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The Spectrum and the Stability of the
Chebyshev Collocation Operator for
Transonic Flow

By Dalia Fishelov

Abstract. The extension of spectral methods to the small disturbance equation of
transonic flow is considered. It is shown that the real parts of the eigenvalues of its
spatial operator are nonpositive. Two schemes are considered; the first is spectral in the
= and y variables, while the second is spectral in z and of second order in y. Stability for
the second scheme is proved. Similar results hold for the two-dimensional heat equation.

1. Introduction. Consider the transonic small disturbance equation

+1
(1.1) 20t = (k¢z - :72—¢§> + 4¢yy
T
and its steady state version
+1
(1.2) <k¢, - 1-2—¢§) +4¢y, =0,
x

where ¢ is the velocity potential, k and ~ are positive constants. These equations
model subsonic and supersonic flow close to the local speed of sound. The flow is
assumed to be that of an inviscid perfect gas.

The time-dependent equation (1.1) and the time-independent equation (1.2) are
of practical importance in computing flows around an airplane flying at a speed
close to Mach 1. They are also used as models for more complex problems, since
they describe important phenomena such as shock waves and discontinuities of
partial derivatives of the solution ¢ near the tips of the airplane. They constitute
a good model because their steady state (1.2) is of mixed type, which is easily seen
from the following form of (1.2):

(1.3) (k= (v + 1)¢s)dzz + 4¢yy = 0;

(1.3) is elliptic for ¢, < k/(v+ 1) and hyperbolic for ¢, > k/(y+ 1). In addition,
the time-dependent equation is a model for other problems in two space variables
approximated by spectral methods, for which we examine stability and convergence
to a steady state solution.

The purpose of this paper is to give theoretical support to the schemes, presented
here and in [6], for solving the small disturbance equation, using Chebyshev spectral
methods. Numerical results are given in [6] and [5]. The present paper contains
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560 DALIA FISHELOV

eight sections. In Section 2 we present the small disturbance equation (SDE) of
transonic flow and review finite difference methods [13], [4] for solving it numerically.
Section 3 presents a proof that the linearized differential problem is well posed.

In Section 4 we present two schemes for solving the SDE. Both schemes are
spectral in z. One of them is also spectral in y, while the other is of second order
in y. We split (1.1) into two differential equations:

(1'4) 2tz = (k¢z - :7_;-—1(153;) s
(1.5) 2p1s = Adyy-

In Section 5 we discuss stability for (1.4), and in Section 6 we prove that the
eigenvalues of the spatial operator for the two schemes approximating (1.5) have
nonpositive real part. Stability is proved for the semidiscrete approximation of (1.5)
using a spectral method in the z-direction and finite differencing in the y-direction.
Similar results are proved in Section 7 for the two-dimensional heat equation.

The extension of these schemes and numerical results for high Mach numbers
are given in [6] and [5]. It is shown that one may still use these schemes when
shocks are present (high Mach numbers) by filtering the results. The spectral filter
proposed fits the approximated solution to a sum of a step function and a truncated
Chebyshev series, and thus the scheme retains spectral accuracy.

2. Derivation of the Equations and Finite Difference Methods. The
small disturbance equation of transonic flow is derived by asymptotic expansion
applied to the equations of gas dynamics. The small expansion parameter is the
airfoil thickness ratio 7 and the Mach number is assumed to be near 1.

To first order the following equations result for the disturbed flow:

1
2u; = <ku - l;—u2> + 4y, vz — Uy = 0.
T

A velocity potential is then introduced by

U= @g, v = ¢ya
and (1.1) results. For additional details see [3], [2], [5].
We consider a bounded spatial domain —1 < z, y < 1, in which the airfoil is
represented by
y(z) = -1+7F(z), |z|<z0, oK1

Assume that the boundaries £ = 1, y = 1 can be viewed as far away from the
airfoil, so that the disturbed flow there is zero. Then, we have

(2.1) ¢(-1,y, t) =0,
(2.2) u(l,y,t) =0,
(2.3) ¢y(z,1,t) = 0.

On the airfoil the flow is tangent to the body. Since 7 tends to zero in our
asymptotic expansion, this condition should be applied at y = —1, |z| < z¢. Thus

F’ b k)
(2.4) by(z,—1,1) = {0’ (2) lzl ; ig
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In addition, we must supply initial conditions for (1.1):

(2'5) ¢($1y10) = ¢0($)y)'

During the last decade many numerical calculations using equations (1.1) or (1.2)
have been presented (see [13], [4], (1], [2], [12]). We shall describe two of them. The
first is the Murman-Cole (M-C) [13] treatment of the time-independent equation,
and the second is the Engquist-Osher scheme (E-O) [4] for the time-dependent and
the time-independent equations.

