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VORTEX SCHEMES FOR VISCOUS FLOW

- Dalia Fishelov

Abstract. We describe several vortex schemes that simulate viscous incompressible
flow. We represent a deterministic scheme for the ].ineariéed Navier-Stokes equations, for
which we outline the convergence proof in the discrete Ly norm. This scheme approx-
imates the linearized Navier-Stokes by first formulating them along particle trajectories
and then approximating the viscous term via a discrete convolution of the vorticity with
the Laplacian of a cutoff function. In the last section we introduce cutoff functions that

satisfy moments conditions for semi-infinite domains.

1. Introduction

Vortex methods for nonviscous flow are based on Euler’s equations in their vorticity
formulation. One tracks particle trajectories, along which the vorticity is evolved. One also
invokes the velocity-vorticity relation, the Biot-Savart law, which expresses the velocity in

terms of the vorticity for incompressible flow.

Several ways were suggested to extend vortex methods for viscous flow, i.e., for the
Navier-Stokes equations rather than Euler’s equations. One of them is to change the size
of the cutoff parameter [11],[4] to allow diffusion of vorticity. In fact, the exact solution
of the heat equation via its Green function formulation was adopted. It was proven by

Greengard [10] that this process approximates the wrong equations rather than the Navier-

1991 Mathematics Subject Classification: Primary 65M15, 35K10, 76D05.
This paper is in final form and no version of it will be submitted for publication elsewhere.

©1991 American Mathematical Society
0075-8485/91 $1.00 + $.25 per page




154 DALIA FISHELOV

Stokes equations. However, if one redistribute the vorticity viaits discrete convolution with
the heat kernel together with time-splitting of the Navier-Stokes equations to Euler’s and
to the heat equations, the resulting scheme converges to the Navier-Stokes equations [6.
Chorin [5] suggested to simulate diffusion by adding a random walk to each of the particles.
This is a robust algorithm, which does not require any spatial differentiation. This process

was proved to converge to the exact solution [12].

In [8] we suggested a deterministic vortex method that extends naturally vortex meth-
ods for viscous flow. We formulate the Navier-Stokes equations along particle trajectories.
In this formulation, a viscous term appears in the time-evolution of the vorticity. This
term is approximated by first convolving the vorticity with a cutoff function and then by
an analytic differentiation of this function, together with its discrete convolution with the

vorticity.

A related method was suggested in [7]; in the latter the Laplacian operator was ap-
_proxima,ted by an integral type one. The analysis was carried out in two cases. In the
first, the viscosity 1/R satisfies 1 / R < C§?, where R is the Reynolds number and § is the
cutoff parameter of the kernel. In the second, the kernel of the integral operator which

approximated the Laplacian is assumed to be positive.

We outline the convergence proof of the scheme for the linearized Navier-Stokes equa-
fion in two-dimensions. We first pfove the convergence of a similar scheme for the heat
equation, and then the consistency, the stability and the convergence of our scheme for
the linearized Navier-Stokes equations. Finally we combine consistency and stability to
prove the convergence of the scheme. One of the new features of this proof 1s the energy
estimates we use for the vorticity. In order to insure the stability of the scheme, we assume
that the cutoff function has a non-negative continuous Fourier transform. It was verified
in [8] that this condition is satisfied for several cutoff functions that are commonly used
with vortex methods. In [9] we also derive a stability condition for the time-discretized
scheme for the linearized Navier-Stokes equation. We prove that if the cutoff function has
a non-negative (continuous) Fourier transform and the time step is of order &%, then the

scheme is stable.
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In the last section we refer to one-sided cutoff functions. We suggest moment condi-
tions for semi-infinite domains which ensure that the error committed by approximating a
function via its one-sided convolution with a cutoff function is of order §% for any positive
d that we pick. This approach may as well be useful for the approximation of discontinu-
ous functions, where one wishes to construct an approximation based on points which are

contained in regions for which the function is smooth.
2. A Vortex Scheme for Viscous Flows

In [8] we proposed a convolution-type vortex scheme for viscous flows. The two-
dimensional Navier Stokes equations, formulated for the vorticity £ are given below.
0+ (u- V)¢ = RTAE,
div u = 0,
where £ = curl u, u = (u,v) is the velocity vector, A = V2 is the Laplace operator and
R is the Reynolds number. We formulate the Navier-Stokes equations along particle-
trajectories together with the Biot-Savart law u(x,t) = [K(x — x')é(x',t)dx’ where
K(z,y) = (—y,2)/2n(z* + y*) and find

dx

S fK(x—x")f(x’,t)dx’, (2.1)
d§ &
= —R IAE. (2.2)

