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Abstract. In this paper we prove the convergence of the convolution-type vortex
scheme [15] for the convection-diffusion equation in two dimensions. This scheme approx-
imates the convection-diffusion equation by first formulating it along particle trajectories
and then approximating the viscous term via a discrete convolution of the vorticity with the
Laplacian of a cutoff function. We also derive stability condition for the time-discretized

scheme and prove its convergence.
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1. Introduction

Vortex methods are numerical schemes for the simulation of incompressible Euler
and Navier-Stokes equations. In 1932 Rosenhead [30] suggested to track the evolution of
vorticity along particle-trajectories for Euler’s equations. In this formulation the velocity
of the particles is expressed by the Biot-Savart law, which relates the velocity and the

vorticity via a singular kernel. Chorin [8] (1973) proposed a smoothing of this singular



kernel to stabilize the numerical scheme for a longer time-interval. Since then, a large body
of numerical and theoretical work related to vortex methods has been carried out (see for
example [26], [28] for a review). The smoothing of the singular kernel was generalized by
Hald and Del Prete [19] via the convolution of the kernel with a cutoff function, which

approximates a delta function in the sense of moments.

The convergence of vortex methods for Euler’s equations was first proved by Hald and
Del Prete [19], and subsequently generalized by Beale and Majda [4],[5] to more general
cutoff functions and three-dimensional problems. Another proof for the convergence of
two-dimensional vortex methods was presented by Raviart [29], and by Cottet [10] for two
and three-dimensions. Anderson and Greengard [1] suggested a three-dimensional vortex
scheme which evolves the vorticity along particle trajectories via an explicit differentiation
of the smoothed kernel. The convergence of this scheme was proved in [2] and [10]; nu-
merical tests were performed in [14]. The convergence of the point-vortex method, which
leaves the singular kernel unmodified, was proved in [17]. Hou [23] also suggested a new

desingularization of the kernel in order to stabilize the method for longer time intervals.

Several ways were suggested to extend vortex methods to viscous flows, i.e., for the
Navier-Stokes equations rather than Euler’s equations. One of them is to change the size
of the cutoff parameter [26] to allow diffusion of vorticity. In fact, the exact solution
of the heat equation via its Green function formulation was adopted. It was proved by
Greengard [18] that this process approximates the wrong equations rather than the Navier-
Stokes equations. However, if one redistributes the vorticity via its discrete convolution
with the heat kernel together with time-splitting of the Navier-Stokes equations to Euler’s
and to the heat equation, the resulting scheme converges to the Navier-Stokes equations
[11]. Chorin [8] suggested to simulate diffusion by adding a random walk to each of the
particles; this process was also proved to converge to the exact solution [16],[27]. It was

proved in [27] that for the two-dimensional case, the error in the random vortex method is



of order h|Inh|, where h is the initial spacing between two neighboring points. Goodman
[16] had shown that the error tends to zero as the Reynolds number R tends to infinity,

1/2

the rate being of order R~*/“. The random process has also the advantage that it is easy

to apply near boundaries.

In [15] we suggested a deterministic vortex method that extends naturally vortex
methods for viscous flow. We formulate the Navier-Stokes vorticity equations along particle
trajectories, in which a viscous term appears in the time-evolution of the vorticity. This
term is approximated by first convolving the vorticity with a cutoff function and then by
an analytic differentiation of this function, together with its discrete convolution with the
vorticity. A related method was suggested in [12]; in the latter the Laplacian operator was
approximated by an integral type one. The analysis in [12] was carried out for two cases.
In the first case the viscosity 1/R satisfies 1/R < C62, where R is the Reynolds number
and 0 is the cutoff parameter of the kernel. In the second case the kernel of the integral
operator which approximates the Laplacian is assumed to be positive. In [15] we have
proven the consistency of the scheme for the heat and the Navier-Stokes equations. The

stability of the scheme in its spatial-continuous form was proved for the heat equation.

The purpose of this paper is to establish a convergence proof for the scheme for the
convection-diffusion equation in two-dimensions. Unlike the proof in [15], we consider
here the fully spatially discretized scheme, whereas in [15] we analyzed a simplified case
where the convolutions involved in the scheme are represented in a continuous fashion.
The convergence proof here is based on the consistency and the stability of the scheme;
we have used moment properties of the cutoff function for the consistency of the scheme
and the non-negativeness of its continuous Fourier transform for the stability proof. This
condition is indeed satisfied for several cutoff functions which are commonly used in the
context of vortex methods; for examples see [15]. One of the new features of this proof is

the energy-type estimates we have used for the vorticity, since with the energy norm we



could prove the non-positiveness of the operator associated with the viscous term.

We also formulate a stability condition for the time-discretized scheme, where we have
shown that the time step has to be of order R6?; here R is the Reynolds number and §
is the cutoff parameter. The convergence of the time discretized scheme is proved as well,

using an asymptotic expansion of the particles location error.