Murman and Cole treated numerically the steady state equation. As was noted,
the equation is of mixed type. At each mesh point the velocity ¢, is computed (ap-
proximately) to determine if the flow is supersonic (¢; > k(v + 1)~!) or subsonic
(¢ < k(v + 1)71). The appropriate hyperbolic or elliptic type of difference equa-
tion is then selected for that mesh point. The resulting large system of algebraic
equations is solved iteratively by a line relaxation algorithm. Each vertical line is
relaxed successively, proceeding in the positive z-direction. At each stage of the
iteration the local velocity is tested to select an elliptic or a hyperbolic difference
approximation.

It was pointed out in [4], [2] that the Murman-Cole scheme leads to nonlinear
instabilities, even though the scheme should be stable according to linear stability
analysis. Furthermore, it was reported in [4], [12] that the M-C scheme admits
entropy-violating shocks as solutions.

Engquist and Osher [4] modified the Cole-Murman scheme so that entropy-
violating shocks cannot be obtained, and presented a stability analysis for the full
nonlinear problem. Define

_ k
@=—

v+ 1
In regions where

Uj—1,k> Ujk, Uj+1,k > U OF  Uj_1 k, Ujk, Uj+1,k < U,

the M-C differences for the point (z;,yx) are identical to those of E-O for the time-
independent scheme. There are modifications near the surface of interference of
subsonic and supersonic regions.
It was proved in [4] that this scheme, with the Courant condition
max A ()| f' (4)| = €0 < 3,
1k

is stable with respect to the norm

N M
lull? = 3 uleAzay.

j=0k=0
The scheme is of first order. If it converges to a time-independent solution, then
it is second-order accurate in subsonic regions and first-order in supersonic regions.
From the discussion above it appears worthwhile to look for a high-order scheme
for the small disturbance problem. We focus our attention on the z-direction,
since changes spread much more slowly in the y-direction. Moreover, the difficulty
of developing high-order finite difference schemes is due to the type-dependent
equation, for which hyperbolic or elliptic regions are determined by the coefficient
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of ¢,,. We expect this scheme to have spectral accuracy in z, instead of the first-
or at most second-order accuracy obtained by the finite difference schemes. Before
we turn to the description of the spectral schemes (in Section 4), we next prove
that the linearized small disturbance equation is well posed.

3. Well-Posedness of the Linearized Differential Equation. Consider the
linearized differential equation with homogeneous boundary conditions. In Theorem
3.1 we establish the well-posedness of this problem. This is a new result, and is
given to make sure that the boundary conditions (2.1)—(2.4) yield a well-posed

problem.

Define H?(() to be the Sobolev space of functions u such that u and its spatial

derivatives up to order p are in Lo(Q2) and
Q={z,yl1 <z,y <1}.

THEOREM 3.1. Consider the problem

(3 1) ¢t$ = _a(x’y)um + ¢yya T,y € Q, t>0,
( ) ¢(_1’y1 t) =Oa
( ) ’U,(]., Y, t) = Oa
(3.4) ¢y(z,£1,t) =0,
( ) ¢(z’y’ O) = ¢0(I’y)a
where

(3.6) u = ¢g,

and assume

(3.7) a(xl,y) <0,
(3.8) a(z,y) € CY,
and

(3.9) $o(z,y) € H'(Q).

Then (3.1)—(3.5) s a well-posed problem, i.c., there exists a constant C such that

1 1 9 2 1 1 b 2
L Gewe] sz [ [ [G2e0] aea

Proof. Multiplication of (3.1) by ¢, = u and integration with respect to z, y

over the square —1 < z, y < 1 yields

/_11 /_11 Ptz dzdy = —/_ll /_11 a(,Y)uz Pz da:dy+/_11 /_11 Pyy Pz dz dy.

Hence,

26t/ / u d“'dy-“/ / )dzdy+/;11/_ll¢yy¢zdfl?dy.
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We integrate by parts the first term with respect to z and the second with respect
to y. Therefore,

26t/ / uldrdy = /’1 [_—u a(z, y)L_l_1 dy+ = / / u? dzdy
+ f_ [$bylizl, dz — /_ 1 /_ lqszyqsy dz dy.

