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Abstract. A challenging problem in machine learning is handling miss-
ing data, also known as imputation. Simple imputation techniques com-
plete the missing data by the mean or the median values. A more sophis-
ticated approach is to use regression to predict the missing data from the
complete input columns. In case the dimension of the input data is high,
dimensionality reduction methods may be applied to compactly describe
the complete input. Then, a regression from the low-dimensional space
to the incomplete data column can be constructed from imputation. In
this work, we propose a two-step algorithm for data completion. The first
step utilizes a non-linear manifold learning technique, named diffusion
maps, for reducing the dimension of the data. This method faithfully
embeds complex data while preserving its geometric structure. The sec-
ond step is the Laplacian pyramids multi-scale method, which is applied
for regression. Laplacian pyramids construct kernels of decreasing scales
to capture finer modes of the data. Experimental results demonstrate
the efficiency of our approach on a publicly available dataset.

Keywords: Missing data · Dimensionality reduction · Diffusion maps ·
Laplacian pyramids

1 Introduction

A challenging problem in machine learning is preprocessing of the dataset that
involves data normalization, detection of input outliers and handling missing
data. This work focuses on completion of missing data, also known as imputa-
tion. There are several common ways to deal with this problem. Simple imputa-
tion techniques complete the missing data by replacing it with the mean or the
median value of the column. Another simple imputation approach is to replace
the missing values with a sample that is randomly selected from the same col-
umn [10,11]. A more sophisticated approach is to use a regression to predict
the missing data in specific column from the rest of the columns. In case the
dimension of the input data is high, it is reasonable to assume that the data
columns are correlated, thus the input matrix X resides in a low-dimensional
space. Therefore, a dimensionality reduction method can be applied to the set
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of full columns and the result may be used as the regression input to predict
the missing values in the other columns. Such an approach was suggested in
[1] for data imputation in road networks. UshaRani and Sammulal [17] apply
dimensionality reduction and clustering for completion of missing medical data.
Recently, Pierson and Yau [15] used a linear dimensionality reduction technique
to fill in zero-values of single-cell gene expression data.

Dimensionality reduction methods can be separated into feature selection
techniques, in which a subset of the columns is selected on the one hand, and
feature extraction methods that construct latent combinations of all of the input
columns on the other hand. Principal complainant analysis [14] is a common
linear dimensionality reduction method that constructs linear combinations of
the data columns while minimizing the reconstruction error. However, if the
high-dimensional data contains non-linear relations, then linear methods fail to
faithfully reduce the dimension of the dataset. Manifold learning methods that
include Local Linear Embedding [20], Laplacian Eigenmaps [2,3] and Diffusion
Maps [5], aim to reveal the intrinsic parameters that drive the data. These intrin-
sic modes parameterize the data in a low dimension space while preserving some
properties of interest. In this work, diffusion maps are utilized for dimension-
ally reduction. There, the data is compactly re-organized data according to a
diffusion distance metric that is defined by a random walk on the points in the
ambient space. In the embedding space, the diffusion distance is the Euclidean
distance between the embedded data points, thus the embedding is distance
preserving.

Once the dimension of the data is reduced, several methods may be applied
for imputations. Linear regression is a simple choice, but it relies on the assump-
tion that there is a linear relationship between the function and the data. Regres-
sion using a k nearest neighbors is another simple regression approach, the draw-
back is that in case different columns need to be imputed, an optimal value for
k should be set according to the smoothness of column’s data. In this paper, we
propose to use Laplcain pyramids for regression from the low-dimensional space
to the column with the missing data. The Laplacian pyramids method was pro-
posed in [19] and improved by adding an automatic stopping criteria in [7,9].
The method was applied in [6] for reconstruction data points in the ambient
space, in [22] for analog forecasting and in [8] for meteorological data analysis.
Here, we emphasize the advantage of this method to automatically stop at a
suitable scale that fits the data, without manually tuning the scale parameters.
This property is important when running many consecutive regressions for data
completion.