The paper is organized as follows. In section 2 the convolution-type scheme for
the Navier-Stokes equations is presented. In section 3 we formulate our scheme for the
convection-diffusion equation, and decompose the error in the vorticity to the consistency
and stability errors. In sections 4 and 5 we prove the consistency, the stability and the
convergence of the proposed scheme to the convection-diffusion equation. In section 6
we derive a stability condition for the Euler’s-type time-discretization and show that the
time step is of order of R6?; in section 7 we prove the convergence of the time discretized

scheme.
2. A Vortex Scheme for Viscous Flows

In [15] we proposed a convolution-type vortex scheme for viscous flows. We shall
review the scheme for the two-dimensional case in this section. The two-dimensional

Navier Stokes equations, formulated for the vorticity £ are given below.

o€ _ p-1

div u =0,

where ¢ = curl u, u = (u,v) is the velocity vector, A is the Laplace operator and R is the

Reynolds number. We follow the characteristic lines

dx
— = 2.1

along which the vorticity evolution is described by the following differential equation

¢ 1
= = RTAC (2.2)



Here d/dt = 0/0t + u - V denotes the total derivative, i.e., the derivative along particle
trajectories. In addition, if the velocity vanishes at infinity, then for an incompressible flow
we may write it in terms of the vorticity [9] via the Biot-Savart law; the latter holds in
case the vorticity has compact support, or in turn, in two dimensions it decayed as |x|~2

as |x| tends to infinity. Thus,

u(x,t) = /K(x —x")¢(x', t)dx’, (2.3)

where for the two-dimensional case K (z,y) = (—y, z)/2nr?, and r? = 22 +y?. Substituting

(2.3) in (2.1), one obtains the following system of ordinary differential equations.

d
= / K (x — x')E(x, t)dx. (2.4)
&
o= RIAC. (2.5)

We set an initial uniform grid x;(0) which cover R? with spacing hi,hy in z,y re-
spectively; for simplicity, we assume hy = hy = h. In practice we assume that the exact
vorticity decays exponentially as |x| tends to infinity, thus a finite computational domain
suffices to approximate the vorticity. Let x? (1), E;? (t) be the approximate particle locations

and the approximate vorticity respectively at time ¢, then equation (2.4) is discretized by

(see [8],[7])

dxgt(t) = ZJ: Ks(x}'(t) — x}(1))&} (t)h”.

Here we approximate the singular kernel K (x) by a smoothed one K5(x), where K5 = ¢sx K

and ¢s5(x) = (1/0%)¢(x/d); ¢p(x) is called a cutoff function.

We shall now describe the approximation of the viscous term R™A¢ of (2.5). We
approximate the vorticity by convolving it with a cutoff function, i.e., £ is approximated by

¢s*E. We then derive an approximation to the Laplacian of the vorticity by differentiation

5



of this convolution, i.e., by A(¢ps *x &) = (A¢ps) x £. Finally, we approximate the integrals

involved in the convolution by the trapezoid rule, and obtain

h
dx;

dep (t)
dt

dt(t) - zj:m(x?(t) = x5 (£)&] ()R,

=R ZA¢5 (x{ (t) — x5 (£))&]: (1) B>,

(2.6)

(2.7)

This yields a scheme which is similar in nature to vortex schemes for the Euler’s equations.

3. The Convection-Diffusion Equation

We shall consider the convection-diffusion equation,

%3 1
5 T (@ V)E=RTIAL

with div a = 0. Along particle trajectories, it takes the form

le—}: = a(x,t), diva =0,
d§ 1
s A
dt R 57

(3.1)

(3.2),

where d/dt = 0/0t+ (a- V). Following the analysis of [24, pp. 227-233], this problem has a

solution for which ¢ and its derivatives to order two are uniformly bounded and continuous

for 0 <t < T, and the solution is unique, provided that a and the initial conditions are in

C*°. In fact, the continuity and uniform boundedness of all derivatives to order four will

suffice (see [24]).

The proposed scheme for the convection-diffusion equation is

dXi (t)
dt

der(t) _

= a(x;,t), diva=0,

6
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where £/(t) = &"(x;(t),t) is the approximated vorticity. In the consistency theorem we
shall use the incompressibility condition V -a = 0 to assure that an area-element h? at
the initial time remains the same for all times. We shall now prove the convergence of our
scheme (3.3)-(3.4) to the convection-diffusion equation (3.1)-(3.2). Expressing (3.1) and
(3.2) at x;, we find

dXZ' _ .

- = alxi, 1), (3.5)
d&i _ p-1 )

— =R, (3.6)

where & = &(x;,t) and AE; = (A€)(x;,t). Note that there is no error in particle locations,
and we can therefore proceed to the error in the vorticity at the time-dependent grid points.

Thus, subtracting (3.6) from (3.4), we find

LAV RS Sl - OO - BUAED. 67
dt 4 z J 7 7 . .

Since we want to use energy-type estimates, we multiply and (3.7) by (£!(t) — & (t))h?
and sum over 3. For the sake of simplicity we omit (¢) from now on.

%% (€h — &)%h2 = 1Z(§h £)h3( ZA¢5 ghhz AE;). (3.8)
Rewrite (3.8) as

; jt D (€ - &)*n = s1+C, (3.9)

A

where
SL=R1 (& — )R> (D Ads(xi — x;)E8h* =Y Ads(xi — x;)&5h7) (3.10)
i J J
and

Cl= 12 (eh — &)h3( ZA% x;)E;h% — A&). (3.11)

We shall now bound C'1, which is related with the truncation error. Later, as part of

the stability theorem, we shall bound S1.



