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Abstract In this paper we continue the study, which was initiated in (Ben-Artzi et al.
in Math. Model. Numer. Anal. 35(2):313–303, 2001; Fishelov et al. in Lecture Notes in
Computer Science, vol. 2667, pp. 809–817, 2003; Ben-Artzi et al. in J. Comput. Phys.
205(2):640–664, 2005 and SIAM J. Numer. Anal. 44(5):1997–2024, 2006) of the numerical
resolution of the pure streamfunction formulation of the time-dependent two-dimensional
Navier-Stokes equation. Here we focus on enhancing our second-order scheme, introduced
in the last three afore-mentioned articles, to fourth order accuracy. We construct fourth order
approximations for the Laplacian, the biharmonic and the nonlinear convective operators.
The scheme is compact (nine-point stencil) for the Laplacian and the biharmonic operators,
which are both treated implicitly in the time-stepping scheme. The approximation of the
convective term is compact in the no-leak boundary conditions case and is nearly compact
(thirteen points stencil) in the case of general boundary conditions. However, we stress that
in any case no unphysical boundary condition was applied to our scheme. Numerical results
demonstrate that the fourth order accuracy is actually obtained for several test-cases.
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1 Introduction

The numerical resolution of the classical Navier-Stokes system, governing viscous, incom-
pressible, time-dependent flow, has been an outstanding challenge of computational fluid dy-
namics since its early stages. The most extensively used approach was the “finite element”
method. We do not cite here any references for that topic, not only because the existing
literature is so vast, but also because our study here falls into the category of finite differ-
ence methods. In this category one can find some well-known methods such as “projection
methods” ([5, 12, 21, 36, 52] and the references therein), “Spectral methods” [11, 16, 37],
“Galerkin methods” [44, 54] and a variety of “velocity-vorticity” [22–24] or “vorticity-
streamfunction” methods [25, 26, 46, 47, 53]. See [33, 45] for a review on fundamental
formulations of incompressible Navier-Stokes equations. The appearance and growing pop-
ularity of “compact schemes” brought a renewed interest in the aforementioned methods
[1, 13, 17–19, 27, 35, 42, 43, 50]. The pure-streamfunction formulation for the time-
dependent Navier-Stokes system in planar domains has been used in [30–32] some twenty
years ago. It has been designed primarily for the numerical investigation of the Hopf bifurca-
tion occurring in the driven cavity problem. Their approach was based on a finite-difference
method. The application of various compact schemes to the pure streamfunction formula-
tion is fairly recent [6, 15, 28, 38, 41]. We mention also [20, 34, 39, 40, 48] for works on the
stationary Stokes or Navier-Stokes equation. In [7, 8] a comprehensive treatment of a second
order compact scheme in space and time is presented. It is based on the Stephenson scheme
for the biharmonic problem [50] and includes a detailed analysis of the (linearized) stability
and a proof of the convergence of the fully nonlinear scheme. In addition, a fast solver for the
fourth order elliptic problems, which is applied at each time step, is presented in [9]. We note
also that a compact finite-difference (second-order) scheme, based on the same approach,
for irregular domains, has recently been presented [10]. Recall that an important feature of
the methodology presented in [7, 8] is that the “numerical boundary conditions” are applied
only to the streamfunction itself and imposed solely on the boundary. Thus the scheme con-
forms exactly with the theoretical (pure streamfunction) formulation of the Navier-Stokes
system. In particular, this approach avoids:

• Artificial boundary conditions (such as vorticity boundary values).
• Ghost points which are added to the computational domain (in order to improve accuracy).

The main purpose of the present paper is to extend the aforementioned second order
scheme [7], to a fourth order scheme. With this added accuracy, we are able to simulate
the dynamics of flow problems in rectangles with sparser grids and fewer time steps, com-
pared with the second order scheme.

The outline of the paper is as follows. In Sect. 3, we present fourth order approximations
for all spatial operators appearing in the evolution equation, i.e., the Laplacian, the bihar-
monic operator and the nonlinear convective term. Two alternative fourth-order schemes
are constructed; the first for “no-leak” or periodic boundary conditions and the second for
general boundary conditions.

In Sect. 4 the scheme is coupled with two types of time-stepping schemes. The first is a
second order time-stepping scheme, already used in [7]. The second is formally almost third
order accurate and was introduced in [49] in the context of Navier-Stokes simulations using
spectral methods for the discretization in space.

A detailed analysis of the linear stability properties of the full discrete scheme, is given
in Sect. 5.

Finally, in Sect. 6 we present several numerical results, which demonstrate the gain ob-
tained by the increased accuracy.
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2 Basic Discrete Operations

For simplicity, assume that � = [a, b]2 is a square. We lay out a uniform grid a = x0 < x1 <

· · · < xN = b, a = y0 < y1 < · · · < yN = b. Assume that �x = �y = h. At each grid point
(xi, yj ) we have three unknowns ψi,j ,pi,j , qi,j , where p = ψx and q = ψy . The connections
between ψ and (ψx,ψy) is the Hermitian relation that we recall below. Let us summarize
first some notation for finite difference operators. We assume that the function ψ is regular.

• The centered difference operators δxψ , δyψ , δ2
xψ , δ2

yψ , along with their truncation errors
are given by

δxψi,j = ψi+1,j − ψi−1,j

2h
, δxψi,j = ∂xψ + 1

6
h2∂3

xψ + O(h4), (2.1)

δyψi,j = ψi,j+1 − ψi,j−1

2h
, δyψi,j = ∂yψ + 1

6
h2∂3

yψ + O(h4), (2.2)

δ2
xψi,j = ψi+1,j − 2ψi,j + ψi−1,j

h2
, δ2

xψi,j = ∂2
xψ + 1

12
h2∂4

xψ + O(h4), (2.3)

δ2
yψi,j = ψi,j+1 − 2ψi,j + ψi,j−1

h2
, δ2

yψi,j = ∂2
yψ + 1

12
h2∂4

yψ + O(h4). (2.4)

• The Hermitian gradient (ψx,ψy) is defined by the two relations
⎧
⎨

⎩

(
I + h2

6 δ2
x

)
ψx,i,j = δxψi,j , 1 ≤ i, j ≤ N − 1,

(
I + h2

6 δ2
y

)
ψy,i,j = δyψi,j , 1 ≤ i, j ≤ N − 1.

(2.5)

The Hermitian gradient (ψx,ψy) is fourth order accurate in the two directions x and y

with a truncation error given by

ψx,i,j = ∂xψ − 1

180
h4∂5

xψ + O(h6), (2.6)

ψy,i,j = ∂yψ − 1

180
h4∂5

yψ + O(h6). (2.7)

• The Stephenson one-dimensional fourth-order finite-difference operators are defined at
each grid point (xi, yj ), 1 ≤ i, j ≤ N − 1 by (see [7]),

δ4
xψi,j = 12

h2
{(δxψx)i,j − δ2

xψi,j }, δ4
xψi,j = ∂4

xψ − 1

720
h4∂8

xψ + O(h6), (2.8)

δ4
yψi,j = 12

h2
{(δyψy)i,j − δ2

yψi,j }, δ4
yψi,j = ∂4

yψ − 1

720
h4∂8

yψ + O(h6). (2.9)

Thus, the local truncation errors are of fourth order accuracy.
• The operators δ+

x and δ+
y are defined by

δ+
x ψi,j = ψi+1,j − ψi,j

h
, δ+

y ψi,j = ψi,j+1 − ψi,j

h
(2.10)

and are clearly first order approximations of ∂xψ and ∂yψ .
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• The forward discrete averaging operators μx , μy are defined by

μxψi,j = 1

2
(ψi,j + ψi+1,j ), μyψi,j = 1

2
(ψi,j + ψi,j+1). (2.11)

We consider continuous functions ψ which vanish, along with their gradients, on the bound-
ary. The discrete analogue, which we denote by L2

0,h × (L2
0,h)

2, consists of grid func-
tions ψi,j ,ψx,i,j ,ψy,i,j with zero values at boundary points. We regard the grid-functions

ψi,j ,1 ≤ i, j ≤ N − 1, as elements of R
(N−1)2

, equipped with the scalar product in L2
0,h

(ψ,φ)h = h2
N−1∑

i,j=1

ψi,jφi,j . (2.12)

Whenever needed, boundary values of ψ,ψx,ψy are taken as zero. Thus, we set, for exam-

ple, δ+
x ψ0,j = ψ1,j −ψ0,j

2h
= ψ1,j

2h
.

3 Fourth Order Spatial Discretization of the Navier-Stokes Equation

3.1 The Second Order Pure Streamfunction Scheme

In this subsection, we recall briefly the second order pure streamfunction scheme, which is
the basis of the present study. We consider the Navier-Stokes equation in pure streamfunc-
tion form

{
∂t�ψ + ∇⊥ψ · ∇�ψ − ν�2ψ = f (x, y, t),

ψ(x, y, t) = ψ0(x, y).
(3.1)

Recall that ∇⊥ψ = (−∂yψ, ∂xψ) is the velocity vector. Equation (3.1) is rewritten as

∂t�ψ − ∂yψ�∂xψ + ∂xψ�∂yψ − ν�2ψ = f (x, y, t). (3.2)

The design of the scheme proceeds along the method of lines. This means that we first
discretize the equation in space, then in time. The spatial discretization is obtained simply
by plugging in (3.2) the following second order approximations:

• The five point discrete Laplacian

�hψi,j = δ2
xψi,j + δ2

yψi,j (3.3)

with truncation error

�hψi,j = �ψ + 1

12
h2(∂4

xψ + ∂4
yψ) + O(h4). (3.4)

• The Stephenson second order biharmonic operator

�2
hψi,j = δ4

xψi,j + δ4
yψi,j + 2δ2

xδ
2
yψi,j (3.5)

with truncation error

�2
hψi,j = �2ψ + 1

6
h2(∂2

x ∂4
yψ + ∂4

x ∂2
yψ) + O(h4). (3.6)
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• The second order discrete convective term Ch(ψ)

Ch(ψ)i,j = −ψy,i,j (�hψx)i,j + ψx,i,j (�hψy)i,j . (3.7)

At grid point (xi, yj ) and time t , the semi-discrete second order scheme for the time-
dependent Navier-Stokes equation is

d

dt
�hψi,j (t) + Ch(ψ(t))i,j − ν�2

hψi,j (t) = f (xi, yj , t). (3.8)

A second order time-stepping scheme is then used to perform the time integration. This is
discussed in more details in Sect. 4 below. Extensive numerical results, stability and conver-
gence analysis for the second order scheme, as well as an efficient fast solver, were carried
out in [7–9]. We now turn to the goal of this paper, namely the derivation of a discrete
approximation to (3.1), which is fourth-order accurate in the spatial variables.

3.2 Fourth Order Discrete Laplacian and Biharmonic Operators

The fourth order discrete Laplacian �̃hψ and biharmonic �̃2
hψ operators introduced in [9]

are perturbations of the second order operators (3.3) and (3.5). This perturbation is based on
the explicit truncation error displayed in (3.4) for the Laplacian.