2 Mathematical Background

This section describes the two central mathematical tools that are proposed for
imputation. First, we review the diffusion maps framework, then the Lalpacian
pyramids method is explained.
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2.1 Diffusion Maps

Let X = {x1, . . . , xN} be a set of data points in R
m, hence xi of size 1 × m is

the i-th row of X. In order to construct a low-dimensional representation of X,
a graph G = (X,W) is built. The kernel W, defined by W = (w(xi, xj))N×N ,
contains the weights of the graph edges. We assume that the kernel is

– symmetric;
– positive preserving: w (xi, xj) ≥ 0 for all xi, xj ∈ X;
– positive semi-definite: for all real-valued bounded function f defined on X,∑

i

∑
j w (xi, xj) f(xi)f(xj) ≥ 0.

Diffusion Kernels. Typically, kernels of the form Wε =
(
h

(−‖xi−xj‖2

2ε

))

are chosen since they are directionally independent. Here ε defines the width of
the kernel. A common choice is the Gaussian kernel Wε = (wε(xi, xj)), where

wε(xi, xj) = e
−‖xi−xj‖2

2ε . The scale parameter ε can be defined (see [21]) by

ε = median{dij}, (1)

where D = (di,j)N×N is the matrix of pairwise Euclidean distances of the set X.
A general normalized form of the kernel, having a parameter α which controls

the normalization type, was introduced in [5]. It is given by

w(α)
ε (xi, xj) =

wε(xi, xj)
qα(xi)qα(xj)

, q(xi) =
∑

j

wε(xi, xj). (2)

Then, a Markov transition matrix is defined by

P(α) =
(
p(α)(xi, xj)

)
, where p(α)(xi, xj) =

w
(α)
ε (xi, xj)

∑
j w

(α)
ε (xi, xj)

(3)

Three values of α that are commonly in use are α = 0, 1, 0.5. When ε → 0,
Pα approximates the following operators:

1. α = 0: the classical graph Laplacian [4];
2. α = 1: the Laplace-Beltrami operator [5];
3. α = 1

2 : the diffussion of the Foller-Planck equation [12].

In this paper α was set to be 1, denoting P(α=1) as P.

Spectral Decomposition. The construction of the low-dimensional data rep-
resentation involves the eigendecomposition of P. This is computed by

p(xi, xj) =
∑

k≥0

λkψk(xi)φk(xj). (4)
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Here {λk}N−1
k=0 are the eigenvalues of P and {φk}N−1

k=0 , {ψk}N−1
k=0 are the cor-

responding left and right eigenvectors. We note that P is similar to a symmet-
ric matrix A, i.e., A = D

1
2 PD− 1

2 , where D is a diagonal matrix with values∑
j wα

ε (xi, xj) on its diagonal. Thus, P and A share the same set of eigenvalues.
The spectral decomposition of the matrix A = (a(xi, xj)) is given by

a(xi, xj) =
∑

k≥0

λkvk(xi)vk(xj). (5)

Since A is symmetric the set eigenvalues {λk}N−1
k=0 are real and the set of eigen-

vectors {vk}N−1
k=0 are orthogonal. The left and the right eigenvectors of P are

related to {vk}N−1
k=0 by

ψk = D− 1
2 vk, φk = D

1
2 vk. (6)

The orthonormality of {vk} yields the biorthonormality of {φk} and {ψk}.
This property is used for defining a metric on the data. In addition, since the
eigenvalues decay fast to zero, the sum in Eq. (4) can be approximated by a
small number of leading terms. These terms are used to define the diffusion
maps embedding

Ψ(xi) = (λ1ψ1(xi), λ2ψ2(xi), λ3ψ3(xi), · · · ) . (7)

Diffusion Distances. This embedding (Eq. (7)) results in a compact represen-
tation of the data, in which the distances between the data points are determined
by the geometric structure of the data. Following the definitions in [5,13], the
diffusion distance between two data points xi and xj is the weighted L2 distance