We set an initial uniform grid x;(0),7 = 1,...,n with spacing ki, hs in z, y respectively.
For simplicity, we assume h; = hy = h. Let x_‘;-‘(t), E;‘(t) be the approximate particle loca-
tions and the approximate vorticity respectively at time ¢, then equation (2.1) is discretized

by (see [5]) SO S
) 3 Kol (1) - xR

=1

Here we approximate the singular kernel K(x) by a smoothed one Kj5(x), where K5 = ¢s+K
and ¢5(x) = (1/6%)9(x/8) is a cutoff function.

We shall now describe the approximation of the viscous term R™TAE of (2.2). We
approximate the vorticity by convolving it with a cutoff function, i.e., £ is approximated by

¢s+£. We then derive an approximation to the Laplacian of the vorticity by differentiating
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this convolution, i.e., by A(¢s * £) = (Ads) * €. Finally, we approximate the integrals

involved in the convolution by the trapezoid rule, and obtain

xt 1t
d ét(t) = ; Ks(x}(t) —x} ()] (O, (2.3)
ié_dt(_t) =& ;Aoﬁa(x?(t) — xB(B)Er ()R, 2.4)

We shall first discuss a convolution-type approximation for the heat equation, being

a simplification of the linearized Navier-Stokes equation.

3. The Heat Equation

We prove the consistency and the stability of the scheme for the heat equation; this

results in a convergent scheme. We treat the two-dimensional heat equation. The three-

dimensional case can be treated similarly.

Consider

%_'. =k
e A,

‘f(xv 0) = &)(K).

Suppose the initial vorticity has compact support and that Xiyt = 1,...,n are equally

distributed points in this region. hy,hy are the spacing in z and y respectively, which for

simplicity are assumed to be equal, i.e., hy = hy = h. Consider the scheme
9 ,n —1 k 5
56h ki t) = R 37 Ada(xi — x))6" (xj, A, (3.1)
j

€8 (x:,0) = &o(xi),

where ¢5(x) is a cutoff function which approximates a delta function. We shall first state
a theorem on the consistency of the scheme. For the proof of this theorem the reader is

referd to [8].

Let W™? be the Sobolev space which includes all functions for which the function

and its derivatives up to order m are in L,.
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Consistency Theorem [8]. Let the cutoff function ¢ satisfy the following conditions.
p e WrHHI(R?),m > 1 (3-2)

[ oix=1, [ x=o(dx=o0lel<d-1, [ ixllgGoldx<oo.  (33)
R? R? B2
Assume the initial vorticity has compact support and has m continuous bounded deriva-

tived, where m > d 4+ 2. Let x;,7 = 1,...,n be unifomly distributed grid points in this

region. Then, there exists a constant C such that

|6(x,8) — > Ads(x —x;)6;h%| < C(6% + 5}::2 )-

g=1

Stability Theorem. Let ¢ € W2(R?) and let the Fourier transform of the cutoff

function be non-negative,

é(s) >0, (34)

and assume the initial vorticity has compact support. Then (3.1) is stable, i.e.,
P (€h i, PR < 3 (€ 0P,
Proof. Multiplying (3.1) by £*(x;,t)h? and summing over i yields
%% Z(Ekﬁxhi))zhz =R Z E"(x:,t)h’ Z Ads(x; —x;)E" (x;,1)h%. (3.5)
; - ;

Expressing ¢(x) via its Fourier transform, one finds ¢5(x) = [ é5(s)e™*ds. Differentiating

the last equality with respect to z and y to get the Laplacian of ¢ yields

Ads(x) = — f (s - s)ds(s)e'™*ds. (3.6)

We now substitute (3.6) in (3.5) and find
%% z (P (xR =R /(s . 8) E £* (x;, t)R? E ds(s)e> i) eh(x )hds,
i i j
or
10 3 212 =\ 7 h isxi 2 3 —isex; 12
35 D 0PH =R [ (5 9)3:(9) Y i 1 b2 3 €8x, e 1.
i i j

Since £ is a real function (otherwise we multiply (3.1) by the complex conjugate of £%),




158 DALIA FISHELOV

we find that
18 h 212 —1 £ h 5% .22 5 =
LY € W =B [(s:5)6s(0) | X € Gt h2 s, (3)

The right-hand side of the last equality is non-positive by assumption (3.4), and since

$5(s) = B(6s). Integrating (3.7) with respect to ¢ completes the proof.
4. The Linearized Navier-Stokes Equations

We shall consider the linearized Navier Stokes equations

i—}; = a(x, 1), (4.1)

e i
E—R &5,

with V-a=0.