�̃hψ = �hψ − h2

12
(δ4

x + δ4
y)ψ. (3.9)

In other words, the expression is clearly a fourth-order approximation of �ψ . In fact, using
the expressions (2.3), (2.4) for δ2

xψ , δ2
yψ and (2.8), (2.9) for δ4

xψ , δ4
yψ , we can define a

fourth order version of the discrete Laplacian as

�̃hψ = 2�hψ − (δxψx + δyψy). (3.10)

We note that the precise fourth-order truncation error is

�̃hψi,j − �ψ = 1

360
h4(∂6

xψ + ∂6
yψ) + O(h6). (3.11)

Similarly, we define

�̃2
hψ = �2

hψ − h2

6
(δ2

xδ
4
y +δ4

xδ
2
y)ψ = δ4

x

(

I − h2

6
δ2
y

)

ψ +δ4
y

(

I − h2

6
δ2
x

)

ψ +2δ2
xδ

2
yψ. (3.12)

The associated truncation error is given by

�̃2
hψi,j − �2ψ = −h4

(
1

720
(∂8

xψ + ∂8
yψ) + 1

72
∂4

x ∂4
yψ − 1

180
(∂2

x ∂6
yψ + ∂6

x ∂2
yψ)

)

+ O(h6).

(3.13)

Recall that the second order Laplacian and biharmonic operators are self-adjoint and posi-
tive. Assume that ψ,φ ∈ L2

h,0. Then, for the Laplacian we have

−(�hψ,φ)h = (δ+
x ψ, δ+

x φ)h + (δ+
y ψ, δ+

y φ)h. (3.14)

In addition, if (ψx,ψy), (φx,φy) ∈ L2
h,0 are the Hermitian gradients related to ψ,φ by (2.6),

(2.7), we have (see [8], (138))
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(�2
hψ,φ)h = (δ+

x ψx, δ
+
x φx)h + (δ+

y ψy, δ
+
y φy)h + 2(δ+

x δ+
y ψ, δ+

x δ+
y φ)h

+ 12

h2
(δ+

x ψ − μxψx, δ
+
x φ − μxφx)h

+ 12

h2
(δ+

y ψ − μyψy, δ
+
y φ − μyφy)h. (3.15)

The last two equalities form the basis of the stability and convergence analysis for the dis-
crete Laplace and biharmonic equations, where the operators are chosen as �h and �2

h

(see [8]). Similarly, for the fourth order operators �̃h, �̃2
h, we have

Proposition 3.1 (Symmetry and coercivity of the operators −�̃h, �̃2
h) If ψ,φ ∈ L2

h,0 and
(ψx,ψy), (φx,φy) ∈ L2

h,0 are the corresponding Hermitian gradients, then:

(i) The fourth order Laplacian �̃h satisfies the relation

−(�̃hψ,φ)h = (δ+
x ψ, δ+

x φ)h + (δ+
y ψ, δ+

y φ)h

+ (δ+
x ψ − μxψx, δ

+
x φ − μxφx)h + (δ+

y ψ − μyψy, δ
+
y φ − μyφy)h

+ h2

12

(
(δ+

x ψx, δ
+
x φx)h + (δ+

y ψy, δ
+
y φy)h

)
.

(ii) The fourth order biharmonic �̃2
h satisfies the relation

(�̃2
hψ,φ)h = (δ+

x ψx, δ
+
x φx)h + (δ+

y ψy, δ
+
y φy)h + 2(δ+

x δ+
y ψ, δ+

x δ+
y φ)h

+ 12

h2
(δ+

x ψ − μxψx, δ
+
x φ − μxφx)h + 12

h2
(δ+

y ψ − μyψy, δ
+
y φ − μyφy)h

+ h2

6

(
(δ+

x δ+
y ψx, δ

+
x δ+

y φx)h + (δ+
x δ+

y ψy, δ
+
x δ+

y φy)h

)

+ 2(δ+
y (δ+

x ψ − μxψx), δ
+
y (δ+

x φ − μxφx))h

+ 2(δ+
x (δ+

y ψ − μyψy), δ
+
x (δ+

y φ − μyφy))h.

Proof Note the following identity (see [8], (88))

(δ4
xψ,φ)h = (δ+

x ψx, δ
+
x φx)h + 12

h2
(δ+

x ψ − μxψ, δ+
x φ − μxφ)h. (3.16)

Combining this equation with (3.9) and (3.14) yields (i). We turn now to part (ii). Consider
the two terms δ2

yδ
4
x and δ2

xδ
4
y in (3.12). A discrete integration by parts and (3.16) gives

(δ2
yδ

4
xψ,φ)h = −(δ+

y δ4
xψ, δ+

y φ)h = −(δ+
x δ+

y ψx, δ
+
x δ+

y φx)h

− 12

h2
(δ+

x δ+
y ψ − μxδ

+
y ψx, δ

+
x δ+

y φ − μxδ
+
y φx)h. (3.17)

Similarly,

(δ2
xδ

4
yψ,φ)h = −(δ+

x δ4
yψ, δ+

x φ)h = −(δ+
x δ+

y ψy, δ
+
x δ+

y φy)h

− 12

h2
(δ+

x δ+
y ψ − μyδ

+
x ψy, δ

+
x δ+

y φ − μyδ
+
x φy)h. (3.18)

Combining (3.12), (3.15), (3.17) and (3.18) yields the result. �
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Corollary 3.1 (Positivity of the operators −�̃h, �̃2
h) If ψ,φ ∈ L2

h,0 and (ψx,ψy),

(φx,φy) ∈ L2
h,0 are the corresponding Hermitian gradients, then −�̃h and �̃2

h are posi-
tive and in fact

−(�̃hψ,ψ)h ≥ −(�hψ,ψ)h = |δ+
x ψ |2h + |δ+

y ψ |2h, (3.19)

(�̃2
hψ,ψ)h ≥ (�2

hψ,ψ)h ≥ C(|δ+
x ψx |2h + |δ+

y ψy |2h + |δ+
x ψy |2h + |δ+

y ψx |2h). (3.20)

3.3 A Fourth Order Convective Term: No-leak or Periodic Boundary Conditions

The convective term in the Navier-Stokes equation (3.1) is

u · ∂x�ψ + v · ∂y�ψ = ∇⊥ψ · ∇�ψ = −∂yψ�∂xψ + ∂xψ�∂yψ := C(ψ), (3.21)

where the velocity u = (u, v) = ∇⊥ψ . In this section we present a finite difference op-
erator, which retains the compact stencil of nine points, without any special treatment at
near boundary points. It is fourth-order accurate in the specific cases of no-leak or periodic
boundary conditions. In the previous work [8] we applied the following finite difference
operator to approximate the convective term (3.21).

Ch(ψ) = −ψy�hψx + ψx�hψy. (3.22)

Note that replacing in (3.22) �h by �̃h would formally make this term fourth-order accu-
rate. However, applying �̃h to ψx forces us (see (3.10)) to use the operator δxψxx at near
boundary points, hence to use zero boundary values for ψxx . This is in contradiction to the
continuous case, where the vorticity �ψ does not in general vanish on the boundary. It can
be shown that the truncation error in (3.22) is

Ch(ψ) − C(ψ) = h2

12

(−∂yψ∂x(∂
4
xψ + ∂4

yψ) + ∂xψ∂y(∂
4
xψ + ∂4

yψ)
) + O(h4). (3.23)

Since the velocity (u, v) = (−∂yψ, ∂xψ) is divergence free, the term in parenthesis in the
right-hand side of the last equation can be written in conservative form as follows:

−∂yψ∂x(∂
4
xψ + ∂4

yψ) + ∂xψ∂y(∂
4
xψ + ∂4

yψ)

= ∂x(u(∂4
xψ + ∂4

yψ)) + ∂y(v(∂4
xψ + ∂4

yψ))

= ∂x(−∂yψ(∂4
xψ + ∂4

yψ)) + ∂y(∂xψ(∂4
xψ + ∂4

yψ)).

Note that this form is invariant under any coordinate transformation. Replacing the partial
derivatives, appearing in the right-hand side of the last equation, by second order accurate
finite difference operators yields

∂x(−∂yψ(∂4
xψ + ∂4

yψ)) + ∂y(∂xψ(∂4
xψ + ∂4

yψ))

= δx(−ψy(δ
4
xψ + δ4

yψ)) + δy(ψx(δ
4
xψ + δ4

yψ)) + O(h2). (3.24)

Therefore, fourth order approximation of the convective term C(ψ) in (3.21) may be written
(using 3.23) as

C̃h(ψ) = −ψy�hψx + ψx�hψy − h2

12

(
δx(−ψy(δ

4
xψ + δ4

yψ)) + δy(ψx(δ
4
xψ + δ4

yψ))
)

= C(ψ) + O(h4). (3.25)
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The difficulty with this expression is that it involves high-order differences, appearing in the
term

J = δx(−ψy(δ
4
xψ + δ4

yψ)) + δy(ψx(δ
4
xψ + δ4

yψ)). (3.26)

We show now that in the special case of zero boundary conditions, we can still evaluate J at
each interior point, including near-boundary points. Consider the term δx(−ψy(δ

4
xψ +δ4

yψ))

at near boundary points, in particular near the left or right sides of the square. This re-
quires the knowledge of δ4

xψ on the boundary. The latter is known for periodic prob-
lems, since in this case all points are interior points. Alternatively, we consider the spe-
cific case of no-leak boundary conditions. Along the left and right sides the no-leak con-
dition reads u = −ψy = 0. Hence, the term −ψy(δ

4
xψ + δ4

yψ) is zero on the boundary.
Thus, δx(−ψy(δ

4
xψ + δ4

yψ)) is computable near left/right sides. Along the top/bottom
sides, no problem arises when one computes the value of δx(−ψy(δ

4
xψ + δ4

yψ)) at near-
boundary points, since δx operates in the x direction only. Similar considerations hold for
δy(−ψx(δ

4
xψ + δ4

yψ)).