D2(xi, xj) =
∑

xl∈X

(p(xi, xl) − p(xl, xj))
2

φ0(xl)
, (8)

where the value of 1
φ0(xi)

depends on the point’s density. In this metric, two data
points are close to each other if they are connected by many paths. Substituting
Eq. (4) in Eq. (8) and using the biorthogonality properties, we obtain that the
diffusion distance is expressed by

D2(xi, xj) =
∑

k≥1

λk(ψk(xi) − ψk(xj))2. (9)

In these new set of diffusion maps coordinates, the Euclidean distance between
two points in the embedded space represents the distances between the points
as defined by a random walk.

2.2 The Laplacian Pyramid

The Laplacian pyramid is a multi-scale algorithm for approximating and extend-
ing an empirical function f , which is defined on a dataset Z = {z0, z1, . . . , zn},
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to new data points. In this algorithm, Gaussian kernels with descending widths
are applied on the points in Z to construct a multi-resolution approximation
of f . Then, this approximation can be extended to evaluate f for new points
{z̄}. An initial Gaussian kernel, having a relatively large scale σ0, is defined on
Z by G0 = (g0(zi, zj)) where

g0(zi, zj) = e
−‖zi−zj‖2

σ0 , zi, zj ∈ Z. (10)

Normalizing G0 results in a smoothing operator K0 = (k0(zi, zj)), where

k0(zi, zj) = q−1
0 (zi)g0(zi, zj), where q0(zi) =

∑

j

g0(zi, zj). (11)

At a finer scale l, the Gaussian kernel Gl = (gl(zi, zj)) is defined by

gl(zi, zj) = e−‖(zi−zj)‖2/(
σ0
2l ), l = 1, 2, 3, . . . (12)

Normalization of Gl yields the smoothing operator Kl = (kl(zi, zj)), where

kl(zi, zj) = q−1
l (zi)gl(zi, zj), ql(zi) =

∑

j

gl(zi, zj), l = 1, 2, 3, . . . (13)

The Laplacian Pyramid representation of f is iteratively defined as follows. For
the first level l = 0, a smooth approximation of f is

f0(zk) =
n∑

i=1

k0(zk, zi)f(zi), k = 1, . . . , n, zi, zk ∈ Z. (14)

Let
d1(zi) = f(zi) − f0(zi), i = 1, 2, . . . , n zi ∈ Z,

then a finer representation of f is

f1(zk) = f0(zk) +
n∑

i=1

k1(zk, zi)d1(zi), k = 1, . . . , n.

In general, for l = 1, 2, 3 . . .,

dl(zi) = f(zi) − fl−1(zi), i = 1, . . . , n, (15)

fl(zk) = fl−1(zk) +
n∑

i=1

kl(zk, zi)dl(zi), k = 1, . . . , n, (16)

where f0 is defined in Eq. (14). Equation (16) approximates a given function f
by the series of functions {f0, f1, f2, . . .} in a multi-scale manner, going from
a coarser to a finer representation. The functions {f0, f1, f2, . . .} can be easily
extended to a new point z̄ in the following way.

f0(z̄) =
n∑

i=1

k0(z̄, zi)f(zi) for l = 0 (17)
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fl(z̄) = fl−1(z̄) +
n∑

i=1

kl(z̄, zi)dl(zi) for l = 1, 2, 3, . . . , (18)

where dl(zi) is defined in Eq. (15).
The following example (taken from [6]) demonstrates the multi-scale approx-

imation of the function

f(x) =

⎧
⎨

⎩

−0.02(x − 4π)2 + sin(x) 0 ≤ x ≤ 4π
−0.02(x − 4π)2 + sin(x) + 1

2sin(3x) 4π < x ≤ 7.5π
−0.02(x − 4π)2 + sin(x) + 1

2sin(3x) + 1
4sin(9x) 7.5π < x ≤ 10π

(19)

