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Abstract. We represent a three-dimensional vortex scheme which is a natural ex-
tension of the two-dimensional ones, in which spatial derivaties are evaluated by exatly
differentiating an approximated velocity field . Numerical results are presented for a flow
past a semi-infinite plate, and they demonstrate transition to turbulence. We also suggest
a new way to treat the viscous term. The idea SBiko approximate the vorticity by convolv-
ing it with with a cutoff function. We then explicitly differentiate the cutoff function to

approximate the second order spatial derivatives in the viscous term.

1, Introduction

Vortex methods have been used extensively to simulate incrmpressible flow, especially
for two dimensional problems. Though three dimensional vortex methods have been con-
sidered inherently difficult, we represent a scheme that involves no elaborate computations
and is a natural extension of the two dimensional schemes. We applied this method to
a three dimensional flow past a semi-infinite plate at high Reynolds number. Chorin [5]
solved the two dimensional problem numerically; he used computational elements, called
blobs, with smoothed kernel. He also intoduced a solution to a three dimensional problem
using a filament method. Chorin [5] approximates vortex lines by segments and thern, using
the Biot-Savart law, he updates the endpoints of the segments every time step. Chorin's
algorithm involves no elaborate calculations, however it is not highly accurate in space.

The purpose of this paper is to modify Chorin’s scheme to gain higher spatial accuracy.

Following Beale and Majda [3] and Anderson [1], we achieve higher spatial accuracy’ |
by generalizing the two dimensional blobs to three-dimensional ones. Vorficity as well _f

as blob locations must be updated every time step. We applied, for the first time, the :{'

method of Anderson, which explicitly differentiates the smoothed kernel to approximate

spatial derivatives. The algorithm and its accuracy is then similar to the two-dimensional
one. Applying the convergence proofs [2],[4] to our scheme, we show that for smooth cutoﬂ
functions second order accuracy in space is gained. Higher order space accuracy can be.

achieved by using higher order cutoff functions. We were able to resolve three dimensional



features of the flow and transition to turbulence. The numerical results are in agreement

e )

with experimental results shown in [6], which suggest that at high Reynolds numbers there

exist a large number of small hairpins.

; We also suggest a new way to treat the viscous term. The idea is to approximate the
vorticity by cohvolving it with a cutoff function, and then approximate the second order
derivatives in the viscous term by explicitly differentiating the cutoff the function. Numer-
ical results performed for the Stokes equation demonstrate the accuracy and convergence

of the this scheme.

2. Representation of the Problem

The flow is described by the Navier Stokes equations, formulated for the vorticity ¢:

et po g SRS
Bl + (u-V)E— (- V)u=R™IAE, )
div u =0,

where £ = curl u, u = (u,v,w) is the velocity vector and A is the Laplace operator and

© R is the Reynolds number. We solve the above equations for a flow past a semi-infinite

 flat plate. Far away from the plate there is a uniform flow. On the plate we impose the
. no-leak and the no-slip boundary conditions. As was suggested by physical experiments,

~ we assume that the flow is periodic in the spanwise direction.

The Prandtl equations approximate the Navier-Stokes equations near the plate, and

are used therefore in a thin layer near the plate. These equations equations admite the two-
~ dimensional steady state solution - the Blasius solution. However, the three-dimensional
~ Navier-Stokes equations are unstable at high Reynolds numbers(R > 1000), i.e., small
perturbations in the Blasius solution may cause large perturbations in the solution as time
progresses. The experiments of Head and Bandyapodhyay [6] for high Reynolds numbers
indicate the existence of large number of vortex pairs or hairpin vortices, extending through

at least a substantial part of the boundary-layer thickness.

3. The Numerical Scheme

We split the Navier-Stokes equations into the Euler equations and the heat equation
and apply a Strang-type second order scheme to step the Navier-Stokes equations in time.

We first describe the scheme for Euler’s equations. These equations can be writen as a set
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of two ordinary differential equations:

dx
E(a! t) = u(x(e, 1),1) x(a,0) = a,

% (0 1),1) = (E(x(a 1) 1) - V)u(x(es 1), 1),

(3.1)

where x(a,t), where is a particle trajectory. We also use the relation u(x,t) = [ K(x —
x')€(x', t)dx’ between vorticity and velocity for incompressible flow to determine the ve-
locity in (3.1). Here K is a matrix valued function given by K(x) = "FT;E]'B' X, where X

represent vector product.

To discretize (3.1), we set £ = 5 ;&;» where the §; are functions of small support.
Let x; be the intensity of the j — th particle, i.e., k; = [¢;dzdydz. Then we obtain
the following set of ordinary differential equations for the approximate locations of the

particles X; and the approximate intensities £;.