3.4 A Fourth Order Convective Term: General Boundary Conditions

In the previous section we had a fourth-order approximation (3.25) for the convective term,
based on the compact stencil and the Hermitian derivatives (ψx,ψy). In this section, we con-
struct a fourth order approximation of the convective term for general boundary conditions,
namely we do not impose periodic or no-leak conditions on the boundary as was needed
for (3.25). However, the price to be paid is the use of higher order polynomials in order to
compute approximate derivatives. Recall the definition of the convective term

u · ∂x�ψ + v · ∂y�ψ = −∂yψ�∂xψ + ∂xψ�∂yψ. (3.27)

Since the Hermitian gradient gives a fourth order approximation to ∂xψ , ∂yψ , we only need
to have a fourth-order approximation to ∂x�ψ and ∂y�ψ . Consider now

∂x�ψ = ∂3
xψ + ∂2

y ∂xψ. (3.28)

We first construct a fourth order approximation to the pure third order derivative ∂3
xψ . Let us

fix y to be yj . We construct a fifth order polynomial in x, which interpolates ψ and ∂xψ at
(xi−1, yj ), (xi, yj ), (xi+1, yj ). The third order derivative of this polynomial at point (xi, yj )

is

(ψ̃xxx)i,j = 3

2h2

(
10δxψi,j − [(∂xψ)i+1,j + 8(∂xψ)i,j + (∂xψ)i−1,j ]

)

= 3

2h2

(
10δxψ − h2δ2

x∂xψ − 10∂xψ
)

i,j
. (3.29)

It can be easily checked that this defines a fourth order accurate approximation to ∂3
xψ at

(xi, yj ), provided that ∂xψ is the exact value of this partial derivative. In addition, the mixed
third order derivative in (3.28) is approximated to fourth-order accuracy by ψ̃yyx , where

ψ̃yyx = δ2
y∂xψ + δxδ

2
yψ − δxδy∂yψ. (3.30)
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This can be verified by a straightforward Taylor expansion. Therefore, combining 3.29)
and (3.30), we see that ∂x�ψ is approximated to fourth order accuracy by

∂̃x�hψ = 3

2

(

10
δxψ − ∂xψ

h2
− δ2

x∂xψ

)

+ δ2
y∂xψ + δxδ

2
yψ − δxδy∂yψ. (3.31)

Similarly, ∂y�ψ is approximated by

∂̃y�h
ψ = 3

2

(

10
δyψ − ∂yψ

h2
− δ2

y∂yψ

)

+ δ2
x∂yψ + δyδ

2
xψ − δyδx∂xψ. (3.32)

Thus, the convective term −ψy�xψ + ψy�yψ is approximated by

C̃ ′
h(ψ) = −ψy

(
3

2

(

10
δxψ − ∂xψ

h2
− δ2

x∂xψ

)

+ δ2
y∂xψ + δxδ

2
yψ − δxδy∂yψ

)

+ ψx

(
3

2

(

10
δyψ − ∂yψ

h2
− δ2

y∂yψ

)

+ δ2
x∂yψ + δyδ

2
xψ − δyδx∂xψ

)

. (3.33)

Finally, (3.33) may be written as follows:

C̃ ′
h(ψ) = −ψy

(

�h∂xψ + 5

2

(

6
δxψ − ∂xψ

h2
− δ2

x∂xψ

)

+ δxδ
2
yψ − δxδy∂yψ

)

+ ψx

(

�h∂yψ + 5

2

(

6
δyψ − ∂yψ

h2
− δ2

y∂yψ

)

+ δyδ
2
xψ − δyδx∂xψ

)

= C(ψ) + O(h4). (3.34)

Note that (3.34) is fourth-order accurate if ψ , ∂xψ and ∂yψ are the exact values of the
function ψ and its first order derivatives. However, if we approximate ∂xψ and ∂yψ by ψx

and ψy , which are defined by the Hermitian fourth-order relations

δxψ = ψx + h2

6
δ2
xψx, δyψ = ψy + h2

6
δ2
yψy, (3.35)

and substitute (3.35) in (3.34), then

C̃ ′
h(ψ) = −ψy

(
�hψx + δxδ

2
yψ − δxδyψy

) + ψx

(
�hψy + δyδ

2
xψ − δyδxψx

)

= C(ψ) + O(h2). (3.36)

Observe that the latter is only second order accurate, whereas the loss of accuracy oc-
curs only due to the replacement of (∂xψ, ∂yψ) by (ψx,ψy) and (ψx,ψy) = (∂xψ +
O(h4), ∂yψ + O(h4)). In order to retain fourth order accuracy in (3.34), when replacing
(∂x, ∂y) by approximate derivatives, we have to provide a sixth order approximation for
such derivatives. We denote the approximate derivatives by ψ̃x and ψ̃y . Here we use a Padé
relation as given in [19]. It has the following form:

1

3
(ψ̃x)i+1,j + (ψ̃x)i,j + 1

3
(ψ̃x)i−1,j = 14

9

ψi+1,j − ψi−1,j

2h
+ 1

9

ψi+2,j − ψi−2,j

4h
. (3.37)
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The local truncation error for ψ̃x in (3.37) is of sixth order, i.e.,

(ψ̃x)i,j = (∂xψ)i,j + h6 1

2100
(∂7

xψ)i,j + O(h8). (3.38)

If we substitute (3.37) in (3.29) we obtain

(ψ̃xxx)i,j = (∂3
xψ)i,j + h4

120
(∂7

xψ)i,j + O(h6). (3.39)

At near-boundary points we apply a one-sided approximation for ∂xψ (see [19]). For i = 1
(a point next to the left boundary) we have

1

10
(ψ̃x)0,j + 6

10
(ψ̃x)1,j + 3

10
(ψ̃x)i−1,j = −10ψ0,j − 9ψ1,j + 18ψ2,j + ψ3,j

30h
. (3.40)

For i = N − 1 we have

1

10
(ψ̃x)N,j + 6

10
(ψ̃x)N−1,j + 3

10
(ψ̃x)N−2,j = 10ψN,j + 9ψN−1,j − 18ψN−2,j − ψN−3,j

30h
.

(3.41)
In a similar manner we approximate ∂yψ . To summarize, a fourth order approximation of
the convective term for general boundary conditions is

C̃ ′
h(ψ) = −ψy

(

�hψ̃x + 5

2

(

6
δxψ − ψ̃x

h2
− δ2

xψ̃x

)

+ δxδ
2
yψ − δxδyψ̃y

)

+ ψx

(

�hψ̃y + 5

2

(

6
δyψ − ψ̃y

h2
− δ2

yψ̃y

)

+ δyδ
2
xψ − δyδxψ̃x

)

= C(ψ) + O(h4), (3.42)

where ψx,ψy are the Hermitian derivatives defined in (2.5) and ψ̃x, ψ̃y are the approximate
derivatives defined by the Padé relation for 2 ≤ i ≤ N − 2,1 ≤ j ≤ N − 1, by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

3
(ψ̃x)i+1,j + (ψ̃x)i,j + 1

3
(ψ̃x)i−1,j = 14

9

ψi+1,j − ψi−1,j

2h
+ 1

9

ψi+2,j − ψi−2,j

4h
,

1

10
(ψ̃x)0,j + 6

10
(ψ̃x)1,j + 3

10
(ψ̃x)2,j = −10ψ0,j − 9ψ1,j + 18ψ2,j + ψ3,j

30h
,

1

10
(ψ̃x)N,j + 6

10
(ψ̃x)N−1,j + 3

10
(ψ̃x)N−2,j = 10ψN,j + 9ψN−1,j − 18ψN−2,j − ψN−3,j

30h
(3.43)

and ψ̃y is defined as a function of ψ for 1 ≤ i ≤ N − 1,2 ≤ j ≤ N − 2 by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

3
(ψ̃y)i,j+1 + (ψ̃y)i,j + 1

3
(ψ̃y)i,j−1 = 14

9

ψi,j+1 − ψi,j−1

2h
+ 1

9

ψi,j+2 − ψi,j−2

4h
,

1

10
(ψ̃y)i,0 + 6

10
(ψ̃y)i,1 + 3

10
(ψ̃y)i,2 = −10ψi,0 − 9ψi,1 + 18ψi,2 + ψi,3

30h
,

1

10
(ψ̃y)i,N + 6

10
(ψ̃y)i,N−1 + 3

10
(ψ̃y)i,N−2 = 10ψi,N + 9ψi,N−1 − 18ψi,N−2 − ψi,N−3

30h
.

(3.44)
Note that a compact scheme for irregular domains was developed in [10].
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4 Time-Stepping Scheme

4.1 Introduction

Having approximated the spatial operators to fourth order accuracy in Sect. 3, we are left
now with the semidiscrete dynamical system

{
∂t �̃hψ + C

app
h (ψ) − ν�̃2

hψ = f (xi, yj , t),

ψ(xi, yj , t) = ψ0(xi, yj ).
(4.1)

Recall that:

• �̃hψ is the fourth order Laplacian (3.10)
• �̃2

hψ is the fourth order approximation of the biharmonic (3.12)
• C

app
h is a fourth order approximation to the convective term C(ψ) (see (3.22)). For exam-

ple, we can take C
app
h as C̃h (see (3.25)) or C ′

h (see (3.34)). That is

C
app
h = C(ψ) + O(h4) = ∇⊥ψ · ∇�ψ + O(h4). (4.2)

Using the notation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U(t) = �̃hψ(t),

D(t) = ν�̃2
h(ψ(t)),

C(t) = C
app
h (ψ(t)),

F (t) = f (t),

(4.3)

we obtain the dynamical system

d

dt
U(t) = −C(t) + D(t) + F(t). (4.4)

We describe now two different one-level time-stepping schemes of IMplicit-EXplicit
(IMEX) type (see [2, 3]). For IMEX schemes the convective term is treated explicitly, while
the diffusive term is diagonally implicit.

4.2 Second Order Time-Stepping Scheme

The first IMEX scheme is the second order time-stepping scheme used in [7]. It is a one-
level scheme with two intermediate steps, where each of them contains one resolution of a
biharmonic problem. This scheme is explicit for the convective part and implicit for the dif-
fusive part. We begin with the known quantity ψn and compute first ψn+1/2. We then use the
intermediate quantity ψn+1/2 in a second step in order to obtain ψn+1. Letting U 1,D1,C1

be the quantities associated with ψn, similarly U 2,D2,C2 be the associated quantities as-
sociated with ψn+1/2 and U 3,D3,C3 be the associated quantities associated with ψn+1, the
scheme may be written as follows.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

U 2 = U 1 + �t

2

(

−C1 + 1

2
D1 + 1

2
D2

)

+ �t

2
F̃ n+1/4,

U 3 = U 1 + �t

(

−C2 + 1

2
D2 + 1

2
D3

)

+ �tF̃ n+1/2.

(4.5)
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Here ψn+1/2,ψn+1 are involved (implicitly) in the expressions U 2 − 1
2�tD2, U 3 − 1

2 �tD3,
respectively. Note that the second step provides ψn+1 as the solution of the problem

(

�̃h − �t

2
�̃2

h

)

ψn+1 = �̃hψ
n + �t

(

−C2 + 1

2
D2

)

+ �tFn+1/2. (4.6)

This scheme is second order accurate in time and fourth order accurate in space. Namely,
if ψ is the exact solution of (3.1), then it satisfies (4.6) up to an error O((�t)3 + h4).
Finally, observe that we apply the fully-discrete scheme (4.5) at all interior points. On the
boundaries, we impose the no-slip and no-leak boundary conditions. The latter completely
determine ψ,ψx and ψy on the boundary.