Fig. 1. Approximations of the function f that was defined in Eq. (19) for scales l =
3, 5, 8, 11 going from left to right. The function is plotted in blue in each of the top
images, approximations fl in black and the corresponding residuals dl on the bottom
row in red. (Color figure online)

Stopping Criteria and the Auto-adaptive Laplacian Pyramids. The
Laplacian Pyramids iterations may be stopped by setting an admissible error to
a small threshold err, for example by requiring ‖f − fl‖ < err . When err is too
large, then the iterations stop at a coarse scale, thus the approximation does not
capture finer structures of the function f . If err is too small, then in finer scales
a point may have few or no neighbors, thus over-fitting may occur. The auto-
adaptive Laplacian Pyramids, which were introduced in [7,9], slightly modify
the kernels constructed in Eqs. (10) and (12). This prevents over-fitting and
provides a criteria for selecting a proper stopping scale l. The main modification
is to replace the kernels Gl = (gl(zi, zj)) by G̃l, which are defined by

G̃l(zi, zj) =
{

Gl(zi, zj) i �= j
0 i = j.

(20)

These yield the normalized operators k̃l(zi, zj) = q̃−1
l (zi)g̃l(zi, zj), where

q̃l(zi) =
∑

j g̃l(zi, zj) and the iterative construction

f0(zk) =
n∑

i=1

k̃0(zk, zi)f(zi) for level l = 0 (21)

fl(zk) = fl−1(zk) +
n∑

i=1

k̃l(zk, zi)dl(zi) for l = 1, 2, . . . . (22)

Extension to new points is done in a similar manner, z̄ replaces zk in Eqs. (21)
and (22).
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By using the above modification, the pyramids are constructed using a Leave-
one-out-cross-validation that is inherent in the algorithm, as each train point
in Z is treated as test point. The approximation of f at zi is built without
using the value of the point itself, the contribution is only from z′

is neighboring
points. This modification makes the procedure more robust in the presence of
noise. The stopping scale l is determined by computing the mean square error
errl = ‖f − fl‖ at each level and choosing the stopping scale l as the minimum
value of the vector errl. To conclude, this procedure is equivalent to running the
Laplacian Pyramids algorithm in a Leave one out cross validation manner and
choosing the scale where the error is minimal.

3 Imputation via Diffusion Maps and Adaptive Laplacian
Pyramids

This section describes how diffusion maps and Laplacian pyramids are used for
completing values of missing data. Let X be the input data matrix of size N ×m.
For example, in a medical application N represents the number of patients and
m is the number of medical results for each patient. For simplicity, we assume
that missing data occurs in a single column X(j) of the input matrix X, and
that the other columns {X(k)}k �= j are complete. Thus, one can regress X(j)

using {X(k)}k �= j or its corresponding low-dimensional representation.
Figure 2 provides an illustrative description of our approach. The input

matrix {X(k)}k �= j is given on the left of the figure in black. It is of dimen-
sion N × (m − 1). The blue column next to it, X(j), is of dimension N × 1. Its
red circles represent missing data while the blue line markers represent complete
values. In accordance, the black lines in the matrix {X(k)}k �= j indicate rows that
have a value in X(j), while the red lines correspond to rows with missing data in
X(j). In the center of the figure, the diffusion maps representation of the matrix
{X(k)}k �= j is plotted. Here, the black and red circles represent the embedding of
black and red lines of the matrix {X(k)}k �= j , accordingly. On the right side of the
figure, the column X(j) is plotted as a function that is defined on the embedded
points. Laplacian pyramids are constructed using the low-dimensional model on
the right.

The proposed algorithm consist of the following three steps, a pre-processing
step (Step 0) is also described.

Step 0: Preprocessing.

– For the simplicity of notations, sort the N points in X so that the first n,
n < N points are those that have a value in X(j) and the following N − n
points have missing values in X(j).