4. Consistency and Stability for the Convection-Diffusion Equation

For p € [1,00) and m > 0 define the Sobolev space
W™P(R?) = {f,0°f € LP(R?),|a| < m}

and the norm || - ||, p

1Flop =D 10*fIIL,;

0<|a|<m

for p = oo we refer to the maximum norm.

Define the discrete norm ||f||g,2,h =3, f2(xi)h?

Lemma 4.1. Consistency for the Convection-Diffusion Equation. Let the cutoff

function ¢ satisfy the following conditions.
¢ € WmTEHR?) m >3 (4.1)

[ ooix=1, /R x®(x)dx = 0, |a] < d—1, /R XY p(x)|dx < 0o, (4.2)
Assume the vorticity is in W™*+32(R?), m > d+2. Let x;(0) be unifomly distributed grid
points in R? and assume that the transformation from R? to itself via (3.1) has continuous
and uniformly bounded derivatives to order m + 3. Then, there exist a constant C' such

that
C1] = R D (& = €)h* (Y Ads(xi — x)¢h° — AG)|
i J

hm

< CRTMIE™ = Ellop (0" + 55)- (43)

Proof. We write the truncation error in (3.11) as a sum of two terms; the first is associated
with the regularization error e,, and the second is associated with the discretization one

€q.

C1=Y (€l - &)h2es(xi,1),
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where
xza t) = Z A¢5 gj h2 Ag(xia t))a
et = er + €4,

and

er(xiat) = R_l((A¢5 * 5)(xz’t) - Ag(xia t))a
ea(xi,t) = ZA% x;)Eh% — (A €) (x4, 1))

Let us first treat the regularization error, e,. Rewrite it in the following form

er(Xi,t) = R (¢s x AL — AL) (x4, 1).

We want to estimate (f — f * ¢5)(x;) in the discrete Ls norm for a smooth function f(x).
The following is a result of Raviart’s theorem [29, pp. 262] for the difference between a
trapezoidal sum of a function and its integral. Let g € W™ (R?) and let aj,j = 1,2, ...

be points on a uniform mesh in R? with spacing h, then
S gtaph = [ gladal < OH lglma, m 3, (4.4
i B
where C' is a constant. Let us apply the theorem to

g(a,t) = [(f —f* ¢6)(x(a7 t)at)]2a

with m = 3, where x(a,t) are solutions of (3.1) with x(a, 0) = a. We find that ([6])

(4.5)

0.2+ Ch||(

where the norm in W3(R2) is for (f — f * ¢5)? as a function of a. Now, if f € W32(R?)
and ¢ € W31(R?) then by Young’s inequality f — f * ¢s is in W32(R?). By Leibnitz rule
and the algebraic inequality 2|ab| < a® + b2, if g € W™?(R?) then g* is in W™ (R?) and
19%llm,1 < Cllgli7 2. Thus, by (4.5),

1f = f * b6l 2,0 < N = f 5 sll52 + CROIF = f = ¢5ll3 0, (4.6)

9



Note that since the transformation of R? to itself via (3.1) has uniformly bounded deriva-
tives to order 3, the norm ||f — f * ¢sl|3,2 can be bounded by a constant (which depends
on the bounds of all transformation derivatives to order 3) multiplied by the same norm
for which f — f *x ¢s is viewed as a function of x rather than . By Taylor’s expansion
and moment conditions (4.2), Raviart [29] expressed the difference f — f x ¢5 for a smooth

function f in the following way.

(f = F*¢s)(x) =

aﬂ1+,32
= (-1)? @- / do(1—0)4" / P (x — 0y)yy y52 ds(y)dy, (4.7)
B1+B2= Ly x
where x = (z1,x2) and y = (y1,y2). Upon substituing z = fy, we find
8/31+ﬂ2
1F=Feslia=1 > | ()
Bi+p2=d YT1 T2

*(2—_1)5)7 / o1 - oyt 25 95(5)0~ b 3 .
—1 J,

By Young’s inequality and by subtituing back y = z/6, we find

|| / — 01y B s (y)

/31+ﬂ2
Since ¢5(y) = 6 2¢(y/6) and by the subtitution z = y/d, we find, in view of (4.2), that
for f1 + P2 =d
1
“/ (1= 0)" sy )yl y22d9||0 ; < C6°
0
Thus,

If = F*sll3 2 < COf1172.

To bound ||f — f * ¢s]|3,2, we apply (4.7) for derivatives of f to order three. We find

that
If = f % ¢sll3.2 < CO* f1|713,2

10



Collecting the contributions of the two terms in the right hand side of (4.6), and by the

algebraic inequality a? + b% < (|a| + |b])?, we find that

If = f* dsllo2,n < COU|Ifllaz + B3| Fllass,2)-

Applying the last inequality for A, noting that £ € W™+3:2(R2) for m > 3, we find that

lerllo2,n < CR™I6U||E] ar2,2 + B¥2)1€ ] ats,2)- (4.8)

Now we want to bound the discretization error eg in the discrete Ly norm. Define
a t) - Z A¢55 a t) (aja t))£3h2 - / A¢5(x(a, t) - X(al7 t))&(x(ala t)a t)dal;
R2

Note that eq(x,t) = R~ 'v(a,t). Our purpose is to bound v in the discrete Ly norm.