4.3 Higher Order Time-Stepping Scheme

The second IMEX scheme to be described here is almost third order accurate. Note that the
design of IMEX one-level stable schemes which is at least third order accurate is not an easy
task (see [2]). This actually requires handling of the formal accuracy of the scheme in all
Peclet regimes and the analysis of the restriction on the time step (i.e., a CFL condition) due
to the convective term. Here we adopt a three-step Runge-Kutta scheme suggested in [49]
in a slightly different context. Using the notation (see (4.3))

⎧
⎪⎨

⎪⎩

U = �̃hψ,

D = ν�̃2
h(ψ),

C = C
app
h (ψ),

(4.7)

and letting U 1,D1,C1 be the quantities associated with ψn (at the first time step), sim-
ilarly U 2,D2,C2 be the associated quantities associated with ψ at the second time step,
U 3,D3,C3 be the associated quantities associated with ψ at the third time step and
U 4,D4,C4 be the quantities associated with ψn+1 , the scheme reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U 2 = U 1 + �t
(
γ1(−C1) + α1D

1 + β1D
2
) + 8

15
�tFn+4/15,

U 3 = U 2 + �t
(
γ2(−C2) + ζ1(−C1) + α2D

2 + β2D
3
)

+ �t

(
2

3
Fn+1/3 − 8

15
Fn+4/15

)

,

U 4 = U 3 + �t
(
γ3(−C3) + ζ2(−C2) + α3D

3 + β3D
4
)

+ �t

(
1

6
Fn + 2

3
Fn+1/2 + 1

6
Fn+1 − 2

3
Fn+1/3

)

.

(4.8)

The values of the parameters are as follows (see [49])

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1 = 29
96 , α2 = −3

40 , α3 = 1
6 ,

β1 = 37
160 , β2 = 5

24 , β3 = 1
6 ,

γ1 = 8
15 , γ2 = 5

12 , γ3 = 3
4 ,

ζ1 = −17
60 , ζ2 = −5

12 .

(4.9)
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The final value of ψn+1 is obtained in the last step of the scheme, by solving

(�̃h − �tβ3ν�̃2
h)ψ

n+1 = U 3 + �t
(
γ3(−C3) + ζ2(−C2) + α3D

3
)

+ �t

(
1

6
Fn + 2

3
Fn+1/2 + 1

6
Fn+1 − 2

3
Fn+1/3

)

. (4.10)

The values of the parameters in (4.9) were obtained by matching the Taylor expansion of
the exact solution with the Taylor expansion of the solution derived by the time-stepping
scheme. They satisfy the requirements for first and second order accuracy in time and all,
except one, for third order accuracy in time. It is impossible to satisfy all these requirements
in the setting of the scheme (4.8). Therefore, the formal accuracy of this time scheme is
less than three (see [49]). Presumably, third order accuracy could be obtained by a four-step
scheme. Note that in our numerical results third (or almost third) order accuracy in time was
achieved (see Sect. 6 below).

5 Stability Analysis

5.1 Discrete Operators and Symbols

In this section, we consider the schemes (4.5) and (4.8) applied to the equation

�ψt = C(ψ) + ν�2ψ, (5.1)

where C(ψ) is a linear convection term C(ψ) = a�ψx + b�ψy , with a, b being real con-
stants. Note that for simplicity we take the convection term here to be the analog of −C(t)

in (4.4). Therefore, we consider the equation

�ψt = a�ψx + b�ψy + ν�2ψ. (5.2)

We perform the linear von-Neumann stability analysis, which consists of computing the
amplification factor of the full discretized time-space scheme in the periodic setting over a
uniform grid of mesh size h. We denote

λ =
√

a2 + b2
�t

h
(the CFL number), μ = ν�t

h2
. (5.3)

The two phase angles in each of the directions x and y are θ = αh ∈ [0,2π) and ϕ =
βh ∈ [0,2π). Every discrete operator (on ψ ) is expressed (via the Fourier transformation)
as a “symbol” multiplying the Fourier transform ψ̂ . Recall that the symbols of the Hermitian
derivatives ψx , ψy (2.5) are

ψ̂x = Hxψ̂ = i
3 sin θ

h(2 + cos θ)
ψ̂, ψ̂y = Hyψ̂ = i

3 sinϕ

h(2 + cosϕ)
ψ̂, (5.4)

respectively. Similarly, the symbols of the Padé derivatives ψ̃x , ψ̃y (3.43) and (3.44) are

̂̃
ψx = H̃xψ̂ = i

sin θ(14 + cos θ)

3h(3 + 2 cos θ)
ψ̂,

̂̃
ψy = H̃yψ̂ = i

sinϕ(14 + cosϕ)

3h(3 + 2 cosϕ)
ψ̂, (5.5)
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respectively. The symbols of δxψx and δyψy are

δ̂xψx = Kxψ̂ = − 3 sin2 θ

h2(2 + cos θ)
ψ̂, δ̂yψy = Kyψ̂ = − 3 sin2 ϕ

h2(2 + cosϕ)
ψ̂, (5.6)

respectively. Similarly, the symbols of δxψ̃x , δyψ̃y are

̂
δxψ̃x = K̃xψ̂ = − sin2 θ(14 + cos θ)

3h2(3 + 2 cos θ)
ψ̂,

̂
δyψ̃y = K̃yψ̂ = − sin2 ϕ(14 + cosϕ)

3h2(3 + 2 cosϕ)
ψ̂,

(5.7)
respectively. We can now introduce the symbols of the discrete operators appearing in (4.5).
The symbol of �h is

M = − 2

h2
((1 − cos θ) + (1 − cosϕ)). (5.8)

We compute next the symbol of the discrete fourth-order accurate Laplacian �̃h (see (3.10)).
Using (5.8) and (5.6), we find that the symbol of −h2�̃h, which we denote by A1(θ,ϕ),is

A1(θ,ϕ) = (1 − cos θ)(5 + cos θ)

2 + cos θ
+ (1 − cosϕ)(5 + cosϕ)

2 + cosϕ
. (5.9)

We turn next to the computation of the symbol of �̃2
h = �2

h − h2

6 (δ2
xδ

4
y + δ4

xδ
2
y), which is the

discrete fourth-order accurate biharmonic operator (3.12). We note that the symbols of δ4
x

and δ4
y (see (2.8) and (2.9)) are respectively

Jx = 12

h4

(1 − cos θ)2

2 + cos θ
, Jy = 12

h4

(1 − cosϕ)2

2 + cosϕ
, (5.10)

(see (5.6) for δ̂xψx and δ̂yψy ). Therefore, the symbol of h2ν�̃2
h, which is denoted by

B1(θ,ϕ), is

B1(θ,ϕ) = h2ν

(

Jx + Jy + 4

h4
(1 − cos θ)

(

1 − cosϕ + h4

12
Jy

)

+ 4

h4
(1 − cosϕ)

(

1 − cos θ + h4

12
Jx

))

= 12νh−2

(
(1 − cos θ)2

2 + cos θ
+ (1 − cosϕ)2

2 + cosϕ

+ (1 − cos θ)(1 − cosϕ)

(
1

2 + cosϕ
+ 1

2 + cos θ

))

. (5.11)

The convective term approximations in the case of (5.2) are given by the following analogues
of (3.25) and (3.42):

C̃h(ψ) = a�hψx + b�hψy − h2

12

(
aδx(δ

4
x + δ4

y) + bδy(δ
4
x + δ4

y)
)
ψ, (5.12)

where (ψx , ψy ) is the Hermitian approximation (2.6), (2.7) to ∇ψ at grid points and
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C̃ ′
h(ψ) = a

(

�hψ̃x + 5

2

(

6
δxψ − ψ̃x

h2
− δ2

xψ̃x

)

+ δxδ
2
yψ − δxδyψ̃y

)

+ b

(

�hψ̃y + 5

2

(

6
δyψ − ψ̃y

h2
− δ2

yψ̃y

)

+ δyδ
2
xψ − δyδxψ̃x

)

, (5.13)

where ψ̃x, ψ̃y are the approximate Padé derivatives defined in (3.43) and (3.44).
(I) The symbol of C̃h (see (5.12)): Note that C̃h(ψ) is fourth-order accurate in the case

of periodic (or no-leak) boundary conditions. The symbols of the operators ψ → �hψx and
ψ → �hψy are

Mx = MHx = −i
6 sin θ

h3(2 + cos θ)
((1 − cos θ) + (1 − cosϕ)),

My = MHy = −i
6 sinϕ

h3(2 + cosϕ)
((1 − cos θ) + (1 − cosϕ))

(5.14)

and the symbols of ψ → δx(δ
4
xψ + δ4

yψ) and ψ → δy(δ
4
xψ + δ4

yψ) are

Nx = i
sin θ

h
(Jx + Jy) = i

12 sin θ

h5

(
(1 − cos θ)2

2 + cos θ
+ (1 − cosϕ)2

2 + cosϕ

)

,

Ny = i
sinϕ

h
(Jx + Jy) = i

12 sinϕ

h5

(
(1 − cosϕ)2

2 + cosϕ
+ (1 − cosϕ)2

2 + cosϕ

)

.

(5.15)

Denote by C1(θ,ϕ) the symbol of ih2C̃h. From (5.12), (5.14) and (5.15) we obtain

C1(θ,ϕ) = h−1

(

a sin θ

(

(1 − cos θ)
7 − cos θ

2 + cos θ
+ (1 − cosϕ)

(
6

2 + cos θ
+ 1 − cosϕ

2 + cosϕ

))

+ b sinϕ

(

(1 − cosϕ)
7 − cosϕ

2 + cosϕ
+ (1 − cos θ)

(
6

2 + cosϕ
+ 1 − cos θ

2 + cos θ

)))

.

(5.16)

Note also that

C2
1 (θ,ϕ) ≤ h−2(a2 + b2)D̃(θ,ϕ), (5.17)

where

D̃(θ,ϕ) =
{

| sin θ |
(

(1 − cos θ)
7 − cos θ

2 + cos θ
+ (1 − cosϕ)

(
6

2 + cos θ
+ 1 − cosϕ

2 + cosϕ

))}2

+
{

| sinϕ|
(

(1 − cosϕ)
7 − cosϕ

2 + cosϕ
+ (1 − cos θ)

(
6

2 + cosϕ
+ 1 − cos θ

2 + cos θ

))}2

.

(5.18)

(II) The symbol of C̄ ′
h (see (5.13), which is the analogue of (3.42)): Recall that C̃ ′

h(ψ) is
fourth order accurate in the case of general boundary conditions. The symbols of ψ → �hψ̃x
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and ψ → �hψ̃y are

Lx = MH̃x = −i
2 sin θ(14 + cos θ)

3h3(3 + 2 cos θ)
((1 − cos θ + (1 − cosϕ)),

Ly = MH̃y = −i
2 sinϕ(14 + cosϕ)

3h3(3 + 2 cosϕ)
((1 − cos θ + (1 − cosϕ))

(5.19)

and the symbols of ψ → 5
2 (6 δxψ−ψ̃x

h2 − δ2
xψ̃x), ψ → 5

2 (6 δyψ−ψ̃y

h2 − δ2
yψ̃y) are

Ix = −i
5 sin θ(1 − cos θ)2

3h3(3 + 2 cos θ)
, Iy = −i

5 sinϕ(1 − cosϕ)2

3h3(3 + 2 cosϕ)
. (5.20)

In addition, the symbols of ψ → δxδ
2
yψ , ψ → δyδ

2
xψ are

Qx = −i
2 sin θ(1 − cosϕ)

h3
, Qy = −i

2 sinϕ(1 − cos θ)

h3
(5.21)

and the symbols of δxδyψ̃y , δyδxψ̃x are

Rx = i
sin θ

h
K̃y = −i

sin θ sin2 ϕ(14 + cosϕ)

3h3(3 + 2 cosϕ)
,

Ry = i
sinϕ

h
K̃x = −i

sinϕ sin2 θ(14 + cos θ)

3h3(3 + 2 cos θ)
.