Invoking (3.3), (3.7) and (3.5), we find

1 1
(3.10) 55/ / u dzdy—+-/ / u2aadzd /1/1%(¢§)d”"

By (3.8),
da

oz sC

Hence, (3.10) yields

26t/ / u?dzdy < C/ / “dzdy~-/ (63)3=1 1 dy

By (3.2), ¢yle=—1 =0, and therefore

1 2
26t/ / wldrdy < = C’/ / u? dz dy /¢ (1,y,t)dy
S-—C’/ / u?dz dy,

2 _]: -1

/—11/_11u wy,t)dmdy<gCt/ / [ ¢0a:y)] dzdy. O

4. The Numerical Scheme. We now describe our spectral scheme for (1.1),
(2.1)-(2.5). As in [4], we split the problem (1.1), (2.1)-(2.5) into two differential
problems. The first one is

(4.1) ur = = (f(u))a,
(4.2) u(1,y,t) =0,

where u = ¢,. Observe that (4.1) is in conservative form. Omitting the factor two,
which appears next to ¢y, the second problem is

or

(4'3) te = ¢yy,
(44) ¢('—1a Y, t) = 0)
(45) by(z, £1,t) = Fi(z),
where F, (z) =0, and
_ [ F'(2), |z| < zo,
F-(z) = {0, |z| > zo

(see (2.3) and (2.4)). Note that F(z) describes the shape of the airfoil. Both of the
above problems must be supplied with initial conditions.
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(a) Discretization in Time. Since we are interested in the steady state only,
we discretize u; in (4.1) or (4.3) using finite differences. One may present both
problems above in the form

Uy = G(u)

For the first one,

G(u) = Ga(u) = 5= 1 (u),

and for the second,
z 82ud
G(u) = Ga(u) = —— dz.
(u) = G2(u) N

We apply the modified Euler scheme
w2 =y -A2—tG(u"), u"t = Ut 4 AtGurt?).
Let L(At) be the operator which acts on u™ to yield u™t!:
L(At)u™ = u™! = u™ + AtG <u" + -A2—tG(u")) .

Ly(At), La(At) are defined as L(At) with Gy, G2 replacing G. According to [8],
the following discretization in time for (1.1),

(4.6) utl = I, (A;) Lg(A;>L2(A2t)L1 (A2t)u ,

is second-order accurate in the time variable, even in the nonlinear case. Since
this scheme is second-order accurate in time, one can use it to approximate the
time-dependent solution as well, and if higher-order accuracy in time is desired,
one may use higher-order Runge-Kutta schemes. Spectrally accurate stepping in
time was suggested by Tal-Ezer [16] for linear problems. This cannot be applied
here because of the nonlinearity of the problem (1.1).

(b) Discretization in Space. In both problems (4.1)-(4.2) and (4.3)-(4.5), deriva-
tives or integrals with respect to the spatial variables z or y appear. It is sufficient
to describe how we discretize du/dz and [*, u(r)dr.

Let Pyu be the Chebyshev pseudospectral projection of u on the subspace of
polynomials of degree N or less, i.e.,

N
UN(xay) = PNU(Z" y) = Z an(y)Tn(z)’
n=0

where .
un(ziy) = ulziy), si=cosT, O0<i<N.

We discretize 3/0z by differentiating Pyu, and then denote the resulting operator
by Ly. Hence

(4.7) Lyu= PNaipNu = Z an(y)T.(z) = Z bn ()T (),
n=0

where
bn(y) =0, bn-1(y) = 2Nan(y),
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and
kb (y) = br2(y) +2(k + 1ak41(y), O0<k<SN -2,
0o =CN =2,
and
gi=1 1<j<N-L

We apply Lyu for y =y, =cosmj/M,0<j< M.
Next, integration is done in a similar way,

N z
Zan(y)/ Tn(r)dr

T
IN=PN/ PNudT=PN
-1 n=0 -1

N+1
=Py Y dn(y)Tn(z).
=0

By integrating the recurrence formula

T . (z T . (z
2T (z) = ’;L+i(1)+ :;—1(1)’
we find
d _ anN dn = aGN-1
N+1 2(N+2)’ N 2(N+1)’
dn=lu+_l, 3<n<N-1,
2 n
9 —ag— 2
d2— 4 41 dl ap 21

and we choose dg such that
N+1

Z dn(y)Tn(_l) =0.
n=0

We shall consider two types of schemes for the discretization of 82/dy?. The first
is spectral in y (scheme A), and the second is a finite difference one (scheme B).
It is reasonable to use the latter, since for the transonic problems changes spread
much more slowly in the y-direction than in the z-direction.

(b1) Spectral Approzimation in y (scheme A). As described above, we discretize
82/0y? by a Chebyshev pseudospectral method. For a fixed z, define Ppru(z,y) to
be the Chebyshev pseudospectral projection of u(z,y) onto the subspace of poly-
nomials of degree less than or equal to M, i.e.,

M
Pyu = Z em(z)Tm(y)'

m=0
Define Df\})(y) as follows:

; 9 S
P (y) = Pu sPuu(,y) = > em(@) T ()
(4.8) m=0
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where (see [10, p. 16])

M
fM’__fM—lzoa Cmfm= Z p(pQ_m2)aPa OSmSM_2a
p=m+2
p+m even
and
co = 2, cm =1, 1<m<M-2.