Applying (4.4) for v? with m = 3, we find

1011521 < 101152 + CRZ[[v]l3 -

Let us first bound ||v||p 2. We apply (4.4) again, this time for
g(e’,t; @) = Ads(x(a,t) — x(o/,1))E(x(c, 1), 1),
and find that

|ZA¢5(x(a,t) — x(ay, t))ﬁth — /R2 Ads(x(a,t) — x(,t))E(x(, ), t)dd|

<o Y / 08, [Ads(x(a, 1) — x(a, 1)E(x(l, 1), 1)]|do,

|Bl<m.

where 85, denotes partial derivative of order |3| with respect to o’. Since the transfor-
mation (3.1) has uniformly bounded derivatives to order m, derivatives with respect to o/
are bounded by a constant multiplied by derivatives with respect to x’. Applying Leibnitz

rule and Young’s inequality, we find that

[llo,2 < CA™ [Adslm, 1[I llm,2-

11



In the last inequality ¢ and & are viewed as functions of x. Now ||@s||m+2,1 < C§—(m+2)

(see [29, pp. 275]), thus

hm
[v]lo,2 < leléllmﬂ-

To bound ||v||3,2, we apply (4.4) for g(c/, t; ) = 85,{A¢5 (x(a, t)—x(c/, 1)) (x(c, 1), t)},l
for # < 3 and find that

m

ollas < Oz li€llmas.z

Thus,

. h™ h3/2
lo2,n < CR 15m+2 (1€llm,2 + <575 1€]lmta,2)- (4.9)

llea

By Shwartz inequality and (4.8)-(4.9) we obtain the desired result (4.3).

Remark 4.2 By (4.8) and (4.9) the constant C in (4.3) includes bounds of the type ||£||m,2-

Bounds in W™?2(R?) can be derived as follows. Multiplying the convection diffusion equa-

tion for &
0¢ _ 1
FT +(a-V)¢=R A (4.10)
by &, we find
1de?
par Ak

Let Q; = R? be the image at time ¢ of the map from « to x via (3.1), then by integrating

the last equation over €; and by the transport theorem [9], we find

ld 2 -1
— dx = A&dx.
2dt th x R th é_x

Upon integrating the right hand side by parts, we find that

1d

—— 2dx = —-R7! 20x < 4.11
sii |, =R | vetax<o (411)

thus ||£(x,t)]]0,2 < [|€(x,0)]]0,2-

12



To derive a bound on ||||1,2, differentiate (4.10) once with respect to  and once with

respect to y and find that

0&s 0 _
et (alxt) V)t (02 V) = RAE), (4.120
0y Oa

+(a(x,t) V)éy + (- V)E=RTA(&), (4.12b)

ot Oy

where &, {, denotes partial derivatives of { with respect to x and y respectively. Multi-
plying (4.12a) and (4.12b) by &, and &, respectively, integrating over 2; and summing the

resulting equations, we obtain
1d 9 .9 / Oa / Oa
el - _ . Epdx — <. & d
s | (@ reix=— | (G VEGdx= | (5 V)E-yix

R [ (66 + 6,06
Q
Since first order derivatives of a can be bounded by ~1, and by (4.11)
d o2 2 ~1 2 2
%”5”1,2 < ’71”5”1,2 - R o (IVE&|* + |V§y| )dx.

The last term is non-positive, thus, in view of Gronwall’s inequality

1€, )ll1,2 < €™ [I€(x, 0)|1,2-

Higher order derivatives can be similarly bounded to obtain

1€(%, ) [lm,2 < CENE, 0)llm,2,

where C(t) includes maximum boundes of derivatives of a to order m; C depends on t, but

is independent of R. Therefore the consistency error decays to zero as R tends to infinity.

Remark 4.3 It was proved in [3, pp. 244] that if the initial vorticity is smooth enough,
1€(x, 5 R)|lm.2 < [|€(x,8 R = 00)|lm.2+ CR™L, for m > 2, and C depends on the time

interval T, &(x,0) and m. Here £(x,t; R) denotes the solution of the two-dimensional

13



Navier-Stokes equations with Reynolds number R. Thus the vorticity norms ||{]|m, 2 can
be uniformly bounded for R > 1, and the consistency error in the vorticity evolution decays

to zero as R tends to infinity.
We shall now derive bounds for S1; this consists of the stability proof of the scheme

and was derived with H. Dym [13].

Lemma 4.4. Stability for the Convection-Diffusion Equation. Let ¢ € W21 (R?).

Assume further that the Fourier transform of the cutoff function be non-negative,
$(s) > 0, (4.13)
then

SL=R) (& = &) () Ads(xs — x;)E0h* = Y~ Ags(x; — x;)€;h%) < 0. (4.14)
i J J

Proof. Let w; = fzh — &;, thus
SL=R"") wih® > Ads(x; — x;)w;h’. (4.15)
1 J
Expressing ¢(x) via its Fourier transform, one finds

b5 (x) = / bs(3)eds.