(5.22)

Denote by C ′
1(θ,ϕ) the symbol of ih2C̃ ′

h(ψ). From (5.13), (5.19), (5.20), (5.21) and (5.22)
we obtain

C ′
1(θ,ϕ) = h−1 (aG(θ,ϕ) + bG(ϕ, θ)) , (5.23)

where

G(θ,ϕ) = sin θ

(

(1 − cos θ)
11 − cos θ

3 + 2 cos θ

+ (1 − cosϕ)

(
2(23 + 7 cos θ)

3(3 + 2 cos θ)
− (1 + cosϕ)(14 + cosϕ)

3(3 + 2 cosϕ)

))

. (5.24)

5.2 Stability of the Second Order Time-Stepping Scheme

In this section we analyze the stability of the second order time-stepping scheme with the
two different approximations for the convective term C̃h, or C̃ ′

h.
The second order time-stepping scheme (4.5) reads, with, for example C̃h:

• Step 1: Computation of ψn+1/2

(

�̃h − 1

4
�tν�̃2

h

)

ψn+1/2 =
(

�̃hψ
n + 1

4
�tν�̃2

h

)

ψn + 1

2
�tC̃h(ψ

n). (5.25)

• Step 2: Computation of ψn+1

(

�̃h − 1

2
�tν�̃2

h

)

ψn+1 =
(

�̃hψ
n + 1

2
�tν�̃2

h

)

ψn + �tC̃h(ψ
n+1/2). (5.26)
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The second order time-stepping scheme has already been used in our work [7] but with sec-
ond order spatial operators �h,�

2
h,Ch instead of the fourth order spatial operators �̃h, �̃

2
h,

C̃h (or C̃ ′
h). Here we improve the accuracy of the spatial operators and also the stability

criterion as follows.

5.2.1 Stability Condition on the Time-Step

The stability analysis carried out in this subsection reveals a surprising fact:
A sufficient condition for the stability of the scheme is

(a2 + b2)�t ≤ Cν,

where C > 0 is a numerical constant (which is explicitly calculated below).
In particular, this condition is independent of h and implies the unconditional stability of

the scheme when a = b = 0.

The following proposition gives a sufficient stability condition on the time-step for the
scheme (5.25) for each of the two convective terms C̃h and C̃ ′

h.

Proposition 5.1

(i) (Convective term for no-leak boundary condition (5.12)) The predictor-corrector
scheme (5.25, 5.26) is stable in the von-Neumann sense under the sufficient condition

24(a2 + b2)�t ≤ ν. (5.27)

(ii) (Convective term for general boundary condition (5.13)) The predictor-corrector
scheme (5.25, 5.26) is stable in the von-Neumann sense under the sufficient condition

54(a2 + b2)�t ≤ ν. (5.28)

Proof We perform the proof of (i) only, as the proof of (ii) goes along the same lines. Let
g1(θ,ϕ), g2(θ,ϕ) be the amplification factors related to (5.25, 5.26), respectively. We have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g1(θ,ϕ) = A1(θ,ϕ) − �t
4 B1(θ,ϕ) + i �t

2 C1(θ,ϕ)

A1(θ,ϕ) + �t
4 B1(θ,ϕ)

,

g2(θ,ϕ) = A1(θ,ϕ) − �t
2 B1(θ,ϕ) + i�t C1(θ,ϕ)g1(θ,ϕ)

A1(θ,ϕ) + �t
2 B1(θ,ϕ)

.

(5.29)

Note that g2 is the amplification factor for the full time-step.
The (strong) von-Neumann stability condition is (see [51])

sup
θ,ϕ∈[0,2π)

|g2(θ,ϕ)| ≤ 1. (5.30)

We restrict ourselves to the case where

sup
θ,ϕ∈[0,2π)

|g1(θ,ϕ)| ≤ 1. (5.31)

This is equivalent to

�t C2
1 ≤ 4A1B1. (5.32)
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In order to study the meaning of this condition in terms of �t , we define new variables

x = sin
θ

2
, y = sin

ϕ

2
. (5.33)

Then

A1 ≥ 4(x2 + y2),

B1 ≥ 16νh−2(x4 + y4 + 2x2y2) = 16νh−2(x2 + y2)2,
(5.34)

|C1| ≤ 32h−1(|ax| + |by|)(x2 + y2). (5.35)

The condition (5.32) is therefore implied by

322�t h−2(|ax| + |by|)2
(
x2 + y2

)2 ≤ 162νh−2
(
x2 + y2

)3
, (5.36)

or

4�t (|ax| + |by|)2 ≤ ν(x2 + y2). (5.37)

This condition is implied in turn by

4(a2 + b2)�t ≤ ν. (5.38)

From now on we assume that (5.31) holds. Then, (5.30) is satisfied if

−2�tC1(θ,ϕ) Im(g1(θ,ϕ))

[

A1(θ,ϕ) − �t

2
B1(θ,ϕ)

]

+ (�t)2C2
1 (θ,ϕ)|g1(θ,ϕ)|2

≤ 2�tA1(θ,ϕ)B1(θ,ϕ), (θ,ϕ) ∈ [0,2π ]2. (5.39)

Inserting the value of Im(g1(θ,ϕ)) from (5.29) we conclude that a sufficient condition for
(5.30) is

(�t)2C2
1

(

1 − A1 − �t
2 B1

A1 + �t
4 B1

)

≤ 2�tA1B1, (5.40)

which is satisfied if and only if

(�t)2C2
1 ≤ 8

3

(

A2
1 + �t

4
A1B1

)

. (5.41)

Ignoring the term A2
1 in the right-hand side we finally obtain the sufficient condition

(�t)2C2
1 ≤ 2�t

3
A1B1. (5.42)

This leads (see (5.38)) to

24(a2 + b2)�t ≤ ν.

This completes the proof of the proposition. �
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Remark 5.2 (Concerning more general stability analysis) (a) Observe that in the nonconvec-
tive case, a = b = 0, the scheme is unconditionally stable. In the presence of the convective
term the time step should be limited by the viscosity coefficient.

(b) Note that the stability result in Proposition 5.1 obtained for a convective term C(ψ)

as in (5.2), i.e., constant coefficients. If a, b are replaced by known functions u,v, we obtain
the linearized form of the Navier-Stokes system. The stability analysis in this case cannot
be carried out by the von-Neumann “amplification factor” method, and one must resort to
some energy L2 estimates. In fact, using the coercivity of the biharmonic term, this was
done in [8], even for the fully nonlinear case, when the discretized form of the convective
term was second-order accurate. In our treatment here we insist on fourth-order accuracy
of the convective term (see Sects. 3.3, 3.4). It is not clear yet how the coercivity of the
biharmonic operator can be used in order to majorize the (linearized) convective term of
order four in (3.25) or (3.33). Furthermore using the general pattern of the von-Neumann
analysis, we have used periodic boundary conditions. Using the more realistic no-leak con-
dition complicates considerably the analysis, even though we expect the main conclusion in
Proposition 5.1 (i.e., dependence of �t on ν) to remain valid.

(c) Finally recall that, using a general framework, one can derive convergence rates from
the accuracy estimates. Indeed, let us consider an exact equation

∂ψ

∂t
= Lψ, (5.43)

and its approximate version

∂ψ

∂t
= Lhψ. (5.44)

The stability implies that exp(Lht) is uniformly bounded (in h > 0), for 0 ≤ t ≤ T .

Thus, if

‖Lφ − Lhφ‖ ≤ C(φ)hβ, (5.45)

then also

‖ exp(Lt)φ − exp(Lht)φ‖ ≤ C(φ,T )hβ, 0 ≤ t ≤ T . (5.46)

It follows that for (5.2), with periodic boundary conditions, the semi-discrete (in time) evo-
lution converges at a fourth-order (with respect to h) rate. If a fully discrete version is em-
ployed, then the rate of convergence will also depend on the accuracy (with respect to �t )
of the time discretization. We refer to [27] for the fourth-order convergence analysis in
the streamfunction-vorticity formulation and to [8] for the pure streamfunction formulation.
Observe that both these papers address the convergence of the fully nonlinear system.

5.2.2 Dimensionless Stability Analysis

In this subsection, we analyze the stability condition for the scheme (5.25, 5.26) in terms of
the dimensionless numbers λ and μ, see (5.3).

First, observe that if we keep the term A2
1 in (5.41) then we can improve the stability

condition in the following way. Note that (5.16) implies

|C1| ≤ 16h−1(|a sin θ | + |b sinϕ|)(x2 + y2). (5.47)
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By (5.34) and (5.47), we obtain that (5.41) is implied by

162

(
�t

h

)2

(|a sin θ | + |b sinϕ|)2 ≤ 8

3
(16 + 16μ(x2 + y2)). (5.48)

Thus, a sufficient condition for (5.41) is

λ2 ≤ 1

12
+ 1

24
μ. (5.49)

Taking into account (5.38), we find that a sufficient condition for overall stability is

λ2 ≤ min

(
1

4
μ,

1

12
+ 1

24
μ

)

:= CFL2
1(μ). (5.50)

Similarly, for the convective term C̃ ′
h, we have

λ2 ≤ min

(
1

9
μ,

1

27
+ 1

54
μ

)

. (5.51)

Looking at the right-hand side of (5.50), we distinguish between two different cases for
which the minimum is achieved:

• μ ≤ 2
5 . In this case, we are computationally in the diffusive regime. The stability condition

(5.50) reads

λ ≤ 1

2
√

μ, (5.52)

or equivalently

�t ≤ ν

4(a2 + b2)
, (5.53)

which is (5.38). In particular, this means that if ν → 0+, then the time step tends to zero
independently of the mesh size h.

• μ > 2
5 . In this case, the stability condition becomes

λ ≤
√

1

12
+ 1

24
μ. (5.54)

A sufficient condition for stability, which is uniform for all μ ≥ 2
5 , is λ ≤ 1√

10
. Equiva-

lently

�t ≤ h
√

10(a2 + b2)
. (5.55)

In addition, we would like to give a practical interpretation of the stability condi-
tion (5.50). For this purpose, we restrict ourselves to a sufficient condition, which is more
restrictive then (5.50), namely:

λ2 ≤ min

(
1

4
μ,

1

12

)

. (5.56)
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Fig. 1 Curves
Log(μ) �→ Log(CFL1(μ)) with
‘–’ (theoretical) and
Log(μ) �→ Log(CFL2(μ)) with
‘o’ (numerical)

This means that a sufficient condition for stability is

�t ≤ min

(
1

4(a2 + b2)
ν,

1
√

12(a2 + b2)
h

)

. (5.57)

Therefore, for small ν the time step �t is restricted by a factor of ν and for larger ν the time
step is restricted by a factor of h.