We are now ready to present our semidiscrete spectral scheme for (4.1)—(4.5).
Denote by U the approximation to u and by ® the approximation to ¢, where

®=1InU.

The semidiscrete approximation to (4.1)—(4.2) is

(4.9 o = —Ln@®),

(4.10) U(-1,y,t) =0,

and for (4.3)—(4.5) we have the following scheme:
Scheme A.

(4.11) 20 =D e,

(4.12) Ly (y)®(z, £1,t) = PnF1(2).

This scheme has spectral accuracy in the space variables.
(b2) Finite Difference Approzimation in y (scheme B). Using finite differences
for approximating 92/9y?, we have

02 @) w(z,y,+1) — 2u(z,y;) + u(z,y;-1)
—u~D u(z,y) = —2 297 K2 AtV

dy?
where Ay = 2/M, y; =1-(Ay) - 5,1 <7 < M—1. We apply Dz)(y) for
z=z;=cosmi/N,0<i<N-1
To conclude, for (4.1)—(4.2) we use the same discretization as in (4.9)—(4.10) and

for (4.3)—(4.5) and we obtain the following semidiscrete scheme:
Scheme B.

(4.13) 2 = v@DP e,
(4.14) O(z:1) = ‘ng"’ 1289 _poz), 0<i<N-—1,
(4.15) q’(z"’_HAAy;_q’(“’_l) =F_(z;), O0<i<N-1,

where ® = InyU. This scheme has spectral accuracy in = and is of second order in
Y.

The reason we have looked for other schemes rather than the spectral one for
approximating 9%/9y? is the asymptotic behavior of the eigenvalues of Dﬁ) (y),
where
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The largest eigenvalue of Dg,l,) (y) grows like O(M?) when M grows to infinity (see
[10, p. 115]). This implies a restriction on At of the form

1

For small M (8 or 16) we may still use spectral differentiation with respect to y
and get spectral accuracy. But if we wish to increase M, it is preferable to use a
finite difference approximation, in which

1

An alternative is to use an implicit scheme for the time discretization (see [10,
Section 9]). In this case the scheme is unconditionally stable but one should solve
a full system of linear equations every time step. Research is being done on this
subject; see for example [14].

5. The y-Independent Problem. In this section we consider stability ques-
tions for the semidiscrete approximation (4.9)—(4.10) of the problem (4.1)-(4.2).
We rewrite (4.1) in the form

ut + a(uw)ug =0,

where a(u) = 3 f/0u. In [7] there is a stability proof for the linear case a(u) = —1,
with the boundary condition u(1l,y,t) = 0. A similar stability result is valid for
the case a(u) = 1 with u(—1,y,t) = 0, or even in a more general case, as long as
a(u) = a(z) does not change sign. In such a proof, one obtains energy estimates for
u(z)/+/|a(z)| rather than for u(z). However, there is no proof for the general lin-
ear case. Stability of the Chebyshev pseudospectral approximation for two specific
variable coefficients problems was proved by D. Gottlieb [7]. In numerical calcu-
lations for more general problems there were no reports of instabilities, as long as
there was no shock involved.
Consider the full discrete approximation to (4.1)-(4.2),

Un+1/2 =U"+ %ELNf(Un),
U™ = U™ + AtLy f(U™1/2).
Since the spectral radius of Ly is O(N?) (see [10, p. 90]),

1

By a numerical calculation of the spectral radius of Ly it was found ([10, p. 110])

that the scheme is stable if
8

Atmax |a(u)| < N

Note that the Chebyshev collocation points z; = cosmi/N, ¢ = 0,...,N, are

more crowded near the boundaries z = 1. This allows us to improve our polyno-

mial approximation, since it counters the tendency of polynomials to oscillate with

large amplitude near the boundaries ([15]). For our problem an airfoil is located

at |z| < zo, and the tips of the airfoil z = +z¢ may cause large gradients of the
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solution to appear near these points (see (2.4)). We therefore divide the region
—1 <z <1 into three parts: —1 <z < —x9, —29 < z < 70, Zg < = < 1, and thus
have more collocation points near the tips of the body. We prove that the scheme
remains stable under these conditions.

Consider the model problem

Wt = Wg, -1<z<3,
w(3,t) = g(t).