Taking the Laplacian of both sides of the last equality yields

Ads(x) = — / (s 8)ds (s)e™ds. (4.16)

We now substitute (4.16) in (4.15) and find
S1=—-R! /(s - 8) Zwih2 Z qga(s)eis'(xi_xj)wj#ds,
i J

14



or
51:—R—1/s s)s (s sz Mz}ﬂzwj ~i x5 p2ds,

Since w is a real function, we find that
S1= —R—l/(s s)bs (s Zw, i p2|2 s, (4.17)

The right-hand side of the last equality is non-positive by (4.13), and since qﬁg(s) = g?)(és).

Remark 4.4. I was later notified by Ben-Artzi [6] that this lemma is a direct consequence

of Bochner’s theorem for sufficient and necessary conditions for a function to be positive

definite.
5. Convergence Theorem for the Convection-Diffusion Equation

We shall now combine the consistency and the stability theorems to prove the conver-

gence of the scheme.

Theorem 5.1. Convergence of the time-continuous scheme. Let the cutoff function
¢ satisfy (4.1)-(4.2). Assume that the exact vorticity satisfies the condition specified in
the Lemma (4.1). Let the Fourier transform of the cutoff function be non-negative, i.e., it

satisfies (4.13). Define A%(t) = >, (&l (¢) — &(t))?h?, then

hm
—1(/5d
A(t) < CH)R (0% + (5"“"2) (5.1)
Proof. By (3.9)

1 dA2%(t)

- =C1 1.

5 dl C1+S
Using Lemma 4.1, we find that for R > 1

C1) < CRA@) (84 + )
— 5m+2 :

15



By Lemma 4.4 S1 < 0, and therefore

dA? . ™
— < —1A(s¢ . 2
7 S CR™A(0% + 5m+2) (5.2)
Dividing (5.2) by A(t) = \/A2(t) we find
dA(t) 1,eq . h™
= <
o S CR™ (6% + (5m+2)’

with the initial condition A(t = 0) = 0. We therefore conclude that

L
om+2 )

A(t) < C(t)R™1(62 +

In the conditions of Remark 4.2, the constant C above depends on ¢ but is independent
of R for R > 1, therefore the error in £, measured in the discrete Lo norm, decays to zero

as R tends to infinity.
6. Stability for the Time-Discretized Convection-Diffusion Equation

In this section we derive a stability condition for the time-discretized scheme for the
convection-diffusion equation. Let t = nAt and consider the Euler’s scheme for stepping
(3.3)-(3.4) in time

xPmHL — M AL a(x", 1), (6.1)

(2

££Lan+1 _ glh,n + AtR1! ZA(Is&(X?’n . X;L,n)g;b,nh2’ (6.2)
J

where x™ and ¢/*" approximate the exact particle location x? and the exact vorticity &
respectively. We shall prove the convergence of the approximate particle locations to the
exact ones and the stability for the approximate vorticity under the conditions that the
continuous Fourier transform of the cutoff function is non-negative and the time-step is of

order §2. We need the following lemmas.
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Lemma 6.1. Assume that [DP¢(x)| < C Vx, and that |[D?¢(x)| < CJx|~27 1Pl for |x| > 1,
where D? denotes a partial derivative of order 3 with respect to the spatial variables z,y

and C may depend on 3. Then
(a) [DPps(x)| < Co—27181  wx,

(b) |DP¢s(x)| < Clx|7211 Vx| > 4.

We shall skip the proof as it follows directly from the defenition of ¢5 and the condi-

tions of the lemma.

Lemma 6.2 Let x; be solutions of (3.3) which are initially uniformly distributed in RZ.
Assume ¢(x) satisfies the assumptions of Lemma 6.1 and that |y;| < Cyd, where § > h.
Then

max |DPgs(x —x; +y;) B2 < Cs7 1Bl 18] > 1. (6.3)
r ly;|<Cod

Proof. The proof is very similar to the one of Lemma 5 in [20] and Lemma 3.2 in [4]. Let
B; be the the quare whose center is x; with sides A in the 2 and y directions. Since h <,

Ix' —x;| < C16, x' € Bj; we may also assume Cy > Cj. For fixed x, let
Ji={j: [x—x%;| < (3C1 +1)d},

Jy = {] : |X—Xj| > (301 + 1)(5}

We devide the sum in (6.3) into the sum over j € J; and the one over j € Js. For the
first, we use Lemma 6.1(a) and find that the corresponding sum is bounded by C§—2~I#l
multiplied by the volume of {J,c; B;j C {x': [x’ — x| < (4C1 + 1)6}. Therefore the sum
over J; is bounded by

Co~ 2Bl (40, +1)0)2 = Co 1Al

17



For j € J3, we have |x — x; +y;| > (2C1 + 1)0 > 6, thus by Lemma 6.1(b)

max [DPgs(x — x; +y;)| < Clx — x; +y;[ 7> 1P
ly;1<Cod

We regard the sum (6.3) over J, as the integral of a step function with constant values on

each B;. Now for x’ € Bj,
x —x; +y;] > [x —x'| - 2019,
and thus the integrand can be estimated by

max |DPgs(x —x; +y;)h?| < (|Jx — x| — 20,5)~2-161.
ly;1<Cod
Since [x —x'| > |x—x;|— [x; —x/| > (1+2C1)6, the sum (6.3) over J can be bounded
by

C/ (r — 2C10) "2 Blypdr = C/ p~ 218l (p 4+ 2C16)dp.
(142C1)6 s

But p+ 2C16 < (14 2C1)p for p > 6§, thus the integral is
< C’/ p—l—lﬂldp < 5 1Pl
5
for g > 1.