In Fig. 1 we display the stability curve

μ > 0 �→ CFL1(μ), (5.58)

where CFL1(μ) is defined in (5.50). In order to provide a more accurate view of the stability
condition (5.50) for the scheme (5.25, 5.26), we also computed numerically the curve

μ > 0 �→ CFL2(μ), (5.59)

where CFL2(μ) is the maximum value defined by the stability condition (5.30) alone, with-
out the intermediate assumption (5.31). Inserting in the expression for g2 the expression
for g1, we obtain that (5.30) is equivalent to

C̄4
1 + B̄1

(
3

4
B̄1 − A1

)

C̄2
1 − 2A1B̄1

(

2A1 + 1

2
B̄1

)2

≤ 0 ∀(θ,ϕ) ∈ [0,2π)2, (5.60)

where

B̄1 = �tB1, C̄1 = �tC1 (5.61)
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are the dimensionless symbols of the biharmonic and convective terms. The discriminant of
the second order polynomial, which appears in (5.60), considered as a function of C̄2

1 is

�(θ,ϕ,μ) = B̄2
1

(
3B̄1

4
− A1

)2

+ 8A1B̄1

(

2A1 + 1

2
B̄1

)2

≥ 0. (5.62)

The two roots of the second order polynomial in (5.60), considered as a function of C̄2
1 , have

opposite sign. Therefore, a sufficient condition for (5.60) to hold is that

C̄2
1 ≤ 1

2

(

B̄1

(

A1 − 3

4
B̄1

)

+ √
�

)

:= N(θ,ϕ,μ), (5.63)

Combining (5.63) with (5.17), we obtain that a sufficient stability condition is

λ2 ≤ min
0<θ,ϕ<2π

N(θ,ϕ,μ)

D̃(θ,ϕ)
:= CFL2

2(μ), (5.64)

where D̃(θ,ϕ) is defined in (5.18). Sampling μ in some interval [0,μmax], we compute
numerically, as before, the minimum appearing in the right-hand side of (5.64). In Fig. 1 we
report the two Log Log plots of the functions μ > 0 �→ CFL1(μ), CFL2(μ). Observe that as
expected, the curves satisfy

CFL1(μ) < CFL2(μ) (5.65)

and that they have a similar shape.

5.3 Stability of the High Order Time-Stepping Scheme

We consider here the scheme (4.8) for the linear equation (5.2). The three steps to compute
ψn+1 as a function of ψn = ψ(1) are:

• Step 1: Computation of ψ(2)

(�̃h − β1�tν�̃2
h)ψ

(2) = (�̃hψ
(1) + α1�tν�̃2

h)ψ
(1) + γ1�tC̃h(ψ

(1) (5.66)

• Step 2: Computation of ψ(3)

(�̃h − β2�tν�̃2
h)ψ

(3) = (�̃hψ
(2) + α2�tν�̃2

h)ψ
(2) + γ2�tC̃h(ψ

(2)) + ζ1�tC̃h(ψ
(1))

(5.67)
• Step 3: Computation of ψ(4)

(�̃h − β3�tν�̃2
h)ψ

(4) = (�̃hψ
(3) + α3�tν�̃2

h)ψ
(3) + γ3�tC̃h(ψ

(3)) + ζ2�tC̃h(ψ
(2)).

(5.68)

The three amplification factors, corresponding respectively to the three steps are (θ,ϕ) �→
g1(θ,ϕ), g2(θ,ϕ), g3(θ,ϕ)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1 = A1 − α1B̄1 + iγ1C̄1

A1 + β1B̄1
,

g2 = (A1 − α2B̄1)g1 + i(γ2g1 + ζ1)C̄1

A1 + β2B̄1
,

g3 = (A1 − α3B̄1)g2 + i(γ3g2 + ζ2g1)C̄1

A1 + β3B̄1
,

(5.69)
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where B̄1 and C̄1 are as in (5.61). The von-Neumann stability condition linking μ and λ is

max
θ,ϕ∈[0,2π)

|g3(θ,ϕ)| ≤ 1. (5.70)

We note that |g3| ≤ 1 is equivalent to

[
(A1 − α3B̄1)Re(g2) − C1(γ3 Im(g2) + ζ2 Im(g1))

]2

+ [
(A1 − α3B̄1) Im(g2) + C1(γ3 Re(g2) + ζ2 Re(g1))

]2

≤ (A1 + β3B̄1)
2. (5.71)

We compute now the real and the imaginary parts of g1 and g2:

Re(g1) = A1 − α1B̄1

A1 + β1B̄1
, Im(g1) = γ1C̄1

A1 + β1B̄1
, (5.72)

Re(g2) = (A1 − α2B̄1)(A1 − α1B̄1) − γ1γ2C̄
2
1

(A1 + β1B̄1)(A1 + β2B̄1)
, (5.73)

Im(g2) = C1
(ζ1 + γ1 + γ2)A1 − (α2γ1 + α1γ2 − β1ζ1)B̄1

(A1 + β1B̄1)(A1 + β2B̄1)
. (5.74)

Inserting the real and the imaginary parts of g1 and g2 in (5.71), we find that a sufficient
condition for stability is

[
(A1 − α3B̄1)(A1 − α2B̄1)(A1 − α1B̄1) − γ1γ2(A1 − α3B̄1)C̄

2
1

− γ3C̄
2
1

(
(ζ1 + γ1 + γ2)A1 − (α2γ1 + α1γ2 − β1ζ1)B̄1

) − γ1ζ2C̄
2
1 (A1 + β2B̄1)

]2

+ C̄2
1

[
(A1 − α3B̄1)((ζ1 + γ1 + γ2)A1 − (α2γ1 + α1γ2 − β1ζ1)B̄1)

+ γ3(A1 − α1B̄1)(A1 − α2B̄1) − γ1γ2γ3C̄
2
1 + ζ2(A1 − α1B̄1)(A1 + β2B̄1)

]2

≤ (A1 + β1B̄1)
2(A1 + β2B̄1)

2(A1 + β3B̄1)
2. (5.75)

Expanding the left-hand side of the last inequality as a polynomial in C̄2
1 , we find that

|g3| ≤ 1 is equivalent to

(A − C̄2
1B)2 + C̄2

1 (D − C̄2
1E)2 − F ≤ 0, (5.76)

where A,B,D,E,F are defined as functions of θ,ϕ and μ by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A = (A1 − α1B̄1)(A1 − α2B̄1)(A1 − α3B̄1),

B = (γ1γ2 + γ2γ3 + γ3γ1 + γ1ζ2 + γ3ζ1)A1

+ (γ1ζ2β2 + γ3ζ1β1 − γ1γ2α3 − γ3γ1α2 − γ2γ3α1) B̄1,

D = (A1 − α3B̄1)
(
(γ1 + γ2 + ζ1)A1 + (β1ζ1 − α2γ1 − α1γ2)B̄1

)

+ (A1 − α1B̄1)
(
(γ3 + ζ2)A1 + (ζ2β2 − γ3α2)B̄1

)
,

E = γ1γ2γ3,

F = (A1 + β1B̄1)
2(A1 + β2B̄1)

2(A1 + β3B̄1)
2.

(5.77)
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Fig. 2 Curve
Log(μ) �→ Log(CFL3(μ))

with ‘o’

Equivalently,

E2C̄6
1 + (B2 − 2ED)C̄4

1 + (−2AB + D2)C̄2
1 + A2 − F ≤ 0. (5.78)

Note that A,B,D,E,F depend on the parameter (θ,ϕ) and also on μ, where the depen-
dence on μ is via B̄1 and the dependence on λ is via C̄1 (see (5.61), (5.11), (5.16)). For a
given μ, we find a condition on λ so that (5.78) is satisfied, as follows:

C̄2
1 ≤ z(θ,ϕ,μ), for all (θ,ϕ), (5.79)

where z(θ,ϕ,μ) is the first positive root of the cubic polynomial Pμ,θ,ϕ(z) defined by

Pμ,θ,ϕ(z) = E2z3 + (B2 − 2ED)z2 + (−2AB + D2)z + A2 − F. (5.80)

Note that this root exists since A2 −F < 0 for all θ,ϕ and Pμ,θ,ϕ(z) → +∞ when z → +∞.
Since

C̄2
1 ≤ λ2D̃(θ,ϕ), (5.81)

using (5.79) we find that a sufficient condition for stability is

λ2 ≤ min
θ,ϕ

z(θ,ϕ,μ)

D̃(θ,ϕ)
:= CFL2

3(μ). (5.82)

In Fig. 2 we display in Log-Log scale the curve

μ �→ CFL3(μ). (5.83)

The graph is computed numerically using, as in Sect. 5.2, a sampling of θ,ϕ ∈ [0,2π), and
of μ > 0.
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6 Numerical Results for the Navier-Stokes Equations

6.1 FFT Linear Solver

Recall that the approximation of the Navier-Stokes equation in pure streamfunction
form (3.1) is treated implicitly for the diffusive part and explicitly for the convective term.
Therefore, at each time-step, we have to solve a set of linear equations of the form

(�̃h − κν�t�̃2
h)ψ = g. (6.1)

Here κ is a constant, which depends on �t and on some parameters of the time-stepping
scheme. Note that at each time-step the second order time-stepping scheme (4.5) requires
two solutions (with different parameters κ) of (6.1), whereas the higher-order time-stepping
scheme (4.8) requires three such solutions. The resolution of the linear system is performed
by the fast solver described in [9]. It uses the Sine Basis Functions. For the no-slip bound-
ary condition the solver described in [9] incorporates this condition in the algorithm by
a capacitance matrix method and the use of the Sherman-Morrison theorem. For the non-
homogeneous boundary condition, see Sect. 3.4 in [9]. This solver is of O(N2 Log(N))

operations, where N is the number of points in any direction. As an example, we note that
one resolution of (6.1) for N = 129 takes less than 0.05 seconds on a time-step on a 3 GHz
PC with 2 GO memory.

6.2 Numerical Accuracy with the Second Order Time-Scheme

In order to verify the spatial fourth order accuracy of the scheme, we performed several
numerical tests using the second order time-stepping scheme (4.5). For the convective term
we use one of the fourth order approximations (3.25) or (3.42). Since we are interested in
the fourth order accuracy in space, we have to restrict the time-step to �t = Ch2, where C

is a constant. Note that it is more restrictive than any of the stability conditions derived in
Sect. 5.

6.2.1 Case 1

ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t on � = [−1,1] × [−1,1]. Take

f (x, y, t) = ∂t�ψ + ∇⊥ψ · ∇�ψ − �2ψ, (6.2)

where ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t . Our aim is to recover ψ(x, y, t) from f (x, y, t).
Thus, we resolve numerically

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t�ψ + ∇⊥ψ · ∇�ψ − �2ψ = f (x, y, t),

ψ(x, y,0) = (1 − x2)3(1 − y2)3,

ψ(x, y, t) = 0,
∂ψ(x, y, t)

∂n
= 0, (x, y) ∈ ∂�.

