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The Spectrum and the Stability of the 
Chebyshev Collocation Operator for 

Transonic Flow 

By Dalia Fishelov 

Abstract. The extension of spectral methods to the small disturbance equation of 
transonic flow is considered. It is shown that the real parts of the eigenvalues of its 
spatial operator are nonpositive. Two schemes are considered; the first is spectral in the 
x and y variables, while the second is spectral in x and of second order in y. Stability for 
the second scheme is proved. Similar results hold for the two-dimensional heat equation. 

1. Introduction. Consider the transonic small disturbance equation 

(1.1) 2q$tX= (k~x- o2X +40yy 

and its steady state version 

(1.2) (k0X - -2 +1 + 40y O = ? 

where q is the velocity potential, k and -y are positive constants. These equations 
model subsonic and supersonic flow close to the local speed of sound. The flow is 
assumed to be that of an inviscid perfect gas. 

The time-dependent equation (1.1) and the time-independent equation (1.2) are 
of practical importance in computing flows around an airplane flying at a speed 
close to Mach 1. They are also used as models for more complex problems, since 
they describe important phenomena such as shock waves and discontinuities of 
partial derivatives of the solution X near the tips of the airplane. They constitute 
a good model because their steady state (1.2) is of mixed type, which is easily seen 
from the following form of (1.2): 

(1.3) (k-(- + 1)ox) xx + 40yy = 0; 

(1.3) is elliptic for ox < k/(- + 1) and hyperbolic for qx > k/(-y + 1). In addition, 
the time-dependent equation is a model for other problems in two space variables 
approximated by spectral methods, for which we examine stability and convergence 
to a steady state solution. 

The purpose of this paper is to give theoretical support to the schemes, presented 
here and in [6], for solving the small disturbance equation, using Chebyshev spectral 
methods. Numerical results are given in [6] and [5]. The present paper contains 
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eight sections. In Section 2 we present the small disturbance equation (SDE) of 
transonic flow and review finite difference methods [13], [4] for solving it numerically. 
Section 3 presents a proof that the linearized differential problem is well posed. 

In Section 4 we present two schemes for solving the SDE. Both schemes are 
spectral in x. One of them is also spectral in y, while the other is of second order 
in y. We split (1.1) into two differential equations: 

(1.4) 2tx= kox 2 X I 

(1.5) 20tx = 40yy. 

In Section 5 we discuss stability for (1.4), and in Section 6 we prove that the 
eigenvalues of the spatial operator for the two schemes approximating (1.5) have 
nonpositive real part. Stability is proved for the semidiscrete approximation of (1.5) 
using a spectral method in the x-direction and finite differencing in the y-direction. 
Similar results are proved in Section 7 for the two-dimensional heat equation. 

The extension of these schemes and numerical results for high Mach numbers 
are given in [6] and [5]. It is shown that one may still use these schemes when 
shocks are present (high Mach numbers) by filtering the results. The spectral filter 
proposed fits the approximated solution to a sum of a step function and a truncated 
Chebyshev series, and thus the scheme retains spectral accuracy. 

2. Derivation of the Equations and Finite Difference Methods. The 
small disturbance equation of transonic flow is derived by asymptotic expansion 
applied to the equations of gas dynamics. The small expansion parameter is the 
airfoil thickness ratio T and the Mach number is assumed to be near 1. 

To first order the following equations result for the disturbed flow: 

2ut =(ku -) 2 2) + 4v, vX-u =0. 

A velocity potential is then introduced by 

u = Xx, v = qy, 

and (1.1) results. For additional details see [3], [2], [5]. 
We consider a bounded spatial domain -1 < x, y < 1, in which the airfoil is 

represented by 

y(x) =-1 + TF(x), IxI < xo, xo <1. 

Assume that the boundaries x = ?1, y = 1 can be viewed as far away from the 
airfoil, so that the disturbed flow there is zero. Then, we have 

(2.1) 0(-1,y t) = 0, 

(2.2) u(1, y, t) = 0, 

(2.3) q$(x, 1, t) = 0. 

On the airfoil the flow is tangent to the body. Since T tends to zero in our 
asymptotic expansion, this condition should be applied at y -1, IxI < xo. Thus 

(2.4) $(x, -1,t) = { F(x), xi < xo, 
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In addition, we must supply initial conditions for (1.1): 

(2.5) 0(x, y, 0) = 00 (x, y). 

During the last decade many numerical calculations using equations (1.1) or (1.2) 
have been presented (see [13], [4], [1], [2], [12]). We shall describe two of them. The 
first is the Murman-Cole (M-C) [13] treatment of the time-independent equation, 
and the second is the Engquist-Osher scheme (E-O) [4] for the time-dependent and 
the time-independent equations. 