We divide the domain into two subdomains —1 < z < 1, 1 < z < 3 and apply
pseudospectral methods to each domain. The two polynomials ul;, ull of degree
N satisfy

oul oul ] .
1 BII 11 ;
(5.1) %:QgTN, x:zgz)zcos%—, j=1,...,N—-1,

up(1,t) = g(t),
and the continuity equation
(5.2) uly(1,8) = ul¥(1,¢).
Consider the problem
Up = Ug, -1<z<1,
u(lL,t) = g(t),
and denote its pseudospectral approximation by uy. Define

Ty(2)
N

VN =un —g(t)

which yields Vv (1,¢t) = 0.
Gottlieb and Turkel [11] derived an energy inequality for Vy:

1 0 t 1
(5.3) 5!IVN(t)II2 + %ﬁ/o Vi(zn,7)dr < KN/O g*(r)dr + §IIVN(O)II2,

where
N-1 i
[|v]|? = Z v?(z5)@;, T; = CoS W],
=0
L:J]' = (1 + III]‘)OJJ‘,
T 17
. § = — <j<N- = = -—=.
(5.4) Wy N 1<j<N-1, Wo = Wn, 5N

We now apply (5.3) to u}y and u¥. Define

Ty(z—2
5.5 Vi =y — o) TE22)
/
(5.6) VI = ol — (1,070,

N2
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By (5.3),
SIVA@IE + 22 /[VN(IT]2dT
(5.7)
< KN/ fdr+ —IIVN(0)||
1 w t
VAR + = [ V-1, dr
(5.8) T 4/0 !

t
<KN [ k(1,012 dr + 5IVEO)B.
0

In (5.7) and (5.8),

N-1
o]l 2 = Y- v* (2§ e,
j=0
where z(l) () are defined in (5.1) and
(:J;l) — wj . (z‘g_l) _ 1)’ (:);2) — wj . (x‘g?) + 1)’

with w; defined in (5.4).
Summing (5.7) and (5.8), we obtain
SOl + 2 [ WA R+ 40 [V
(5.9)
<N [ dr KN [ (1, dr e+ LIV O o
where

IV O3z = IV + VAT
Invoking (5.5), we find

Wl (1,7) = Vh (L 7) + o) DD
Hence,
(5.10) [ujy (1,7)]% < 2{[VR (L, 7)]* +¢°(1)}.

Using (5.7) and (5.10), we conclude that
t t t
D [hanpa <2 [ wha ot [ @ear
4 Jo 2 Jo 2 Jo
t
< (2kN + “’—”)/ g*(r)dr + VR O)I1}
27 Jo

< (258 + ) [ 2w dr + VO
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Substitution of the above inequality into (5.9) yields

—||VN( )|[2 +2+“’TN/O V(=172 dr

t
SKN/ g
0

+%£Ji [2KN/ (r)dr +||[Vn(0 )||1+2+ 2 /01 g2(T)dT}

N

1
+ §||VN(0)”1+2,

or
1 w
SO+ 2 [ R

1
< K1N3/0 (r)dr + = K2N2”VN(0)||1+2

Thus, we proved that this procedure is algebraically stable (see [10, Section 5]),
i.e., the constant appearing next to ||V (0)||2, , is bounded by N>" for some finite r.
It was shown in [10] that if a scheme is algebraically stable and if its truncation error
is spectrally small (i.e., less than N7 for p > r), then the scheme is convergent.

6. The y-Dependent Problem. In this section we consider the problem (4.3)-
(4.5). Attention is restricted to the case Fy(z) = 0, i.e., homogeneous boundary
conditions:

(6.1) ¢tz = ¢yy’
(62) ¢(_1aya t) =0,
(6.3) dy(z, £1,t) =0,
(64) ¢($, yaO) = ¢O(way)'

The solution of the problem involving inhomogeneous boundary conditions is a sum
of an arbitrary function having the imposed boundary values and a solution to a
perturbed problem (6.1’), (6.2)-(6.4), where

(6.11) Dtz = ¢yy + g(xa y)
One can represent the solution of (6.1') in the form

t z 82 u
¢ = €Sty +/ eG(t's)g(z, y) ds, where G(u) = —dz.
0 —1 0y?
This representation was used in the proof of the equivalence theorem in [10, p.
47], in which it was proved that consistent stable schemes for (6.1’) are convergent.
Note that a scheme is stable ([10, p. 47]) if |[e®¥Mt|| < K(t), where Gy is an
approximation to G, and therefore stability is a feature of the homogeneous equation
(6.1) and is not affected by the nonhomogeneous term g(z,y). We therefore treat
the homogeneous equation (6.1) with the homogeneous boundary conditions (6.2)-
(6.4). The problem (6.1)—(6.4) is well posed, as one may check in a way similar to
the proof of Theorem 3.1, omitting the term a(z, y)u,.
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Next, consider semidiscrete approximations to (6.1)-(6.4), i.e., time is a contin-
uous variable. Two types of approximation are considered.

(a) Pseudospectral in spatial variables, i.e., the scheme is described by (4.11)-
(4.12) (scheme A).

(b) Pseudospectral in z and finite differences in y. The scheme is presented in
(4.13)-(4.15) with Fy(z) = 0 (scheme B).