The proposed scheme for the linearized equations is

dX,‘(t)

57— axGt), (43)
h n
dg:ft(t) =R J; Ags(xi(t) — x;(£))5 (R*,. (4.4)

where £}(t) = E7(x;(t),t) is the approximated vorticity. Here we have used the incom-
pressibility condition V-a = 0 to assure that an area-element h? at the initial time remains
the same for all times. We shall now outline the convergence of our scheme (4.3)-(4.4) to

the linearized Navier-Stokes equations (4.1)-(4.2). Expressing (4.1) and (4.2) at x;, we find

(43)

(4.6)

Note that there is no error in particle locations, and we can therefore proceed to the error

in the vorticity at the time-dependent grid points. Thus, subtracting (4.6) from (4.4), we
find

Brgh 4 Uz
d(£; (t)dt &) _ R-1 Z Ads(xi(t) — x;(1))EL(H)R® — RTVAL(2). (4.7)

=1
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Since we want to use energy-type estimates, we multiply and (4.7) by (£}(t) —¢ i(1))h?
and sum over i. We assume the initial vorticity has compact support, and therefore finite
number of particles approximates the initial vorticity. For the sake of simplicity we omit

(t) from now on.

1d

S D (€ —&PR = R Y (E - 6N Adslxi —x)ET — AL (4)
1 1 }

Rewrite (4.8) as
1d

- Z(g? —&)?h? = S1+C1, (4.9)

where
S1=R1Y (& — &R (Y Adslxi —x;)E0h* — 3 Ads(xi — x;)6k%) (4.10)
i J i
and

C1=R7 ) (€ — &R (3 Agslxi —x;)Eh* — AG). (411)

We shall now bound C1, which is related with the truncation error. Later, in the

stabili’r;y lemma, we shall bound 51.

4. Consistency, Stability and Convergence for the Linearized Navier-Stokes

Define the discrete norm || f||F 2, = >_; Fox)h2:

Consistency Lemma for the Linearized Navier-Stokes Equations [9]. Let the

cutoff function ¢ satisfy the following conditions.
pe WHBHR) m>1 (5.1)
[ soax=1, [ xgoix=0,jai<d-1, [ mileidx <o (52
R2 R2 R2
Assume the initial vorticity has compact support and has m continuous bounded deriva-

tived, where m > d + 2. Let x;(0),j = 1,...,n be unifomly distributed grid points in this

region. Then, there exist a constant C such that

_ hm
C1 < CR7I€" = Elloa (6 + 5oiz): (23)
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Stability Lemma for the Linearized Navier-Stokes Equations [9]. Let

A=) (6 - &),

and let ¢ € W21(R?). Assume further that the Fourier transform of the cutoff function

be non-negative, i.e., ¢(s) > 0. Then

51<0. (5.4)

We shall now combine the consistency and the stability theorems to prove the conver-

gence of the scheme.

Convergence Theorem for the Linearized Navier-Stokes Equations. Let the cutoff

function ¢ satisfy the following conditions.

e Wt (R m>1 (5.5)

/ d(x)dx = 1, / x%¢(x)dx = 0,la| < d -1, f 1x|?|¢(x)|dx < oo. (5.6)
R? R? B2

Let the Fourier transform of the cutoff function be non-negative, then 4 < C(§ d ¢ F—’f.r-;;)

Proof. By (4.9)

1 dA?
5? — 151,

Using the consistency lemma (5.3), we find that for some bounded range of Rlide,

R > Ry, where Ry is some positive number,

m

h
C1LC- A + 5ops)- (5.7)

By the stability lemma for the the linearized Navier-Stokes equations (5.4) we find 51 <0,

and therefore

dA? hr
— <O A(m

- +6%). (5.8)

Deviding (5.8) by A = +V/A? (if A = 0 the proof is trivial) we find 42 < C(6¢+h™/6™F2),
with the initial condition A(¢ = 0) = 0. We therefore conclude that 4 < C(&4+4r™/§™?).
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In [9] we prove the stability of the time-discretized scheme

xbmH = xhm g Ata(xb ), (5.9)
n
6?,:‘;-&-1 ae &H,ﬂ 3 AtR-1 Zﬂéa(x?.n = x?,n)f?,nhz_ (510)
j=1

k!

where X?’n and £;"" approximate the exact particle location x; and the exact vorticity £7.