Murman and Cole treated numerically the steady state equation. As was noted, 
the equation is of mixed type. At each mesh point the velocity Ox is computed (ap- 
proximately) to determine if the flow is supersonic (Ox > k(-y + 1)-1) or subsonic 

(Ox < k(- + 1)-1). The appropriate hyperbolic or elliptic type of difference equa- 
tion is then selected for that mesh point. The resulting large system of algebraic 
equations is solved iteratively by a line relaxation algorithm. Each vertical line is 
relaxed successively, proceeding in the positive x-direction. At each stage of the 
iteration the local velocity is tested to select an elliptic or a hyperbolic difference 
approximation. 

It was pointed out in [4], [2] that the Murman-Cole scheme leads to nonlinear 
instabilities, even though the scheme should be stable according to linear stability 
analysis. Furthermore, it was reported in [4], [12] that the M-C scheme admits 
entropy-violating shocks as solutions. 

Engquist and Osher [4] modified the Cole-Murman scheme so that entropy- 
violating shocks cannot be obtained, and presented a stability analysis for the full 
nonlinear problem. Define 

k 
a +1 

In regions where 

Uj.1,kUjkUj+l,k > u or Uj.1,k,UjkUj+l,k < U, 

the M-C differences for the point (xj, Yk) are identical to those of E-O for the time- 
independent scheme. There are modifications near the surface of interference of 
subsonic and supersonic regions. 

It was proved in [4] that this scheme, with the Courant condition 

maxAl(x)If'(U'nk)I = E0 < 1 
Unk Ask 

is stable with respect to the norm 

N M 

I1U112 = Z UEJXkAXYy. 
j=O k=O 

The scheme is of first order. If it converges to a time-independent solution, then 
it is second-order accurate in subsonic regions and first-order in supersonic regions. 
From the discussion above it appears worthwhile to look for a high-order scheme 
for the small disturbance problem. We focus our attention on the x-direction, 
since changes spread much more slowly in the y-direction. Moreover, the difficulty 
of developing high-order finite difference schemes is due to the type-dependent 
equation, for which hyperbolic or elliptic regions are determined by the coefficient 
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of aim We expect this scheme to have spectral accuracy in x, instead of the first- 
or at most second-order accuracy obtained by the finite difference schemes. Before 
we turn to the description of the spectral schemes (in Section 4), we next prove 
that the linearized small disturbance equation is well posed. 

3. Well-Posedness of the Linearized Differential Equation. Consider the 
linearized differential equation with homogeneous boundary conditions. In Theorem 
3.1 we establish the well-posedness of this problem. This is a new result, and is 
given to make sure that the boundary conditions (2.1)-(2.4) yield a well-posed 
problem. 

Define HP (Q) to be the Sobolev space of functions u such that u and its spatial 
derivatives up to order p are in L2 (Q) and 

Q = {x, yl < x,y < 1}. 

THEOREM 3.1. Consider the problem 

(3.1) tx =-a(x, y)ux + Alp x,y E Q, t > 0O 

(3.2) 0(-1, y, t) = 0, 

(3.3) u(1, y, t) = 0O 

(3.4) ObY (xi ?1, t) = O. 

(3.5) q(x, y, O) = q0(x, y), 

where 

(3.6) U = ax 

and assume 

(3.7) a(?1, y) < 0, 

(3.8) a(x, y) E C', 

and 

(3.9) Go (x, y) E H1(F). 

Then (3.1)-(3.5) is a well-posed problem, i.e., there exists a constant C such that 

f fl [,? (X, y,t) dx d < eCt f fX [?(XI /)] dx d 

Proof. Multiplication of (3.1) by O5x = u and integration with respect to x, y 
over the square -1 < x, y < 1 yields 

f f txtx dx dy = - a(x, y)uxqx dx dy + f f yyOxd dyx 

Hence, 

!k f f / u2 dxdy = - f f a(x, y)Em(u2) dxdy + f f Oxyq dx dy. 



CHEBYSHEV COLLOCATION OPERATOR 563 

We integrate by parts the first term with respect to x and the second with respect 
to y. Therefore, 

8 f | U dxdy = | [-U2 a(x,y)] dy + j f 2 dx dy 

+ J [X0YqY]y1 dx - f f xyy dx dy. 

Invoking (3.3), (3.7) and (3.5), we find 

(3.10) -- | uddy =+ | | u dy - | ) 2dx 

By (3.8), 
a <C. 

69X 

Hence, (3.10) yields 

df Jf|u2dxdy < -Cf u2 dxdy- - A)zl dy. 
By (3.2), qyl=l = 0, and therefore 

u u2dxdy < ? Cf | dxdyf- | 02(1,yt)dy 

< -Cf u2dxdy, 

or 

f f u2(X,y,t)dxdy < ecf f [zX o(xy)] dxdy. 0 

4. The Numerical Scheme. We now describe our spectral scheme for (1.1), 
(2.1)-(2.5). As in [4], we split the problem (1.1), (2.1)-(2.5) into two differential 
problems. The first one is 

(4.1) Ut = W) X, 
(4.2) u(1, y, t) = 0, 

where u = qo. Observe that (4.1) is in conservative form. Omitting the factor two, 
which appears next to qyy, the second problem is 

(4.3) ktx = 0yyI 

(4.4) 0(-1, y, t) = 0, 

(4.5) ky (x, ?1, t) = F(x), 

where F+(x) = 0, and 

F() = {F'(x), 7 Xl < oX 
01 1XI > XO 

(see (2.3) and (2.4)). Note that F(x) describes the shape of the airfoil. Both of the 
above problems must be supplied with initial conditions. 
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(a) Discretization in Time. Since we are interested in the steady state only, 
we discretize ut in (4.1) or (4.3) using finite differences. One may present both 
problems above in the form 

ut = G(u). 