' %i(z) % Z Ks(%:(t) — %;(1)R;(2)
= : j=1 (3:2)
== Z(g,- - Vx)Ks(%:(1) — %;(1))7;5(2),

where ¢ : R® — R, ¢5 = 75¢(x/6) is the cutoff function, and K5 = K * ¢ is a smoothed
kernel. In our calculations we chose Kg(x) = K(x)f5(x), where fs(x) = f(x/6). f(z) is
radially symmetric and given by f(r) =1 for r > 1 and f(r) = 2.57% — 1.57% for r < 1.

This function is continuous with its first derivative at r = 1.

The second equation to solve is the heat equation 2§ = R~1A¢. Following Chorin [5]
we use the random-walk method to step the heat equation in time, i.e., we move the blobs
according to X! = %P + n(At), where (A1) = (n1(At), n2(At),ns(At)) and 51,12,
are Gaussian random variables with mean zero and variance 2At/ R, chosen independently
of each other. The Prandtl Equations used in a thin layer 0 < z < zo above the plaie,
were solved numerically by the tile method, which is the three-dimensional extention of
the sheet method (see [5]). This was done to evaluate the boundary conditions on the

plate, since blobs did not accurately represrnt the velocity field near the plate.

4. Convergence

Convergence for three-dimensional blob-vortex methods was first proved by Beale[2],

and then, using a different approach, by Cottet[4]. Let us first define the Sobolev spaces
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WmP = {f,8%f € L?(R");|e| £ m} and the norm ||f”§l,p = EUSIGESm ||8°‘fﬁg:p‘ Cottet
proved that if ¢ € W™=(R?*) n W™1(R?), ¥m > 0,

d(x)dx = 1,/ x%@(x)dx = 0,|a| £ d - 1,/ Ix|“¢(x)dz < oo, (4.1)
R3 R3 R3
' and if there exist constants C and B > 1 such that k < C§¥, then for h and § small enough
| —uljo,, < C6% pe(3/2,00], te]o,7]

We now apply this theorem to our scheme. Using the relation ¢(r) = f'(r)/4nr?, we
find that ¢(r) satisfies (4.1) with d = 2. In addition, if one chooses the cutoff function
¢ to be infinitely smooth, second order accuracy is achieved. In case that the the cutoff
function lies in a Sobolev space for finite m only, Raviat [7, pp. 315] have proved for a
two-dimensional problem that if (4.1) holds and ¢ € W™~%>(R?) for m > 2 and has
compact support, then for all arbitrarily small s > 0 there exists a constant C,, such that
10— uljo,c0 € Co8™%(8% + h™ /™), provided that ¢;16® < h < ¢;6° witha > 8 > 1.
In our case ¢ & FVI'“’(-RS) and has compact support, then for § = Ch?/3 the error is at
most of order h*/3. This can be improved by choosing an infinitely smooth cutoff function.
The accuracy of the random-walk algorithm was estimated by Hald for a one-dimensional

problem. He proved that the L error decayes like N—1/2, where N is the number of tiles.

5. A New Scheme for Viscous Flows

To increase the accuracy of the approximation for the viscous part, we propose the
following scheme. For simplicity, we describe the scheme for the two-dimensional case,
though it can be easily applied for a three-dimensional problem as well. We follow the
charachteristic lines % = u, along which the vorticity evolution is given by %% = R1AE,
We approximate the vorticity by convolving it with a cutoff function, and then explicitely
differentiate the cutoff function to approximate the second order derivatives appearing in
the viscous term. Finally we approximate the integral involved in the convolution by the

trapezoid rule and obtain

Bl = 3 Ka(:0) - 1)),
dF;

5 R Z Ags(xi(t) — %;()R;(2)-

This eliminates the error caused by the statistical process, and yields a scheme which is

imilar in nature to that applied to the Euler equations. Numerical results performed for
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the Stokes equation demonstrate the accuracy of the scheme within three significant digits

for a coarse initial grid.
6. Numerical Results

We display all the results at ¢ = 22.5, R = 10000. In Figure 1 the z,z components of
vorticity at the Lagrangian computational points at y = ¢/2 is displayed, where g is the
period in y. One can see that for larger z the intensity of the vorticity increases, which is
one of the features of transition to turbulence. In Figure 2 we show the y, z components of
vorticity at 1.4. Note that for large z the vorticity is no longer directed in one direction,
This is in agreement with the results in [6], which indicate the appearance of small hairpins
as the flow develops in the streamwise direction. In figure 3 we show the velocity field at
Y = ¢/2 and in Figure 4 vorticity contours at z = 1.4. The computational time to reach
t=22.5 on a CRAY X-MP is two hours and thirteen minutes.
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Figure 3. Velocity field in the z, 2 plane for y = g/2. Figure 4. Contours of the ¢ component of vorticity in the y, = plane for z = 1.4-
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