Recall again the following representation of (6.1),

T
¢ = / byy dz,
-1
or equivalently, z
¢ = Go, Go = / Oyy dz.
-1

In the previous section we described two ways of approximating G. Denote by Gy
the approximate operator. We shall inquire whether the approximate solution ®
does not grow as ¢ — oo. In other words we shall prove that the eigenvalues of
G N have a nonpositive real part.

(a) The Spectrum of the Spatial Operator of Scheme A. To investigate the eigen-
values of Gy, we seek solutions of the form e**® s (z,y) for (4.11), where @y
is a polynomial of degree N in z and M in the y variable. Thus, up to a spectral
error we may treat the equation

ALn®nu(z,y) = DS (v)@nm(z,y),

atz=z,~=cos7ri, 0<i:<N-1,
N
J .
y=yj=cos7r—M, 1<j<M-1

In order to prove that Re(A\) < 0, we represent ®pr(z,y) as a sum of M — 1
functions, denoted by {%,(y) kM;ll, which are the eigenfunctions of Dg}) (y) satis-
fying (0y%,/0y)(y = £1) = 0. In the following lemma we prove that there are such
M — 1 independent functions, and therefore the desired representation is possible.

LEMMA 6.1. Let ¥ar(y,A) be an eigenfunction of the problem

(6.5) Mt (9, A) = DY () (y, A) + (A + By) Ty (),
(6.6) ‘zp—yM(ﬂ, A =0,

where ¥ar(y, A) 18 a polynomial of degree less than or equal to M. Then there are
M — 1 independent functions satisfying (6.5)—(6.6).

Proof. We prove that if

M-1
(67) Z ain(ya Az) = Oa
i=1
then a; =0,7=1,...,M — 1. By (6.7),

M-1
Z oim (Yr, Ai) =0, yk = cos(mk/M), k

=1

1,...,M—1.
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The vectors
¢M (yh A'l)

Ym(Ym-1,2) ) o ma

are linearly independent since they correspond to distinct eigenvalues (by [9]), and
therefore ¢; =0forz=1,...,M —-1. O
Remark. We shall later make use of the independence of the vectors

¥ (y1, Ai)

YMm(YUM-1,2) /i1 M1

which follows from the proof of Lemma, 6.1.

We are now ready to state one of the three main results of this paper, which are
Theorems 6.2-6.4.

THEOREM 6.2. Let A be an eigenvalue of the problem

ALN(2)®n (2,9, A) = DSP (4)®nae (2,9, A),

™

(6.8) fora::a:i:cosN, 1=0,...,N—1,
y=yj=cos%, j=1,...,.M -1,

(6.9) Pvm(-1,9,A) =0,

(6.10) %%M(x,il,y) =0,

where Ly(z), Dg,l,)(y) are defined in (4.7) and (4.8), respectively.
Then

Re()) <0.
Proof. ®nr(z,y, ) satisfies (6.10), so by Lemma 6.1 it may be represented in
the form

M-1

(6'11) q)NM(l"y”\) = Z ak(xa ’\)\I’k(y),
k=1

where ar(z, ) are polynomials of degree N or less. Invoking (6.11) and (6.8), we
find

M-—1 M—1
A Lvak(z, N ¥e(y) = Y ak(z, ) ()
M-1
= ) tkak(z, A)¥k(y),
k=1
for:c=zi=cos7r—z, 1=0,...,N—1,

N

y=y; =cos i

LEA i=1,...,M—1.
i Y
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wr are the eigenvalues of (6.5)—(6.6). Hence,
M-1

M-

> (ALwak(z, A) — prak(z, X)) Tr(y) = Z die(z) P (y

k=1 oy

for z = z;, y = y;.

Since the vectors
Vi (y1)

Yie(ym-1) / g1, .M-1

are linearly independent (see the remark after Lemma 6.1), we have

di(z) =0 for z =z, 1=0,....N—-1, k=1,...,M —1.

Hence,

(6.12) ALnak(z, ) — pkak(z,A) =0, z=z;,1=0,...,N—1,
and by (6.9)

(6.13) a(—1,A) =0.

We shall prove that the eigenvalues of (6.12)—(6.13) have nonpositive real part.
Consider the problem

1o} 1o}
gun | JUN _ g z=1x;1=0,...,N -1,

ot oz
’U,N(—l, t) =0.
In (7] stability was proved for the above problem and therefore the eigenvalues v of
the following problem
(6.14) vUn(z,v) + LNUn(z,v) =0, r=1z;,1=0,...,N—1,
(6.15) Un(-1,v) =0,
have nonpositive real part. Returning to (6.12)—(6.13), we exclude the case A =0,

since this yields ux = 0, and we have seen that the eigenvalues of (6.5)—(6.6) are
negative. Hence

Re( /\)<0

Since py is real and negative, Re(A) <0. O
Numerical Evidence for Theorem 6.2. The eigenvalues py of (6.5)-(6.6) for M = 8
were calculated and were found to be:

—2.467, —9.870, —22.185, —40.526, —54.945, —201.604, —214.372.