For the first one, 

G(u) = Gi (u) = f(u), 

and for the second, 

G(u) = G2(u) = dx. 

We apply the modified Euler scheme 

un+l1/2 =u+-G(u) u = un+ AtG(un+l1/2). 
2 

Let L(At) be the operator which acts on Un to yield un+1: 

L(At)un = Un+ = Un + tG (n + AtG(un)) 

Li(At), L2(At) are defined as L(At) with G1, G2 replacing G. According to [8], 
the following discretization in time for (1.1), 

(4.6) un+1 = L1 (A) L2 (A) L2 (A) Li (A) un, 

is second-order accurate in the time variable, even in the nonlinear case. Since 
this scheme is second-order accurate in time, one can use it to approximate the 
time-dependent solution as well, and if higher-order accuracy in time is desired, 
one may use higher-order Runge-Kutta schemes. Spectrally accurate stepping in 
time was suggested by Tal-Ezer [16] for linear problems. This cannot be applied 
here because of the nonlinearity of the problem (1.1). 

(b) Discretization in Space. In both problems (4.1)-(4.2) and (4.3)-(4.5), deriva- 
tives or integrals with respect to the spatial variables x or y appear. It is sufficient 
to describe how we discretize ou/lx and fx1 u(r) dr. 

Let PNU be the Chebyshev pseudospectral projection of u on the subspace of 
polynomials of degree N or less, i.e., 

N 

UN (X, Y) = PNU(X, y) =E an (Y)Tn (, 
n=O 

where 

UN(Xi,Y) = U(Xi,Y), Xi = Cos - 0 < i < N. 
N 

We discretize 0/Ox by differentiating PNU, and then denote the resulting operator 
by LN. Hence 

9 N N 

(4-7) LNU = PN - PNU =E an (y)T. (x) = bn (Y) Tn (, 
n=O n=O 

where 

bN(Y) = 0, bN-1(Y) = 2NaN(y), 
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and 

ckbk(y) = bk+2(y) + 2(k + 1)ak+l(y)), 0 < k < N-2, 

CO = CN = 2, 

and 
cj~l < j'< N- 1. 

We apply LNU for y = y? = cos 7rj/M, 0 < j < M. 
Next, integration is done in a similar way, 

X N X 

IN = PN J PNU dT = PN E an(Y)J TN(T) dT 
-1 n=0 - 

N+1 

= PN E dn (Y)Tn (X) 
n=O 

By integrating the recurrence formula 

2Tn (x) = Tn+ 1 () Tn- 1 (C) 
72+1 + - 7 1 

we find 
aN aN-1 

dN+? 
= 

2(N + 2)X 
dN 

2(N + 1) 

dn -1 an-l-an+1 3 < n < N-1, 
2 n 

_al a3 a2 
d2 = a, 

- a, d, = ao - a2' 
4 4 ~~~~~2 

and we choose do such that 
N+1 

E dn(Y)Tn(-1) = 0. 

n=O 

We shall consider two types of schemes for the discretization of 02/0y2. The first 

is spectral in y (scheme A), and the second is a finite difference one (scheme B). 

It is reasonable to use the latter, since for the transonic problems changes spread 

much more slowly in the y-direction than in the x-direction. 
(bl) Spectral Approximation in y (scheme A). As described above, we discretize 

02/0y2 by a Chebyshev pseudospectral method. For a fixed x, define PMU(X, y) to 

be the Chebyshev pseudospectral projection of u(x, y) onto the subspace of poly- 

nomials of degree less than or equal to M, i.e., 
M 

PMU = E em(x)Tm(y) 
m=O 

Define D (y) as follows: 
= 02 ()"Y 

DM)(Y) =PM0 2PMU(X,Y) = m (O)Tm(y) 

(4.8) M 

- Z fm(x)Tm (y), 
m=0 
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where (see [10, p. 16]) 

M 

fM= fM-1 = 0 Cmfm Ad p(p2- m2)ap, O<m<M-2, 
p=m+2 

p+m even 

and 
co = 2, Cm = 1, 1 < m < M-2. 

We are now ready to present our semidiscrete spectral scheme for (4.1)-(4.5). 
Denote by U the approximation to u and by 41 the approximation to q$ where 

4 = INU. 

The semidiscrete approximation to (4.1)-(4.2) is 

(4.9) - = -LN(x)f (U), at 
(4.10) U(-1, y, t) = 0, 

and for (4.3)-(4.5) we have the following scheme: 
Scheme A. 