We turn now to the stability of the scheme for the convection-diffusion equation. We

shall prove that the error in the particle-locations is of order O(At).

Lemma 6.3. Convergence of particle locations. Consider the time-discretized (Eu-
ler’s) scheme (6.1)-(6.2) for the convection-diffusion equation. Assume that a(x,t) has
bounded first order derivatives with respect to z and y, where x = (x,y), and that the

derivatives of x(t) of order two or less are continuous and bounded. Then

X" —xP| < CAt, 0<t<T,
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where x?’" and f? "™ approximate the exact particle location x? and the exact vorticity &P.

Proof. Since the Euler’s scheme is consistent with the differential equation to first order
in At,

xIH = xP + At a(xP, tn) + Cr (A1)

By substracting (3.3) from (6.1) we find that the error in particle location e’ =

x?’" — x? satisfies the following inequality.

e < [ef | + At a(x]", tn) — a(x}', t)| + C1(A1)”.

Using the mean value theorem for a, we have

(2

1
a(x!" 1) — a(x? t,) = / Da(x + 0e}, t,)df - €],
0

where

Da — <8ma1 aya1> :

6ma2 6yag

and a = (a1, as2)?. We therefore find that
] < (14 CoAD) 6P| + C (AL (6.4)

Here C5 is a bound on the induced I3 norm of Da over all possible x and t. Let F =

1 + CAt, then using (6.4) succesively we find
lel'| < F™ed|+ C1(1+ F + F? + ...+ F" 1) (At~

Since F™ < C3eT¢2 for a small enough time step, and 14+ F 4+ F2+...+ F"~1 < C3eT%2 n,
n = CT/At, and if we assume that |e)| is of order At (in our scheme e = 0), then

lel'| < CAt.
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Lemma 6.4. Stability Condition. Assume ¢ € W21(R?) is a symmetric cutoff ¢(—x) =
¢(x) that satisfies (4.13) and the conditions of Lemma 6.1. Let 6 = Ch?, 0< ¢ <1 and

let a satisfy the conditions of Lemma 6.3, then (6.1)-(6.2) is stable for At < CRj?.

Proof. In order to obtain a stability condition which depends on the continuous rather
the discrete Fourier transform of ¢, we square (6.2), multiply the result by A2 and sum

over 7. We find

% %

DETRE =Y (T + 2RTIAL Y JETR Y D A (i — X E
i J
+RTZ(AD?Y TR Ags(x" — xR, (6.5)
i J

Let A = (A, ;), where A; ; = Ags(xlm —x?’"). By (4.13) A is a non positive operator,
i.e., vI Av < 0 for every vector v in the discrete Ly space.. We can therefore rewrite (6.5)

in the following form

Z(dl,n—f-l)2h2 — Z(gzh,n)zhz + 2R_1At . h4(§h,n)TA§h,n + R_2(At)2h6(§h’n)TATA£h’n-
(6.6)
For strong stability we require
doEE <Y (g,
thus

AtR™'h2AT A < —2A.

The latter means that —2A4 — AtR~'h2AT A is a non-negative operator. We assume that

the cutoff function ¢4, and therefore A, is symmetric, hence the stability condition is

A(—24 — AtR™'h%A%) >0,
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where A(B) is an the spectrum of B. By the spectral mapping theorem,
A(—2A — AtR7'h%A%) = —2X(A) — AtRT'h2A%(A) > 0. (6.7)
Dividing (6.7) by A(A) which is non-positive, we find
~AMA)R2AtRT <2 ; (6.8)

in case A(A) = 0 the stability condition is trivially satisfied. To impose condition
(6.8), we look at the spectrum of the finite-dimensional operator A where (A(™v); =
ijl’n A; jv;. Note that Ay tends to Av as n tends to infinity, thus, since A™) and
A are self-adjoint, each neighborhoud of a point in the spectrum of A contains a point
in the spectrum of A for large enough n ([25],[6]). Thus, it suffices to require that
(6.8) is satisfied for A(™ with large enough n. By Gershgorin’s theorem the eigenvalues
of A differ from one of the diagonal elements at most by the sum of the absolute val-
ues of the off-diagonal terms. The diagonal elements of A™h?2 are bounded by C6~2 for

0 =Ch?, 0< q <1. For the off-diagonal elements we use Lemma 6.2 and find that

D 1A jIh? <) I Ags(xP — x7) W3+
Jj=1 J=1

i J#i

n
z/ol IVAPs(xF — x7 + 0(e —e?)|df - |e] — el|h”.