As proved in [9], they are real, distinct and negative. We now display 1/v;, where
y; are the eigenvalues of (6.14)-(6.15) for N = 8:

(—0.0312, +0.114), (—0.083, +£0.148), (—0.165, +0.124), (—0.220, +0.048).

They have nonpositive real parts. The eigenvalues of (6.8)—(6.10) were found nu-
merically to be multiples of the above, i.e., Ayt = —puk/vi, and therefore have
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nonpositive real parts. Similar results were found for the eigenvalues of (6.16)-
(6.18).

(b) The Spectrum and the Stability of the Spatial Operator of Scheme B. Approx-
imating (6.1)-(6.4) by (4.13)—(4.15), we seek again solutions of the form

By ar(z,y).

We shall prove that Re()\) < 0. Since Fourier analysis is used in y, we consider the
region —oo < y < o0.

THEOREM 6.3. Let A be an etgenvalue of the problem

ALy (2)®nm(2,y,3) = DD (y)@nm (2,9, M),

J .
for £ = z; = cos =, 1=0,...,N—1,
(6.16) N |
y=y; =jAy, —oo0<j<oo,
2
Ay - Ma
(617) q)NM(_l’ya )‘) = 0’
0PN M
.1 A)=0.
(6.18) » (z,£1,)) =0
Then
Re()) <0.
Proof. By taking the Fourier Transform of (6.16) with respect to y we find
. 2
sin“ Ay
= —4—" A
(6.19)(&) ALN¢(2:, 6’ A) 4 (Ay)2 ¢(z’ 6’ )’
at ¢ =z, 1=0,...,N—1,

where @(z, &, ) is the Fourier transform of ®nar(z,y,A). We may carry on the
proof as in Theorem 6.2. The only difference is that for (6.19) we have
sin? €Ay

B
instead of uy appearing in (6.12), and in the latter we used only the negative sign
of ux. When £ =0, then A =0, and therefore Re(A) < 0. O
For scheme B we can prove stability as well.

THEOREM 6.4. Consider the problem

OLN® @)
6.20 L) )
(6.20) z=a:i=cosjvj—, 1=1,...,N—1,
y =y; = jAy, —00 < 7 <00,

6.21) &(-1,y,t) =0.
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Then
(6.22) 1@< (2, y, )| < || ®z(z,y,0)l,

11112 = // L9 ay

Proof. By taking the Fourier transform of (6.20) with respect to y we find
0¢s(z,€,) sin® Ay

where

=4 (z,&,1),
ot (Ay)?
(6.23) at = x;, t=1,...,N -1,
¢(_1a€at) = O’

where ¢(z, £,t) is the Fourier transform of ®(z,y,t).
Multiplying (6.23) by w;(1 — z;) ¢z (z;, &,t) and summing over s = 1,...,N — 1,
where the w; are defined in (5.4), we obtain

N

a
0 S (1= zuilalon €, = —4% EA"Z ro)wild (@ € 1)12.
1=0

1=0

Since (1 — z)|¢(z, &,t)|? is a polynomial of degree 2N — 2 in z, we may use the
Gauss integration formula to obtain

s1n sin® {Ay é|2
3t2(1 alale, € 02 = 42 E20 [ 1)

Integrating by parts and applying the Parseval equality, one obtains the desired
result (6.22). O

7. The Two-Dimensional Heat Equation. The same technique for investi-
gating the eigenvalues of an operator may be implemented for other two-dimensional
equations, for example the heat equation:

(7.1) Ut = Ugg T+ Uyy,

(7.2) u(x1,y,t) =0,
ou

(7.3) 5&(3, +1,t) =0,

(74) u(a:,y,O) = uO(Z’ y)

Conditions (7.2) may be replaced by uz(+1,y,t) = 0, or more generally by

alu(l’ya t) + ﬁluz(lay’ t) = Oa
71”(_1aya t) + 61u$(—1aya t) = Oa

as long as oy, B1, 71, 61 satisfy the conditions of the theorem proved in [9], i.e.,
(a) a1,B1,71 >0 and 6; <0, or
(b) 11 >0,6, <0, 0r
(¢) a1 =00r B, =0.