(4.11) ,) I D )(y)4> 

(4.12) LM(y)(x, ?1, t) = PNF?(X). 

This scheme has spectral accuracy in the space variables. 
(b2) Finite Difference Approximation in y (scheme B). Using finite differences 

for approximating &2l/y2, we have 

a2 D(2) (Y)U(X Y)= u(x, Y+1) - 2u(x, yj) + u(x, y-1) 

where A~y = 2/M, yj = 1-(Ay) j', 1 < j < M-1. We apply DM (y) for 
X = Xi = coswri/N, 0 < i < N-1. 

To conclude, for (4.1)-(4.2) we use the same discretization as in (4.9)-(4.10) and 
for (4.3)-(4.5) and we obtain the following semidiscrete scheme: 

Scheme B. 

(4.13) =IN(X)D () 

(4.14) xD(xi, 1) - 4)(xi, 1 - zy) = F+(xi), 0 < i < N-1, 

(4.15) (xi,-1 + AYy)-(xi,-1) = F-(xi), 0 < i < N-1, 

where 4D = INU. This scheme has spectral accuracy in x and is of second order in 

Y. 
The reason we have looked for other schemes rather than the spectral one for 

approximating 02/&y2 is the asymptotic behavior of the eigenvalues of D$l)(y), 
where 

DM() 2= Y)=PM0 -2 PM. 
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The largest eigenvalue of DM (y) grows like o(M4) when M grows to infinity (see 
[10, p. 115]). This implies a restriction on z?t of the form 

it?M4) 

For small M (8 or 16) we may still use spectral differentiation with respect to y 
and get spectral accuracy. But if we wish to increase M, it is preferable to use a 
finite difference approximation, in which 

'At = 0 ( 2) 

An alternative is to use an implicit scheme for the time discretization (see [10, 
Section 9]). In this case the scheme is unconditionally stable but one should solve 
a full system of linear equations every time step. Research is being done on this 
subject; see for example [14]. 

5. The y-Independent Problem. In this section we consider stability ques- 
tions for the semidiscrete approximation (4.9)-(4.10) of the problem (4.1)--(4.2). 
We rewrite (4.1) in the form 

ut + a(u)u; = 0, 

where a(u) = af/&u. In [7] there is a stability proof for the linear case a(u) = -1, 
with the boundary condition u(1, y, t) = 0. A similar stability result is valid for 
the case a(u) = 1 with u(-1, y, t) = 0, or even in a more general case, as long as 
a(u) = a(x) does not change sign. In such a proof, one obtains energy estimates for 
u(x)/ Ia(x/)I rather than for u(x). However, there is no proof for the general lin- 
ear case. Stability of the Chebyshev pseudospectral approximation for two specific 
variable coefficients problems was proved by D. Gottlieb [7]. In numerical calcu- 
lations for more general problems there were no reports of instabilities, as long as 
there was no shock involved. 

Consider the full discrete approximation to (4.1)-(4.2), 

n+-1/2 = un + tLN f (U'), 
2 

Un = Un + L\tLNf(un+1/2). 

Since the spectral radius of LN is O(N2) (see [10, p. 90]), 

At = (s) 

By a numerical calculation of the spectral radius of LN it was found ([10, p. 110]) 
that the scheme is stable if 

A~t max la(u) I < N8 

Note that the Chebyshev collocation points xi = cos 7ri/N, i = 0, ... , N, are 
more crowded near the boundaries x = ? 1. This allows us to improve our polyno- 
mial approximation, since it counters the tendency of polynomials to oscillate with 
large amplitude near the boundaries ([15]). For our problem an airfoil is located 
at lxi < x0, and the tips of the airfoil x = +xo may cause large gradients of the 
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solution to appear near these points (see (2.4)). We therefore divide the region 
-1 < x < 1 into three parts: -1 < x < -xO, -xo < x < xo, xo < x < 1, and thus 
have more collocation points near the tips of the body. We prove that the scheme 
remains stable under these conditions. 

Consider the model problem 

Wt =w -1 < x < 3, 

w(3, t) = g(t). 

We divide the domain into two subdomains -1 < x < 1 1 < x < 3 and apply 
pseudospectral methods to each domain. The two polynomials ui, uIH of degree 
N satisfy 

N = N = __(.) = 2 + Cos j= N-1 at ax' N 

(5.1) a9UH aU4(2 
a aN Z (2) = Cos, j =1...,N-1, 

UIN(1,t) = g(t) 

and the continuity equation 

(5.2) u,(1, t) = u(1, t). 

Consider the problem 

Ut = uX, -1< x <1 

u(1, t) = g(t) 

and denote its pseudospectral approximation by UN. Define 

VN =U - (t) TN' (X) 

which yields VN(1, t) = 0. 