(6.3)

In the tables below we present the error e and the relative error, er, where

el2 = ‖ψcomp − ψexact‖l2 , er = e/‖ψexact‖l2
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Table 1 Compact scheme for Navier-Stokes with exact solution: ψ = (1 − x2)3(1 − y2)3e−t on [−1,1] ×
[−1,1]. We present e, the l2 error for the streamfunction and ex the max error in the u = −∂yψ . The con-
vective term is (3.25)

Mesh 9 × 9 Rate 17 × 17 Rate 33 × 33 Rate 65 × 65

t = 0.25 e 5.0839(−3) 4.06 3.0510(−4) 4.02 1.8825(−5) 4.00 1.1728(−6)

er 9.4884(−3) 5.7414(−4) 3.5443(−5) 2.2081(−6)

ex 2.6385(−3) 3.89 1.7837(−4) 3.93 1.1662(−5) 3.98 7.3752(−7)

t = 0.5 e 3.2225(−3) 4.00 2.0078(−4) 4.00 1.2536(−5) 4.00 7.8331(−7)

er 7.7371(−3) 4.8519(−4) 3.0305(−5) 1.8937(−6)

ex 3.2290(−3) 4.02 1.9897(−4) 4.00 1.2437(−5) 4.00 7.7747(−7)

t = 0.75 e 2.4880(−3) 4.00 1.5505(−4) 4.00 9.6864(−6) 4.00 6.0537(−7)

er 7.6708(−3) 4.8108(−4) 3.0068(−5) 1.8792(−6)

ex 2.5519(−3) 4.03 1.5723(−4) 4.00 9.8188(−6) 4.00 6.1365(−7)

t = 1 e 1.9373(−3) 4.00 1.2072(−4) 4.00 7.5424(−6) 4.00 4.7138(−7)

er 7.6692(−3) 4.8096(−4) 3.0062(−5) 1.8788(−6)

ex 1.9886(−3) 4.02 1.2255(−4) 4.00 7.6527(−6) 4.00 4.7827(−7)

and

eu = ‖ucomp − uexact‖l2 .

Here, ψcomp, ucomp and ψexact, uexact are the computed and the exact streamfunction and x-
component of the velocity field, respectively. We represent results for different time-levels
and number of mesh points. In Table 1 we present numerical results for the approxima-
tion (3.25) of the convective term. We observe clearly that applying our scheme with the
convective term (3.25) (the no-leak/periodic case) yields fourth order accuracy for ψ and
the gradient of ψ . The results are displayed in Table 1.

In Fig. 3 we display in a Log/Log scale the error in ψ (shown numerically in Table 1) for
the four different time levels t = 0.25,0.5,0.75,1. It can be clear from Fig. 3 that the slope
of the graph is almost constant, which is around four. Table 2 displays the results obtained
by the approximation (3.42) (the general boundary conditions case) of the convective term.

6.2.2 Case 2

ψ = e−2x−ye−t on [0,1]× [0,1] In Table 3 we display numerical results for ψ = e−2x−ye−t ,
using the convective term (3.42) (the general boundary condition case).

6.2.3 Case 3

ψ = (1 − x2)3(1 − y2)3e−t on [0,1] × [0,1]. In Table 4 we present numerical results for
ψ = (1 − x2)3(1 − y2)3e−t on [0,1] × [0,1], using the convective term (3.42).

Observe that in all test cases with the second order time-stepping scheme fourth-order
accuracy in space and second order accuracy in time are achieved.
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Fig. 3 Log(h) �→
Log(error(h)). Case 6.2.1,
second-order time-stepping
scheme, no-leak boundary
condition

Table 2 Compact scheme for Navier-Stokes with exact solution: ψ = (1 − x2)3(1 − y2)3e−t on [−1,1] ×
[−1,1]. We present e, the l2 error for the streamfunction and ex the max error in the u = −∂yψ . The con-
vective term is (3.42)

Mesh 9 × 9 Rate 17 × 17 Rate 33 × 33 Rate 65 × 65

t = 0.25 e 5.0867(−3) 4.06 3.0525(−4) 4.02 1.8835(−5) 4.00 1.1734(−6)

er 9.4936(−3) 5.7441(−4) 3.5460(−5) 2.2092(−6)

ex 2.6390(−3) 3.89 1.7837(−4) 3.93 1.1670(−5) 3.98 7.3752(−7)

t = 0.5 e 3.2224(−3) 4.00 2.0085(−4) 4.00 1.2541(−5) 4.00 7.8361(−7)

er 7.7407(−3) 4.8536(−4) 3.0317(−5) 1.8944(−6)

ex 3.2285(−3) 4.02 1.9896(−4) 4.00 1.2436(−5) 4.00 7.7745(−7)

t = 0.75 e 2.4887(−3) 4.00 1.5508(−4) 4.00 9.6887(−6) 4.00 6.0551(−7)

er 7.6730(−3) 4.8119(−4) 3.0075(−5) 1.8796(−6)

ex 2.5516(−3) 4.02 1.5723(−4) 4.00 9.8187(−6) 4.00 6.1364(−7)

t = 1 e 1.9376(−3) 4.00 1.2074(−4) 4.00 7.5434(−6) 4.00 4.7145(−7)

er 7.6796(−3) 4.8103(−4) 3.0066(−5) 1.8791(−6)

ex 1.9885(−3) 4.02 1.2255(−4) 4.00 7.6526(−6) 4.00 4.7826(−7)

6.3 Numerical Accuracy with the Higher Order Time-Scheme

6.3.1 Case 1

ψ(x, y, t) = (1−x2)3(1−y2)3e−t on [−1,1]×[−1,1]. Now we consider the time-stepping
scheme (4.8) applied to the exact solution ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t on [−1,1] ×
[−1,1]. Since the scheme is fourth order accurate in space and almost third order accurate
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Table 3 Compact scheme for Navier-Stokes with exact solution: ψ = e−2x−ye−t on [0,1] × [0,1]. We
present e, the l2 error for the streamfunction and ex the max error in the u = −∂yψ . The convective term
is (3.42) (the general boundary condition case)

Mesh 9 × 9 Rate 17 × 17 Rate 33 × 33 Rate 65 × 65

t = 0.25 e 8.4636(−7) 3.94 5.5306(−7) 3.97 3.5412(−8) 3.98 2.2491(−10)

er 4.1691(−6) 2.4301(−7) 1.4728(−8) 9.1050(−10)

ex 8.6714(−6) 3.79 6.2534(−5) 3.90 4.1890(−8) 3.93 2.7576(−9)

t = 0.5 e 6.5253(−7) 3.93 4.2671(−8) 3.96 2.7421(−9) 3.98 1.7429(−10)

er 4.1272(−6) 2.4126(−7) 1.4644(−8) 9.0600(−10)

ex 6.6869(−6) 3.79 4.8421(−7) 3.90 3.2522(−8) 3.93 2.1389(−8)

t = 0.75 e 5.0415(−7) 3.93 3.3112(−8) 3.96 2.1259(−9) 3.97 1.3521(−10)

er 4.0944(−6) 2.3988(−7) 1.4577(−8) 9.0244(−10)

ex 5.1672(−6) 3.78 3.7539(−7) 3.87 2.5266(−8) 3.95 1.6605(−9)

t = 1 e 3.9017(−7) 3.93 2.5671(−8) 3.96 1.6494(−9) 3.97 1.0497(−10)

er 4.0687(−6) 2.3879(−7) 1.4525(−8) 8.9965(−10)

ex 3.9952(−6) 3.78 2.9132(−7) 3.89 1.9639(−8) 3.93 1.2900(−9)

Table 4 Compact scheme for the Navier-Stokes with exact solution: ψ = (1−x2)3(1−y2)3e−t on [0,1]×
[0,1]. We present e, the l2 error for the streamfunction and ex the max error in the u = −∂yψ . The convective
term is (3.42)

Mesh 9 × 9 Rate 17 × 17 Rate 33 × 33 Rate 65 × 65

t = 0.25 e 2.3767(−5) 3.91 1.5792(−7) 3.95 1.0232(−7) 4.03 6.5236(−9)

er 1.0958(−4) 6.5463(−6) 4.0380(−7) 2.5141(−8)

ex 7.2161(−4) 3.91 4.7907(−5) 3.97 3.0612(−6) 3.97 1.9347(−7)

t = 0.5 e 1.8518(−5) 3.91 1.2315(−7) 3.95 7.9827(−8) 3.97 5.0902(−9)

er 1.0963(−4) 6.5554(−6) 4.0450(−7) 2.5188(−8)

ex 5.6231(−4) 3.91 3.7309(−5) 3.97 2.3840(−6) 3.98 1.5067(−7)

t = 0.75 e 1.4425(−5) 3.91 9.5991(−7) 3.95 6.2235(−8) 3.97 3.9688(−9)

er 1.0965(−4) 6.5609(−6) 4.0993(−7) 2.5217(−8)

ex 4.3811(−4) 3.91 2.9055(−5) 3.97 1.8566(−6) 3.98 1.1173(−7)

t = 1 e 1.1236(−5) 3.91 7.5671(−7) 3.95 4.8500(−8) 3.97 3.0930(−9)

er 1.0967(−4) 6.3879(−6) 4.0520(−7) 2.5235(−8)

ex 3.1319(−4) 3.92 2.9132(−5) 3.97 1.4459(−6) 3.98 9.1385(−7)

in time [49], we picked �t as the minimum between �t = Ch4/3 and the value of �t as
restricted in Sect. 5. The results are shown in Table 5.

In Table 6 we present similar results to those in Table 5, but now with the approxima-
tion (3.42) for the general boundary conditions case.
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Table 5 Compact scheme for the Navier-Stokes equations with exact solution: ψ = (1 − x2)3(1 − y2)3e−t

on [−1,1]× [−1,1]. We present e, the l2 error for the streamfunction and ex the max error in the u = −∂yψ .
Convective term (3.25). Time-stepping scheme (4.8) with �t = Ch4/3

Mesh 17 × 17 33 × 33 Rate 65 × 65 Rate 129 × 129

t = 0.25 e 7.2167(−5) 4.02 4.4322(−6) 3.62 3.5965(−7) 3.29 3.6776(−8)

er 1.3562(−4) 8.3286(−6) 6.7714(−7) 6.9129(−8)

ex 7.5017(−4) 4.08 4.4344(−5) 4.20 2.4146(−6) 4.36 1.1739(−7)

t = 0.5 e 9.4956(−5) 3.80 6.8184(−6) 3.69 5.2714(−7) 3.60 4.3554(−8)

er 2.3091(−4) 1.6484(−5) 1.2744(−6) 1.0527(−7)

ex 4.3941(−4) 4.11 2.5365(−5) 4.24 1.3468(−6) 4.45 6.1584(−8)

t = 0.75 e 1.1601(−4) 3.86 7.9992(−6) 3.80 5.7617(−7) 3.73 4.3400(−8)

er 3.6146(−4) 2.4783(−5) 1.7885(−6) 1.3476(−7)

ex 2.4736(−4) 4.15 1.3973(−5) 4.31 7.0510(−7) 4.62 2.8624(−8)

t = 1 e 1.2156(−4) 3.90 8.1623(−6) 3.85 5.6441(−7) 3.81 4.0340(−8)

er 4.8531(−4) 3.2535(−5) 2.2496(−6) 1.6072(−8)

ex 1.2681(−4) 4.23 6.7792(−6) 4.26 3.5366(−7) 3.86 2.4347(−8)