We show that

x®B"_xP|<CAt, 0<t<T.

If we further assume that ¢ is a symmetric cutoff that satisfies (3.4), and § = Ch?, 0 <

g <1, then (5.9)-(5.10) is stable for At < C'R6%.

6. Convolution-Type Schemes and Semi-Infinite Domains

In this section, I would like to remark on the application of convolution-type schemes
to semi-infinite domains. If the differential equation that we would like to solve holds in
a semi-infinite domain, one need to consider the quality of the approximation we make
for a given function by convolving it with a cutoff function. In other words, does ¢5 * f
well approximate the function f in case this function is defined on a semi-infinite domain?
The answer is of course that it does not necessarily do. For the sake of simplicity, let us

consider the one-dimensional case, i.e., f(z) is defined for = > 0.

It is possible to formulate moment conditions for the cutoff function ¢;s in order to
obtain an approximation of order § for any constant d. We wish to approximate f(z) by
[ f(2")ds(z — z')ds'. By substituting y = z — z' we have instead ffm flz —y)ds(v)dy.
Once the approximation to a function is constructed via one-sided cutoff functions, one
may also derive approximations to derivatives of this function. This in turn can be used
for approximating the Laplacian of a given function based on one-sided cutoff functions.
It may also be applied to problems whose solution contain a shoek or a discontinuity, in

which it is desirable to avoid differentiations across the discontinuity. We will show the

following,.
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Moment Lemma for Semi-infinite Domain. Let the cutoff function ¢ satisfy the

following conditions.

[ : ¢(z)dz =1 (6.1)

/B t%d(z)dzr =0, 1<a<d-1, (6.2)
1]

[ ltiételds < . , ©63)

Assume that f(z) is defined on 0 < = < oo and is countinuous and bounded together with

its first d derivatives in this domain. Then
0
5@ = [ fe - nsstwal < ce*,

where ¢5 = 3¢(z/§), —co<z 0.

Proof. Expanding f(z — y) in Taylor series around z yields

d=1 ¢ ve _yd gl
fe=n)= 1)+ X S + 1 U [a-0 0 - e

We therefore find that

f flz —y)ds(y)dy = fw)f ¢6(ydy+z(

a=1

o) f_ y®és(y)dy+

=t d 1 i
+(Ez - )1)1 fu (1—t)*dt /_ fO(z - ty)y"ds(y)dy. L

[ estian= [ st =1.

Similarly, by (6.2)
0
[ vaitwig=0, 1<as<d-1,

We now proceed to the last term in (6.4). Substituting z = ty in this last term yields

d _d—1 0
(d—l)l)'/ - tdi)l f_mf(d)(w'z)zd%(z/f)dz- (6:3)
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By assumption |f(? (2 — z)| is bounded for every z and z, and therefore the term above

can be bounded by
1 1 0
Ca [ it [ lelasteft)i,

where ' is a constant which depends on f and d. Noting that ¢s(z/t) = (1/6)é(z/dt)

and substituting y = z/6t, we find that the last term in (6.4) is bounded by

0
Ca6 / vl é(y)\dy.

But by (6.3) the last integral is bounded, and therefore

[ e = sty - )] < Catt.

Remark 1. It is possible to prove that the moment error is bounded by Cé% in the
L, norm, provided the moments conditions are satisfied for ¢ and the function f is in
WP, For the proof, one should proceed from (6.4) and use Young’s inequality ||g *
Rlz, < |lgllz,|IRllz,, which can be verified for semi-infinite domains by following the lines
of the proof for an infinite domain. We apply Young's inequality to g(z) = f(9(z) and
h(z) = z%s(z/t), whereas for |||z, the integral is taken from zero to infinity and for

|h||z, from —co to zero. We therefore find that

I£(z) - ]_ f(@ = )#s)dyllz, < CElllan.

Remark 2. One can also construct cutoff functions on the half plane y > 0 in a similar
way. The approximation we use for f(x) is [ [ f(x —y)¢s(y)dy, where Q is the set of
points for which y = (rcosf,rsinf), # < 8 < 2r, 0 <r < co. The moment conditions
are very similar to the one-dimensional ones, the difference being that the infegrals in

(6.1)-(6.3) are taken over 2.
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