Gottlieb and Turkel [11] derived an energy inequality for VN: 

(5.3) 2IIV (t) I + N J V2(XN r)dr < KNJ g2(r) dr+ +2VN(O)II, 

where 

N-1 

jvj2= Ev2 (xj)j, xj =cos N. 
j=o 

= = (1 + xj)wj, 

(5.4) 1 < < N-1, WO Wn = 1 N. 

We now apply (5.3) to uN and UI. Define 

(5.5) VN= UN-g(t) - N2 

(5.6) VN = UII -uI (1 t)TN2 W 
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By (5.3), 

2IVk(t)IIl2 + f [VN(1,r)]2 dr 

< KN 92(r) dr+ -IfVN(O)II 1 
0 ~~~2 

(5.8) 211VNI(t)ll2 + 
I 

| [VNI(,r)]2dr 

< KN |[uIN (l 2dr + 2 |N (0) 1 12 . 

In (5.7) and (5.8), 
N-1 

IIvl 1 12 1] = V2 (X 1), ,(2)) 
- 

(1),(2) I1II,2 = 

j=O 

where Xj1),(2) are defined in (5.1) and 
3 

=1) ( -1) w2 = w (X2 + 1), 

with wj defined in (5.4). 

Summing (5.7) and (5.8), we obtain 

(5.9) ~IIVN(t)II?2 + j [Vk(1 r)]2dr+ j [VN(-1,r)]2 dr 

(5-9) 
2 4 4 

? 

? KN g 2(r) dr + KNj [u (1, r)]2 dr + - IVN(0) I12, 

where 

|1VN (t) 1 1+2 = |I 112 + 11V II112. 

Invoking (5.5), we find 

UN(1, T) = 
VN(1,r) 

+ TN I 

Hence, 

(5.10) [UI(1, r)]2 < 2{[VN(1, r)]2 + g2(r)}. 

Using (5.7) and (5.10), we conclude that 

WJ t I 1 r 'Nft ,, I 2(Tt 
4|[UN(1r] dr < 2 [VNI (1r)] dr + 2|9 ()d 
4 2 Jo 2J2 

? (2KN + 2 ) f g2(r) dr + IvN(o)II1 

? (2KN + WN) j g2(r) dr + IVN (0) II 1+2 



570 DALIA FISHELOV 

Substitution of the above inequality into (5.9) yields 

2IIVN(t)I11+2 + 4 f[VNk'-1,,)]2 dT 
rt 

< KN f 92(T) d- 

+ [2KN f 2(r) dT + IIVN(0)II +2 + N f 2(r) dT] 

+ 2IIVN(0)II1+2, 

or 

!IIVN(t)112 +4 [VNI(-1,)]2 dT 

< K1N3 f 2() dr + K2N2IIVN(0)II 12 

Thus, we proved that this procedure is algebraically stable (see [10, Section 5]), 
i.e., the constant appearing next to I IVN (0) II+2 is bounded by N2, for some finite r. 
It was shown in [10] that if a scheme is algebraically stable and if its truncation error 
is spectrally small (i.e., less than N-P for p > r), then the scheme is convergent. 

6. The y-Dependent Problem. In this section we consider the problem (4.3)- 
(4.5). Attention is restricted to the case F?(x) = 0, i.e., homogeneous boundary 
conditions: 

(6.1) ltx = qyy, 

(6.2) q(-1,y,t) = 0, 

(6.3) qy(x, h1, t) = 0, 

(6.4) q5(x,y,0) = qbo(x,y). 

The solution of the problem involving inhomogeneous boundary conditions is a sum 
of an arbitrary function having the imposed boundary values and a solution to a 
perturbed problem (6.1'), (6.2)-(6.4), where 

(6. 1') tx = qyy + 9(X, y). 

One can represent the solution of (6.1') in the form 

0 = eGtq0o + j eG(t-)g(x, y) ds, where G(u) = f y-2 dx. 

This representation was used in the proof of the equivalence theorem in 110, p. 
47], in which it was proved that consistent stable schemes for (6.1') are convergent. 
Note that a scheme is stable ([10, p. 47]) if IleGNMtII < K(t), where GNM is an 
approximation to G, and therefore stability is a feature of the homogeneous equation 
(6.1) and is not affected by the nonhomogeneous term g(x, y). We therefore treat 
the homogeneous equation (6.1) with the homogeneous boundary conditions (6.2)- 
(6.4). The problem (6.1)-(6.4) is well posed, as one may check in a way similar to 
the proof of Theorem 3.1, omitting the term a(x, y)ux. 
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Next, consider semidiscrete approximations to (6.1)-(6.4), i.e., time is a contin- 
uous variable. Two types of approximation are considered. 

(a) Pseudospectral in spatial variables, i.e., the scheme is described by (4.11)- 
(4.12) (scheme A). 

(b) Pseudospectral in x and finite differences in y. The scheme is presented in 
(4.13)-(4.15) with F?(x) = 0 (scheme B). 

Recall again the following representation of (6.1), 

Ot= f qyy dx, 

or equivalently, 

Oft = GO, GO = OYY dx. 