Table 6 Compact scheme for the Navier-Stokes equations with exact solution: ψ = (1 − x2)3(1 − y2)3e−t

on [−1,1]× [−1,1]. We present e, the l2 error for the streamfunction and ex the max error in the u = −∂yψ .
The convective term is (3.42). Time-stepping scheme (4.8) with �t = Ch4/3

Mesh 17 × 17 Rate 33 × 33 Rate 65 × 65 Rate 129 × 129

t = 0.25 e 7.4854(−5) 3.99 4.6895(−6) 3.63 3.7909(−7) 3.32 3.7958(−8)

er 1.4066(−4) 8.8121(−6) 7.1373(−7) 7.1458(−8)

ex 7.4490(−4) 4.07 4.4217(−5) 4.19 2.4174(−6) 4.35 1.1850(−7)

t = 0.5 e 9.9615(−5) 3.79 7.1931(−6) 3.71 5.5081(−7) 3.61 4.5021(−8)

er 2.3984(−4) 1.7390(−5) 1.3316(−6) 1.0882(−7)

ex 4.3783(−4) 4.15 2.4698(−5) 4.23 1.3166(−6) 4.44 6.7634(−8)

t = 0.75 e 1.2097(−4) 3.86 8.3195(−6) 3.80 5.9586(−7) 3.74 4.4637(−8)

er 3.7691(−4) 2.5877(−5) 1.8496(−6) 1.3852(−7)

ex 2.3823(−4) 4.17 1.3258(−5) 4.30 6.7180(−7) 4.41 3.1705(−8)

t = 1 e 1.2534(−4) 3.90 8.3958(−6) 3.85 5.7918(−7) 3.81 4.1269(−8)

er 4.9546(−4) 3.3466(−5) 2.3085(−6) 1.6442(−7)

ex 1.2362(−4) 4.28 6.3472(−6) 4.02 3.8993(−7) 3.87 2.6737(−8)

6.3.2 Case 2

ψ = e−2x−ye−t on [0,1] × [0,1]. Table 7 summarizes the results for ψ = e−2x−ye−t on
[0,1] × [0,1], using the scheme (3.42) (general boundary conditions) for the convective
term.

Note that for this test case the convergence rates from N = 17 to N = 33 and from
N = 33 to N = 65 are around 4. However, the convergence rate from N = 65 to N = 129
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Table 7 Compact scheme for the Navier-Stokes equations with exact solution: ψ = e−2x−ye−t on [0,1] ×
[0,1]. We present e, the l2 error for the streamfunction and ex the max error in the u = −∂yψ . The convective
term is (3.42). Time-stepping scheme (4.8) with �t = Ch4/3

Mesh 17 × 17 Rate 33 × 33 Rate 65 × 65 Rate 129 × 129

t = 0.25 e 5.8771(−8) 3.99 3.6392(−9) 4.00 2.3074(−10) 2.38 4.5343(−11)

er 2.5875(−7) 1.5135(−8) 2.0170(−9) 1.8113(−10)

ex 8.8547(−7) 4.06 5.3189(−8) 4.06 3.1913(−9) 3.11 3.6950(−10)

t = 0.5 e 5.1921(−8) 4.02 3.1994(−9) 4.00 2.0005(−10) 2.12 4.5875(−11)

er 2.9294(−7) 1.7085(−8) 1.0397(−9) 2.3531(−10)

ex 6.5312(−7) 4.05 3.9263(−8) 4.04 2.3807(−9) 2.71 3.6286(−10)

t = 0.75 e 4.0887(−8) 4.00 2.5261(−8) 4.00 1.5801(−10) 2.03 3.8699(−11)

er 2.9564(−7) 1.7321(−8) 1.0543(−9) 2.5488(−10)

ex 4.7850(−7) 4.03 2.9192(−8) 4.03 1.7857(−8) 2.56 3.0230(−10)

t = 1 e 3.1381(−8) 4.01 1.9470(−9) 3.99 1.2212(−10) 1.97 3.1174(−11)

er 2.9078(−7) 1.7142(−8) 1.0468(−9) 2.6365(−10)

ex 9.2348(−6) 4.01 2.1867(−8) 4.02 1.3523(−9) 2.49 2.4074(−10)

has been decreased, whereas in the previous two test cases (shown in Tables 5 and 6) the
convergence rate is around 4. The reason for the reduced accuracy for N = 129 in case 2
is that the errors in the last column of Table 7 are very small, and they actually reach the
accuracy of the computer. In the next example we show that the convergence rate is around 4,
also at the finest grids level.

6.3.3 Case 3

ψ(x, y, t) = (1 − x2)3(1 − y2)3e−t on [0,1] × [0,1]. We consider the Spalart et al. scheme
applied to the exact solution ψ(x, y, t) = (1−x2)3(1−y2)3e−t on the square [0,1]× [0,1].

In Fig. 4 we display in a Log/Log scale the error in ψ (shown numerically in Table 8)
for the four different time levels t = 0.25,0.5,0.75,1. It is clear from Fig. 4 that the slope
of the graph is almost constant around four.

6.4 Driven Cavity Test Cases

In this section, we briefly demonstrate the capability of the fourth order accurate scheme
(4.8) to compute accurately several classical driven cavity test cases on relatively coarse
grids. To assess the spatial accuracy, we limit ourselves to a comparison of the asymptotic
states of the classical driven cavity test case for a Reynolds number of Re = 1000. This
case is well documented in the literature. According to numerous numerical studies, see
e.g. [4, 11, 14], there is a unique asymptotic state.

The problem consists of a square [0,1] × [0,1]. A horizontal velocity u = 1 is specified
on the top edge, while both velocity components vanish on all other three sides.

We display the results of u(1/2, y) and v(x,1/2) as functions of y and x, respectively.
These are compared to the results obtained in the classical reference [29]. In Fig. 5, we
display on the left the solution, using 33 × 33 points, subject to the second order scheme
presented in [7]. Observe that the reference values (plotted as circles) are not reached at the
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Fig. 4 Log(h) �→
Log(error(h)). Case 6.3.3,
Spalart et al. [49] time-stepping
scheme, general boundary
conditions

Table 8 Compact scheme for the Navier-Stokes equations with exact solution: ψ(x, y, t) = (1 − x2)3 ×
(1 − y2)3e−t on [0,1] × [0,1] We present e, the l2 error for the streamfunction and ex the max error in the
u = −∂yψ . The convective term is (3.42). Time-stepping scheme (4.8) with �t = Ch4/3

Mesh 17 × 17 Rate 33 × 33 Rate 65 × 65 Rate 129 × 129

t = 0.25 e 1.5022(−6) 3.92 9.9168(−8) 3.87 6.7763(−9) 3.70 5.2892(−10)

er 6.2153(−6) 3.9197(−7) 2.6112(−8) 2.0148(−9)

ex 4.8052(−5) 3.97 3.0614(−6) 3.98 1.9378(−7) 3.98 1.2254(−8)

t = 0.5 e 1.4466(−6) 3.95 9.3439(−8) 3.92 6.1550(−9) 3.75 4.5764(−10)

er 7.7001(−6) 4.7348(−7) 3.0451(−8) 2.2384(−9)

ex 3.7321(−5) 3.97 2.3877(−6) 3.98 1.5096(−7) 3.98 9.5492(−8)

t = 0.75 e 1.1674(−6) 3.96 7.5132(−8) 3.94 4.8817(−9) 3.78 3.5552(−10)

er 7.9635(−6) 4.8884(−7) 3.1027(−8) 2.2329(−9)

ex 2.9106(−5) 3.97 1.8592(−6) 3.98 1.1175(−7) 3.91 7.4402(−9)

t = 1 e 9.0495(−7) 3.96 5.8434(−8) 3.95 3.7702(−9) 3.80 2.7092(−10)

er 7.9423(−6) 4.8819(−7) 3.0765(−8) 2.1849(−9)

ex 2.2612(−5) 3.97 1.4477(−6) 3.98 9.1540(−7) 3.98 5.7964(−9)

steady-state. On the right we display the solution subject to the fourth order scheme (4.8),
using the same number of points. It agrees much better with the reference values. Table 9
contains the locations and values of the maximum-minimum of the streamfunction.

Figure 6 and Table 10 document the same computation with 65 × 65 points. The agree-
ment with reference solutions in [29] and [14] is quite good. The results with the fourth order
scheme are slightly better than those obtained with the second order scheme. We list some
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Fig. 5 Driven cavity for Re = 1000: velocity components. Computations are performed with N = 33. The
second order scheme is on the left, and the fourth order scheme on the right. The reference results of [29] are
plotted with circles

Fig. 6 Driven cavity for Re = 1000: velocity components. Computations are done with N = 65. The second
order scheme is on the left, and the fourth order scheme on the right. The reference results of [29] are plotted
with circles

details concerning the computation using the fourth order scheme with 65 × 65 points: 8000
time-iterations are performed with a time step �t = 1/60 � 0.01660. The physical time
reached is T = 133 with a residual on the streamfunction of res(ψ) = 1.65(−08). The CPU
per time-step is 0.09375 seconds comprising three biharmonic resolutions per time-step,
see (4.8). The global CPU time of the computation is 750 seconds, which demonstrates the
efficiency of the fast solver for the biharmonic problem. The computations are performed
on a simple Laptop (2.40 GHz, 3GO memory). We refer to [7] for results with the second
order scheme where more points are used.
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Table 9 Streamfunction formulation: compact scheme for the driven cavity problem, Re = 1000, 33 × 33
points

2-nd order, N = 32 4-th order, N = 32 Ghia et al. [29],
N = 128

Bruneau and
Saad [14], N = 1024

maxψ 0.10535 0.11541 0.117929 0.11892

(x̄, ȳ) (0.53125,0.59375) (0.53125,0.56250) (0.5313,0.5625) (0.53125,0.56543)

minψ −0.0016497 −0.0016875 −0.0017510 −0.0017292

Table 10 Streamfunction formulation: compact scheme for the driven cavity problem, Re = 1000, 65 × 65
points

2-nd order, N = 64 4-th order, N = 64 Ghia et al. [29],
N = 128

Bruneau and
Saad [14], N = 1024

maxψ 0.116032 0.118033 0.117929 0.11892

(x̄, ȳ) (0.53125,0.56250) (0.53125,0.56250) (0.5313,0.5625) (0.53125,0.56543)

minψ −0.0017083 −0.0017067 −0.0017510 −0.0017292

7 Conclusion

This work presents the design of a fourth order accurate scheme for the Navier-Stokes equa-
tion in pure-streamfunction formulation in the general framework of [7]. In particular we
show how to approximate the non-linear convective term to fourth order. We considered two
types of time-stepping schemes . The first one is second order and the second is of higher
order. For the first scheme, we obtained stability conditions. An investigation of the fourth
order Runge-Kutta scheme with an explicit treatment of the diffusive term and convective
terms is underway.
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