7

Here VAgs denotes the gradiant of the Laplacian of the cutoff function. The first term
in the last inequality is bounded by C6~2 by Lemma 6.2. For the second term we bound
e —e?| by CAt, using Lemma 6.3. Then Y., [VA$s(x} —x7 +0(e} —e}))|[h? < C5~2
by Lemma 6.2; the conditions for Lemma 6.2 are indeed satisfied since e} —e}| < CAt <
CRé? < O for Ry < 1. We therefore find that 3., [A4; j|h* < C6~2. By the Gershgorin’s
theorem, the eigenvalues of A(™ A2 do not exceed Cé2; thus, if CAtR™16~2 < 2 or

equivalently At < CR6?, inequality (6.8) is satisfied for A(™), and thus for A.
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Now if one chooses d to be of order vk, as suggested for example in [21], the stability
condition is At < CRh, which is less restrictive then the finite difference-type stability
condition At < CRh2. For the convolution-type scheme (6.1)-(6.2), § plays the role of h
in the finite-difference stability condition, since h? appears in an-integral type operator of

(6.2), which is bounded as a function of h.
7. Convergence of the Time-Discretized Scheme

In this section we prove the convergence of the time-discretized scheme for the
convection-diffusion equation. In this proof we use techniques similar to the ones we
have used in the previous section, together with asymptotic expansion of the error in
particle-locations; the latter was suggested by Hald [22]. We shall first state a lemma on

the asymptotic expansion of the error in the particles location.

Lemma 7.1. Asymptotic expansion of the error in particle locations. Consider
the time-discretized (Euler’s) scheme (6.1)-(6.2) for the convection-diffusion equation. As-
sume that a(x,t) has bounded derivatives of order 2 and less with respect to z and y,
where x = (z,y) and that x;(¢) has three continuous and bounded derivatives with respect

to t. Let the initial error be of order At at most, i.e., €? = Atg?. Then
xp" — X = At gi(tn) + O((AF?), 0<t<T.

where g;(t) is a vector valued function which satisfies

dgi n 1 d2X?
E pry Da(X,L ,tn) . gz(tn) + 5 dt2 .

Proof. We expand the exact particle-locations at (n + 1)At around nAt and find that

A2 2x? A3 3

Xt =xT + At a(x?, t,) + T + T

X; (t + OiAt), (72)
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for 0 < 0 < 1. Sustracting (6.1) from (7.2) and using Taylor expansion of a(x[™ t,)

around x}' and since

1 !
a(x?’", tn) —a(x?,t,) = Da(x},t,) - el + 5/ (1-0) (e?)TDza(x? + 0el, t,)elrdo,
0

thus

At?2 > AL &3

ef ™ = [I + AtDa(x},t,) + O(At?)]e}

(3

We use (7.1) to expand g*! around t,, and find that

deg™ 1 21
gitl =gl + At% +O(A#?) = g" + AtDa(x™, t,) - g7 — EAL@% +O(A2). (7.4)

Define now

thus by sustructing (7.4) multiplied by At from (7.3), we find that
q; " = {I + AtDa(x}, t,)}af + O(A).
Repreating the argument for (6.4) in Lemma 6.3, and since q = 0, q* = O(At?), thus

el = Atg!" + O(At?).

Theorem 7.2. Convergence of the time-discretized scheme. Assume that (4.1)-
(4.3) hold with d > 4 and that At < CRé*, then under the conditions of Lemma 6.2,
Lemma 6.3 and Lemma 6.4, equations (6.1)-(6.2) converge to (3.1)-(3.2), and the errors in

particles location and the vorticity are of order At.

Remark 7.3. If we step the equations for particles locations (3.1) via a second order

temporal scheme, we can prove the convergence of the approximated vorticity defined in
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(6.2) with At < R6% and d > 2. The differences in the convergence proof will be indicated
throughout the proof below. By numerical evidence [15] the less sever time-step restriction

suffices for convergence.

Proof. In Lemma 6.3 we have proved the convergence of particles locations; the object now
is to establish the convergence of the approximated vorticity to the exact one. Substructing

(6.2) from (3.6) and using the first order accuracy of the Euler’s scheme, we find that

% % 7

gL — g = g — g 4 AR Ags(x — xBMERTRE — Ag] + Co(xT, 1) (At)?,
J

where Cy (x7,t) = 1 [(1 — 0) 2;€(x?,  + OAt)d6. Denote £/ — £ by w?, then

)

wptt = wf + ARTIY (Ads — Ags)wih® + ) Agswih?
j J

+ ) (Ads — Ags)Erh® + ey(xP, t) + Cr(x]', 1) RAL)), (7.5)

J

where e;(x?,t) is the truncation error at x? and time t. We square (7.5), multiply by h?
and sum over %; thus using the inequality (a + b)? < 2(a? + b?) we find
D (@PTY?R? < (wp)?h® +2AtRTYY T wPh?(Ay+ Az + Az + e (x], 1) + Cr (X}, 1) RAL)

+C(A)’R™>) W (AT + A3 + Af + €] (x7, 1) + CT(x}, ) R*(At)®).  (7.6)

Here Ay = Y, (Ads — Ags)wlh?, Ay = 3, Apswlh?, and Az = 3. (Ads — Ags)ETh2.

Let us also denote the second to last term in (7.6) by By to Big respectively.