In the previous section we described two ways of approximating G. Denote by GNM 

the approximate operator. We shall inquire whether the approximate solution 1' 
does not grow as t -- oo. In other words we shall prove that the eigenvalues of 

GNM have a nonpositive real part. 
(a) The Spectrum of the Spatial Operator of Scheme A. To investigate the eigen- 

values of GNM, we seek solutions of the form eAtb (NM (X, y) for (4.11), where (DNM 

is a polynomial of degree N in x and M in the y variable. Thus, up to a spectral 
error we may treat the equation 

ALN4'NM (Xi y) = D-) (Y) DNM (X, Y), 

at x = xi = cos 7r[X 0 < i < N-i, 
NI 

y = yj = cos r M 1 < j < M-1. 

In order to prove that Re(A) < 0, we represent 4'NM(Xy) as a sum of M - 1 

functions, denoted by {4k (y)}It1, which are the eigenfunctions of DMl)(y) satis- 
fying (pokl/ay)(y = t1) = 0. In the following lemma we prove that there are such 
M - 1 independent functions, and therefore the desired representation is possible. 

LEMMA 6.1. Let OmM(Y, A) be an eigenfunction of the problem 

(6.5) A? M(Y, A) = DM1)(y)OM(y, A) + (A + By)TM(Y), 

(6.6) a (?11 A) = O. 

where OM(y,A) is a polynomial of degree less than or equal to M. Then there are 
M - 1 independent functions satisfying (6.5)-(6.6). 

Proof. We prove that if 
M-1 

(6.7) E im (y, Ai) = ?, 
i= 1 

then ci=0,i=1,..., M-1. By (6.7), 

M-1 

Ei= M(YkI Ai) = ?, A = COS(k/M), k = 1, .1.. M-1. 
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The vectors 
Om (y, IAi ) 

are linearly independent since they correspond to distinct eigenvalues (by [9]), and 
thereforeCa=0fori=1,...,M-1. 0 

Remark. We shall later make use of the independence of the vectors 

,Om(y1, IAi) 

M(YM-1A) i) i-. 

which follows from the proof of Lemma 6.1. 
We are now ready to state one of the three main results of this paper, which are 

Theorems 6.2-6.4. 

THEOREM 6.2. Let A be an eigenvalue of the problem 

ALN (X)$DNM (X, y, A) = D1 (Y)>NM (X, y, A), 

(6.8) for x xi = cos N X i = 0..., N-1, 

irj 
y= yj = Cos M j= 1, ..., M-1, 

(6.9) (DNM (-1, Y. A) = 0, 

(6.10) aA 4NM (X ?1X Y) = O0 

where LN(x), DMl)(y) are defined in (4.7) and (4.8), respectively. 
Then 

Re(A) < 0. 

Proof cINM(X, y, A) satisfies (6.10), so by Lemma 6.1 it may be represented in 
the form 

M-1 
(6.11) 4INM(X, y, A) = E ak (x A) k(Y) 

k=1 

where ak(x, A) are polynomials of degree N or less. Invoking (6.11) and (6.8), we 
find 

M-1 M-1 
A E LNak(x, A) k(Y) = Ej ak(x, A) I" (y) 

k=1 k=1 

M-1 

= EI Ilkak(x, A)'k(Y), 
k=1 

Wri 
forx=xi =cos-, i=0 .. ,N-1, 

y = yj = cos 7 j = 1,7... ., M-1. 
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Ik are the eigenvalues of (6.5)-(6.6). Hence, 
M-1 M-1 

E (ALNak (x, A) - Pkak(x, A)) ok(Y) =E dk(X)'o'k(Y) = 0, 
k=1 k=1 

for x= xi, y =y. 

Since the vectors 
'Ik(Y1) 

C k(YM-1) k=1,-i.,M-1 

are linearly independent (see the remark after Lemma 6.1), we have 

dk W) = 0 for x =xi, i = 0,. ..N ,\- 1, k = 1,. .. ,M -1. 

Hence, 

(6.12) ALNak(x, A) -ukak(xA) = 0, x = xi, i = 0, ... ,N-1, 

and by (6.9) 

(6.13) ak(-l, A) = 0. 

We shall prove that the eigenvalues of (6.12)-(6.13) have nonpositive real part. 
Consider the problem 

UN aOUN , x=xi, i=0, ... I N-1 at ax- 
UN(-lt) = 0. 

In [7] stability was proved for the above problem and therefore the eigenvalues v of 
the following problem 

(6.14) VUN(Xiv)+LNUN(XV) =0, x=xi, i=0,...,N-1, 

(6.15) UN(-1, V) = 0, 

have nonpositive real part. Returning to (6.12)-(6.13), we exclude the case A = 0, 
since this yields Pk = 0, and we have seen that the eigenvalues of (6.5)-(6.6) are 
negative. Hence 

Re -~k) < 0. 

Since /k is real and negative, Re(A) < 0. 0 

Numerical Evidence for Theorem 6.2. The eigenvalues Pk of (6.5)-(6.6) for M = 8 
were calculated and were found to be: 

-2.467, -9.870, -22.185, -40.526, -54.945, -201.604, -214.372. 