– In order to apply diffusion maps, the column of the input data matrix
{X(k)}k �= j should be of a comparable scale. Otherwise, if columns with large
values dominate the pairwise distanced that are constructed in the kernel (see
Sect. 2.1). A simple scale normalization can be performed by subtracting the
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Fig. 2. Illustrative description of the proposed algorithm.

mean and dividing by the variance of each column. Another simple approach
is to divide each column by it norm. A more sophisticated approach, which
is based on diffusion kernels, was proposed in [18,19]. For the next step, we
assume {X(k)}k �= j holds columns of comparable scales.

Step 1: Reduce the dimension of the set {X(k)}k �= j containing N rows and m
columns via diffusion maps.

1. Construct a kernel

Wε = wε(xi, xj)) = e
−‖xi−xj‖2

2ε .

The scale parameter ε can be computed as explained in Sect. 2.1. This
results in an N × N symmetric matrix.

2. Use the Laplace-Bletrami normalization (see Sect. 2.1) and build

W(1)
ε = w(1)

ε (xi, xj) =
wε(xi, xj)
q(xi)q(xj)

, q(xi) =
∑

j

wε(xi, xj).

3. Apply a row-normalization and obtain the Markov matrix

P = p(xi, xj) =
w1

ε (xi, xj)∑
j w1

ε (xi, xj)
.

4. Compute the spectral decomposition of P,

P = p(xi, xj) =
∑

k≥0

λkψk(xi)φk(xj).

5. Use the first d << N leading diffusion coordinates

Ψ(xi) = (λ1ψ1(xi), . . . , λdψd(xi)) .

to embed {X(k)}k �= j in a d-dimensional space.
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Step 2: Set f = X(j) and approximate from the corresponding points in the
low-dimensional space.

1. Collect the subset of points from the embedding space that have a value
in f . Denote these n point (n < N) by Z = {Ψ(xi)}n

i=1, where xi are
points for which f(xi) = X(j)(i) is known.

2. Collect the subset of points from the embedding space that have a missing
value in f . Denote these N −n points X̄ = {Ψ(xi)}N

i=N−n+1, xi are points
for which X(j)(i) needs to be imputed.

3. Compute the auto-adaptive Laplacian pyramids for the function f = X(j)

using the points in Z by

f0(zk) =
n∑

i=1

k̃0(zk, zi)f(zi) for l = 0

fl(zk) = fl−1(zk) +
n∑

i=1

k̃l(zk, zi)dl(zi) for l = 1, 2, . . .

4. In each level store the error errl = ‖f − fl‖.
5. Set the final (stopping) level l̃ to be l̃ = min(errl).

Step 3: For each point z̄ ∈ Z̄, impute its value f(z̄), where f = X(j) by

f0(z̄) =
n∑

i=1

k̃0(z̄, zi)f(zi) for l = 0

fl(z̄) = fl−1(z̄) +
n∑

i=1

k̃l(z̄, zi)dl(zi) for l = 1, 2, . . . , l̃.

Set the missing values f(z̄) to be fl(z̄).

4 Experimental Results

The application of the proposed algorithm is demonstrated on a mice protein
expression dataset, taken from the UCI repository [16]. The data set consists
of the expression levels of 77 proteins that produced detectable signals in the
nuclear fraction of cortex. These types of biological datasets, including the above
dataset, often have missing values. From this dataset, we select a subset of
N = 1000 rows and m = 66 columns, which do not contain missing data. Assum-
ing now that some data is missing in a particular column, then diffusion maps
followed by Laplacian pyramids (see Sect. 3) is applied for imputation. We mea-
sure the efficiently of the proposed algorithm by calculating the mean and maxi-
mum errors. We compare our results to linear regression and K-nearest neighbors
techniques. The evaluation is carried out using a 5-fold cross validation.