We first treat 2AtR™1 Y, wl*h? Ay, which we denote by B;. By the mean value theo-

rem for A¢s we find that

By =2AtR™YY wih® Y (VAgs(x) — x7 + 0(e] — ef)) - (e — e wih’

J
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for some 0 < # < 1. By the Chaucy-Swartz inequality

|By| < 4AtR™ max [es]|w"[lo,2,ull > Kijwih®|lo2,n,
i

where K; ; = maxo<g<1 |[VA@s(x] — x7 + 0(e}! — e7)|. By Lemma 4.1 of [2]

1D Ko gwh2lloon < IKEIw™ 0,20,
J

where ||[K|| is the smallest number such that
> IKi
i

Now since |e}' —ef| < CAt < CR4? (here we have also covered the case 7 > 2 mentioned

r? <|IK]|.

<Kl ) IK
J

in Remark 7.3), then |e} —ef| < Cpd for RS < 1, thus by Lemma 6.2 [|K|| < C6~3.

Therefore

e s At
il < CAtR™ w3 0,

By assumption At < CR§*, the latter is bounded by C§2 for Ré < 1, thus
|B1| < CAtR™H[w"[[§ 2,1- (7.7)

Note here (as indicated in Remark 7.3) that for second order time-stepping schemes for
particles location |e} —e| < C(At?), and thus we olny have to require that (At)? < CRé?,
but this condition is satisfied since (At)? < CR?§* < CR63 for R§ < 1. Note that we only

lost the factor R™! in the last equality for By, and therefore have By < CAt||w”||(2),2,h.

Under the conditions of Lemma 4.4, we find that

By + By = 2AtR™") wi'Ay + C(At)*R™2A3 < 0. (7.8)

7

To estimate the term 2AtR™1 Y. wlh?Aj3 in (7.6), which we denote by Bs, we use Taylor

expansion for Aq;(; around the exact particle location and Lemma 7.1. We find that
B3 = 2AtR™'Y wih® Y T VA (x} — x7) (e} — ef)¢;h?
{ J
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HALRTY Cwlh® (e — )T D?Ags(x} — x} + 0(e} — €])) (e} — €] )¢;h?,
i J
where D2A¢s denotes the matrix which contains second order derivatives of A¢s. By
Lemma 7.1 we find that e} — e} = At (g(xi,tn) — 8(xj,tn)) + O((At)?), where
g(x,t) is a smooth function of x and ¢. The first term in Bs is thus bounded by
CAtR™Y|w™||o,n,2(At + (A)2673), but At < CR&* < C§° for RS < 1, thus this term
is bounded by CAtR™'Atl|w"|jon2 < 2CALR(||w"(|3 ;.o + (At)?). By Lemmas 6.2
and 6.3 the second term in B3 can be bounded by CAtR™'(At)?||w™||o,n20"* But
since At < CR4*, this term is bounded by C(At)?||w™||os,2, which is bounded by

CAt([w™||3 5.2 + (At)?). We therefore conclude that
| B3| < CAL([[w"[[§ 2,0 + (A2)?)). (7.9)

Note that in case we have used a second order scheme for particles location, e = At?g +
O(At3), thus By < CAtR™M|w™||o.2,n (At + At3673 + At*5~%). Tt is easy to check that

in this case At < R§? will suffice to obtain (7.9) with an additional factor R.

Let By = 2AtR™1 )", wlh?ey(x?, t,,), thus

|Ba| < CALR™H(||w" |5 2, + llee

10,2,):

But [les|§ 5, < C62%; if we require that ¢ < CAL, we find that [|e;||3 , , < C(At)?. For our
first order Euler scheme At = O(Rd*), thus 6% = O(At¥*/R¥*); if d > 4 the requirement
above (0¢ < CAU) is satisfied. Note that for a second order time-stepping scheme for
particles locations At = O(R$?), thus 6¢ = O(At%?/R%/?), and the requirement §¢ < CAt

is satisfied for d > 2. Thus, in both cases we have

|Ba| < CALRTH(||w”|[5 2,0 + (A1)?). (7.10)

The next term By of (7.6) is bounded by

|Bs| < CAL(|lw"]|§ 2,5 + (AL)*)). (7.11)
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Let Bg be the next term in (7.6), it can be bounded in as By as follows

At)?
Bal £ C(A0PR 0" B s
< C(At)’R™?|w" (|5 2,p- (7.12)
Bg can be treated as Bs to prove that
|Bs| = C(At)2R™2) " h2A3 < C(At)’R™*(At)*. (7.13)

Similarly Bg and B can be treated as By and Bs respectively, noting that 66—:25 (x,t) and

its spatial derivatives to order 3 are in Ly. Thus,
B COEI C(At)>’R(At)? 14
|Bo| < Cp-llello 2. n < C(AL)"RT(AL), (7.14)
and
|Bio| < C(At)2R™2(At)2. (7.15)
Combining inequalities (7.7)-(7.15) for By to B1g, we find that
[w™ M5 2,0 < (1 + CAL)|w ][5 2,5 + C(AL).
Iterating over n, we find that ||w"||(2),27h < C’||w0||(2),2,h + C(At)?, and if ||wO||o,2,n < CAL,

[w™[lo,2,n < CAL
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