As proved in [9], they are real, distinct and negative. We now display 1/vj, where 

v, are the eigenvalues of (6.14)-(6.15) for N = 8: 

(-0.0312, ?0.114), (-0.083, ?0.148), (-0.165, ?0.124), (-0.220, ?0.048). 

They have nonpositive real parts. The eigenvalues of (6.8)-(6.10) were found nu- 
merically to be multiples of the above, i.e., Akl = -Pk/Il, and therefore have 
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nonpositive real parts. Similar results were found for the eigenvalues of (6.16)- 
(6.18). 

(b) The Spectrum and the Stability of the Spatial Operator of Scheme B. Approx- 
imating (6.1)-(6.4) by (4.13)-(4.15), we seek again solutions of the form 

eA 4)NM (XI Y) 

We shall prove that Re(A) < 0. Since Fourier analysis is used in y, we consider the 
region -00 < y < 00. 

THEOREM 6.3. Let A be an eigenvalue of the problem 

ALN(X)>TNM(X, y, A) = D2 (Y)4NM(x, y, A), 

for x = Xi = cos c , i = O0 ., N - 1, 
(6. 16) N 

Y = Y = SAY, -xN < j < X, 

2 

(6.17) (DNM(-1, Y. A) = 0, 

(6.18) 9)NM (x, ?h1, A) = 0. 
ay 

Then 
Re(A) < 0. 

Proof. By taking the Fourier Transform of (6.16) with respect to y we find 

(6.19) (a) ALNq(X, (, A) =-4 
si 

( 
2 Y 

0(x, E, A), 

at x =xi, i = OI. .. IN - 1, 

(6.19)(b) 0(-1, (, A) = 0, 

where q$(x, f, A) is the Fourier transform of 4'NM(X, y, A). We may carry on the 
proof as in Theorem 6.2. The only difference is that for (6.19) we have 

sin2 city 
-4 - 

(,Ay)2 

instead of Pk appearing in (6.12), and in the latter we used only the negative sign 
of pk. When C = 0, then A = 0, and therefore Re(A) < O. 0 

For scheme B we can prove stability as well. 

THEOREM 6.4. Consider the problem 

atN( = (2) (Y) 4,D a t 
'6.20) 7x=x=cos-, i=1, N 

N'1 
y = Y = jAy, -00 < j < 00, 

'6.21) 4(-1, Y. t) = 0. 
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Then 

(6.22) IIx (xYt)II < I I4x(x,y,0)II, 

where 

lf 112 = f f (1 X)f dxdy. 

Proof. By taking the Fourier transform of (6.20) with respect to y we find 

(6.23)at 
(,Ay) 2 

(6.23) ~~~~at x= xi, i = 1... IN - 1 

q Ox(-1, ,t t) = 0, 

where 0(x, (, t) is the Fourier transform of 4(x, y, t). 
Multiplying (6.23) by wi (1 - xi)qOx (xi, (, t) and summing over i = 1,... , N - 1, 

where the wi are defined in (5.4), we obtain 

E(j (- xi)wiIXx(Xi, i, t)2 = -4 (n E (1- _X)wlIo(X, C, t) . 
i=0 ~~~~~~~~i=O 

Since (1 - x) lq(x, C, t)12 is a polynomial of degree 2N - 2 in x, we may use the 
Gauss integration formula to obtain 

N ( - i a l Z~ ,,) 2 _ sin 2 A V|1 (l 1012 E E(i _ X,)w, ox(IqC(, ,t)I12 = 4 si2 & (Y X) dx. 

Integrating by parts and applying the Parseval equality, one obtains the desired 
result (6.22). 0 

7. The Two-Dimensional Heat Equation. The same technique for investi- 
gating the eigenvalues of an operator may be implemented for other two-dimensional 
equations, for example the heat equation: 

(7.1) Ut = UXX + uYYI 
(7.2) u(h1, y, t) = 0, 

(7.3) 
0U 

(xI it, 0 = 0, 

(7.4) u(x, y, 0) = uo(x, y). 

Conditions (7.2) may be replaced by ux (?h1, y, t) = 0, or more generally by 

a1U(1, y, t) + olux(l, y, t) = 0, 

-iiU(-1, y, t) + 6iuX(-1, y, t) = 0, 

as long as a,, /1h 11, 61 satisfy the conditions of the theorem proved in [9], i.e., 
(a) ce1,p1 1 > 0 and S1 <0, or 
(b) -Y1 > 0, 61 < 0, or 
(c) a = 0 or = 0. 

One may also replace (7.3) by more general conditions in a similar way. 
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THEOREM 7.1. The eigenvalues of the problem 

A4'NM(X, y, A) = DN (X)4NM(X, y, A) + DM) (Y)4NM(X, y, A), 
N 

(75) ~~for x xi= cos NXi i = 1 N........... ,-1, 

y =yj =Cosy j=1,...,M-1, 

(7.6) (DNM (1, y, A) = 0, 

a 
(7.7) - 4'NM(X, ?1, A) = 0, ay 
are real and negative. 