Let {X(k)}k �=10 be the full dataset and X(10) be a column with missing data.
First, the data set {X(k)}k �=10 is pre-processed according to Step 0 in Sect. 3
by substraction of the mean and division by the standard deviation of each



Missing Data Completion Using Diffusion Maps and Laplacian Pyramids 293

Fig. 3. Diffusion maps embedding of the set {X(k)}k �=10. Points with known values in
X(10) are colored blue and points with missing values in X(10) are colored red. (Color
figure online)

Fig. 4. Diffusion maps embedding of the set {X(k)}k �=10 colored by the values of
f = X(10).

column. Next, diffusion maps is applied to the set {X(k)}k �=10 and embedded
in a 3-dimensional space. The values of X(10) are known for n = 800 points
and unknown for the remaining N − n = 200 points. Figure 3 presents the 3-
dimensional embedding of {X(k)}k �=10. The 800 points for which the values of
X(10) are known are colored in blue where as the 200 points that have missing
values in X(10) are colored in red. Coloring the embedding by the values of the
function f = X(10), we can induce from Fig. 4 that the function is smooth on
the embedded data.

Next, the adaptive Laplacian pyramids are constructed with n = 800 known
values. The stopping level l̃ for the Laplacian pyramids is set to be the itera-
tion having the minimum error (as explained in Sect. 2.2). Figure 5 displays the
values of errl as computed for each iteration of the Laplacian pyramids; the
minimum is reached for l = 14. This is the stopping scale used for extending
the pyramids (see Step 3 in Sect. 3). Last, the N − n = 200 missing values
are imputed with Laplacian pyramids and compared to linear regression and
k-nearest neighbors. All three methods rely on the embedded data instead of
the original high-dimensional space. Figure 6 displays the approximated values
as imputed by the Laplacian pyramids (in blue), linear regression (in green) and
k-nn with k = 7 (in yellow). The error bars as computed from a 5-fold cross
validation are presented in Fig. 7. We plot the mean square error in the left
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Fig. 5. Approximation errors for each scale l in the Laplacian pyramid construction.
The stopping scale is set to be the level l̃ with the minimal error, here l̃ = 14.

Fig. 6. Imputation of f = X(10) (the missing values are sorted) using the adaptive
Laplacian pyramids (blue), linear regression (green) and k-nn, k = 7 (yellow). The
true values are in black. (Color figure online)

Fig. 7. Mean squared error (left) and maximum error (right) for the 5-fold cross vali-
dation imputation of f = X(10).

chart and the maximum error in the right chart. It can be seen that the linear
regression results with the largest error and that the pyramids based imputation
yields the smallest errors.
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Fig. 8. Diffusion maps embedding of the set {X(k)}k �=48 colored by the values of
f = X(48).

Fig. 9. Imputation of f = X(48) (the missing values are sorted) using the adaptive
Laplacian pyramids (blue), linear regression (green) and k-nn, k = 7 (yellow). The
true values are in black. (Color figure online)

Fig. 10. Mean squared error (left) and maximum error (right) for the 5-fold cross
validation imputation of f = X(48).

We repeat the above example for another column X(48). As before, the set
{X(k)}k �=48 is embedded into a 3-dimensional space. The function f = X(48)

is not as smooth as X(10), this is displayed in Fig. 8, where the diffusion maps
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embedding is colored by f = X(48). Figure 9 plots the imputation results for the
missing values (sorted) as evaluated by the adaptive Laplacian pyramids, linear
regression and k-nn with k = 7. The means square errors and the maximum
errors are presented in Fig. 10. The pyramids approximations maintain small
mean and max errors throughout all of the 5 folds.

5 Conclusions

In this paper, a two-step method was presented for data completion, which is
suitable for high dimensional data. The proposed algorithm uses diffusion maps
for reducing the dimension of the training samples with complete data in the
first step. Next, a regression process is carried out in order to evaluate missing
values from a particular column. The regression analysis is done with a multi-
scale method named adaptive Laplacian pyramids that learns the suitable scale
for regression. The method is not sensitive to the choice of parameters. Since in
such imputation problems, regression is applied many times for filling in data
from different columns, such properties are important. Experimental results show
the advantages of the proposed method compared to linear regression and local
k-nearest neighbors regression.
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