Right: The error.

Fig. 9. Case 10. Left: Approximation for ψ(x, y, t) = (1/64)e−t ((x2 + y2)2 + ex cos(y)). Right: The error.

7. Conclusions

Wehave constructed a newhigh-order compact scheme for the Navier–Stokes equations in irregular domains. The idea is
to express the biharmonic operator via pure fourth-order derivatives along the axis and the diagonals of each computational
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element. In addition, the third-order derivatives appearing in the convective term as well are written in terms of pure third-
order derivatives along the axes and the diagonals. This enable us to approximate the Navier–Stokes operator via one-
dimensional discretizations at near boundary points. The truncation errors are analyzed for all one-dimensional operators
involved in the representation of the biharmonic and the convective terms. The numerical results demonstrate the fourth-
order accuracy of the scheme for all the test cases for which the new scheme was applied. In our future work we plan to
test our scheme for additional more complex geometries. It is desirable to have a full error analysis for the new scheme in
irregular domains.
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