Proof. Expand 4'NM(X, y, A) as a sum of eigenfunctions of (6.5)-(6.6): 

M-1 

(7.8) ONM(X, y, A) = E ak(x, A)'Jk(Y). 
k=1 

Substituting (7.8) into (7.5) yields 

M-1 M-1 M-1 

> ak (x, A) Tk (Y) a" (x, A) T k (Y)' a(xA>I+,k(y), 
k=1 k=1 k=1 

for x= x= cos NKi 1 < i < N-1, 

y yj =COs < j < MM-1, 

where Pk are the eigenvalues of (6.5)-(6.6), which are real, distinct and negative 
by [9]. Since 

( 'k(Yl) 

k k(YM-1)J k=l,...,M-1 

are linearly independent, we have 

Aak(x, A) = a"(x, A) + Pkak(x, A) at x = xi, 1 < i < N-1, 

or 

(7.9) (A - Ik)ak(x, A) - a"(x, A) = (Ck + DkX)TN(X), 

(7-10) ak(?l, A) = 0, 

where (7.10) is a consequence of (7.6). 
Using the results in [9] and looking at the eigenvalue problem 

(7.11) vak(x, A) - a"(x, A) = (Ck + DkX)TN(X), 

(7.12) ak(?l, A) = 0, 

we conclude that the values of v are real and negative and that there are N - 1 
linearly independent eigenfunctions corresponding to (7.11)-(7.12). Hence, 

A - Pk = VI, 
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or 

Ak,1 = 1k + L1 < 0 

There are (N - 1) (M - 1) eigenvalues and the same number of linearly indepen- 
dent eigenfunctions of (7.5)-(7.7), and it is easy to see that the eigenfunctions are 
products of the one-dimensional eigenfunctions, i.e., 

,NM(k, y) =X Y BNM(XY = T k (Y) T1 W, 

where 'k(Y) is an eigenfunction of (6.5)-(6.6) and 4j(x) is an eigenfunction of 

(7. 1)-(7.12). 
For the two-dimensional heat equation, we may prove also stability of the Cheby- 

shev pseudospectral approximation. 

THEOREM 7.2. Consider the semidiscrete pseudospectral approximation (DNM 

for the two-dimensional heat equation, satisfying 

(9 
N M (X Y, t) = DN (X$)NM(X, Y, t) + Dj) (y$'NM((X Y, t), 

(7.13) at x = xi =cos 7N 1 < i < N-1, 

N 
Y =Yj =Cos N. 1 < j < M -1, 

(7.14) 4NM (?1, Y, t) = 0, 

(7.15) (DNM(Xi+?1t) = O0 

where 

D1)(x) = PNMf43 2PNM, DM)(y) = PNM PNM, 

and 
N M 

PNMU(X, Y) = E E aklTk()TI (Y), 
k=O 1=0 

aki being chosen such that 

PNMU(Xi, Yj) = u(xi, yj), O<i<N. O<j<M. 

Then 

Ij"DNM (Xi Y.t) | NM < |j |NM (X, Y. O) INM 

where 

2 N M 

11011NM = NM Z 0 (Xi, Yj, t). 
i=o j=0 

Proof. We multiply (7.13) by 4'NM(Xi,yjt) and sum over 1 < i < N - 1, 

1 < j < M - 1. Since (7.14)-(7.15) is valid, we may include the indexes i = 0, N, 



578 DALIA FISHELOV 

j = 0, M in the summation: 

r2 N M 

20At NM E E 2NM (Xi, yj, t) i=O j=O 

2 M N 92 

NM E E 2 4NM(Xi, Yj, t)4'NM(Xi, Yj) 
j=O i=O 

2 N M (92 
+ YM E E d-2NM(Xii Yj, t)>NM(Xi, yj t). + 

Mi=O j=O 
Y 

( (02/0X2 ) NM) 4'NM is a polynomial of degree 2N-2 in x, ((02 /0y2 )4'NM) (DNM 
is a polynomial of degree 2M - 2 in y, so by using the Gauss integration formula 

we have 

at lIl NMIINM M (02 /OX2 ) (NM (X, Y, t) >NM (X, Y, t) d 

(7.16)N 
N (,92/,y2)7NM,( Y, t) NM(X, Y, t) 

By [10, p. 82] the right-hand side of (7.16) is nonpositive, so that 

9 
||M112NM < ?. 

Integration with respect to t completes the proof. 51 

8. Conclusions. We have shown that one may apply spectral methods to 

the small disturbance equation of transonic flow. The two schemes presented for 

solving this equation numerically are spectral in x and either spectral in y as well, 
or second-order in y. 

The spatial operators of these schemes are proved to have eigenvalues with non- 

positive real parts. Moreover, stability is proved for one of them. Similar statements 

can be proved for other two-dimensional problems, such as the two-dimensional heat 

equation. 
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