One may also replace (7.3) by more general conditions in a similar way.
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THEOREM 7.1. The eigenvalues of the problem

A®ww (2,9, A) = D (2) @ (2,5, A) + DY (1)@ (2,9, A),
Z

(7.5) for z=gi=cosy, i=L..,N-1
y=yj=c0s7—;\%, j=1,...,.M -1,

(76) q)NM(:tlaya’\) =0a

(77) a—ay-q)NM(.’lJ,:l:l,)\) =0,

are real and negative.
Proof. Expand ®np(z,y,A) as a sum of eigenfunctions of (6.5)—(6.6):

(7.8) ¢NM z, y, Z a: /\)\I’k
k=1

Substituting (7.8) into (7.5) yields

M-—1 M—1 M-—1
A k(@ V() = ) af(e, VWe(y) + Y uka(z)¥i(y)
k=1 k=1 k=1
for z—zz—cosﬁz, 1<i1<N-1,
Ty -
=y; = — 1< < -
Y= cosM, <7<M-1,

where px are the eigenvalues of (6.5)-(6.6), which are real, distinct and negative
by [9]. Since
Wi (y1)

Y (ym-1) k=1,.,M—1
are linearly independent, we have

Aag(z,A) = aj(z, A) + prak(z,)) atz=1z; 1<i< N -1,

or
(7.9) (A = pk)ak(z,A) — ay(z, ) = (Cx + Drz)Ty(z),
(7.10) ak(£1,2) =0,

where (7.10) is a consequence of (7.6).
Using the results in [9] and looking at the eigenvalue problem

(7.11) vag(z,A) — ag(z,A) = (Cx + Dxz)Ty (),
(7.12) ak(£1,1) = 0,

we conclude that the values of v are real and negative and that there are N — 1
linearly independent eigenfunctions corresponding to (7.11)—(7.12). Hence,

)\—llk=Vl,
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or
Akt = pr + 1 <0.
There are (N —1)(M — 1) eigenvalues and the same number of linearly indepen-

dent eigenfunctions of (7.5)-(7.7), and it is easy to see that the eigenfunctions are
products of the one-dimensional eigenfunctions, i.e.,

o) (z,y) = Vi(y) Vi(2),

where Uy (y) is an eigenfunction of (6.5)-(6.6) and ®;(z) is an eigenfunction of
(7.11)~(7.12).

For the two-dimensional heat equation, we may prove also stability of the Cheby-
shev pseudospectral approximation.

THEOREM 7.2. Consider the semidiscrete pseudospectral approrimation @y py
for the two-dimensional heat equation, satisfying

0
218 (2,9,0) = D (@)@nu (2, 1) + Diy (1)@ (2,9, ),

(7.13) at z=zi=cos%, 1<i<N-1,
) .
=y, = — 1<9<M-1
Yy=y; =cCos N’ SJ= s
(7.14) Pvm(£l,y,t) =0,
(7.15) (I)NM(Z :|:1 t) = 0
where

(1) 0? N 02
Dy (z) = PNMWPNMa Dy (y) = PNMa—ygpNM,

and
N M

Pnaru(z,y) Z Zalek z)Ti(y),

k=01=0

ak; being chosen such that
PNMu(zhy])zu(xhy])’ OS'LSN, OSJSM
Then

1o~ (2,9, )l lvms < [P (2,9, 0)|[ v

where
2

N M
T
1918 = 37 2o 20 97 (26,5,).

1=05=0

Proof. We multiply (7.13) by ®nxnm(zi,y;,t) and sum over 1 <2 < N — 1,
1< 7 <M —1. Since (7.14)—(7.15) is valid, we may include the indexes : = 0, NV,



578 DALIA FISHELOV

7 =0,M in the summation'

9 =2
%B_ u ZZ‘I’NM('TM%’ t)

1= 0_7—0

NM ZZ@ 2q’NM iy Y5, )P v (24, Y5)

7=01=0
2 (92
NM ZZ@ 5PN M(Ti, Y5, ) PN (24, Y5, )
1=0 5=0

((8%/02%)® N ) @ is a polynomial of degree 2N —2 in z, ((8%/0y?)®nrr) Pnas
is a polynomial of degree 2M — 2 in y, so by using the Gauss integration formula
we have

(02/022)® N (z,y,t) PN p (T, Y, t)
2 |@waellins = —Z/ N da

iR / (92/0y*) N (2,9, ) B ma (2, y,1)
+ % .
i=0v 1 Vi-y
By [10, p. 82] the right-hand side of (7.16) is nonpositive, so that
5}
5£|I<I’NM|I?VM <o0.

Integration with respect to ¢t completes the proof. 0O

(7.16)

dy.

8. Conclusions. We have shown that one may apply spectral methods to
the small disturbance equation of transonic flow. The two schemes presented for
solving this equation numerically are spectral in z and either spectral in y as well,
or second-order in y.

The spatial operators of these schemes are proved to have eigenvalues with non-
positive real parts. Moreover, stability is proved for one of them. Similar statements
can be proved for other two-dimensional problems, such as the two-dimensional heat
equation.
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