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The purpose of this paper is to suggest a new way to discretize the viscous ?erm of the 
Navier-Stokes equations, when they are approximated by a vortex method. The idea is to 
approximate the vorticity by convolving it with a cutoff function. We then explicitly differen- 
tiate the cutoff function to approximate the second-order spatial derivatives in the viscous 
term. We prove stability for the heat equation and give error estimates for the heat and the 
Navier-Stokes equations. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Vortex methods are numerical methods for the stimulation of i~corn~ress~b~~ 
flows. These methods follow particle trajectories, along which vorticity is trac 
Vortex methods are used to approximate the Euler’s equations as we41 as 
Navier-Stokes equations. Chorin [8] introduced a blob-vortex method for the 
dimensional Euler’s equations. The idea of introducing blobs was to smooth the 
singular kernel, which connects velocity and vorticity for incompressible flows. For 
the two-dimensional Euler’s equation vorticity is a material quantity, and therefore 
only particle locations are updated. Chorin extended this method to three-d~~e~~ 
.onal flows [7] using filaments, along which circulation is preserved. Later on, 
eale and Majda [3,4] and Anderson [ i] extended the two-dime~sionai blobs to 

three-dimensional ones. While Beale and Majda suggested ap~rox~mati~g tiaE 
derivatives in Lagrangian coordinates by finite differencing, Anderson ex itly 
differentiates the smoothed kernel in Euleran coordinates to approximate tial 
derivatives. This scheme was tested numerically [114] and was proved to be stable 
and convergent [2,5]. 

Charm [7-9] and Leonard [20,21] extended vortex methods to t 
Navier-Stokes equations in different ways. Le ard suggested changing the core of 
the blobs to exactly satisfy the heat equation. owever, it was proven in [17] that 
the core spreading technique approximates the wrong equation, rather than the 
Navier-Stokes equation. Chorin approximates the heat equation in the stat~st~~~~ 
sense via a random walk algorithm. Every time step each particle takes a 
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Gaussianly distributed step. This process was proved [18] to converge to the heat 
equation, though without high accuracy. The error in the L2 norm decays as ,-ri2, 
where n is the number of particles. The convergence of the random vortex methods 
was recently established by Long [22] and Goodman [16]. The error from the 
viscous term was bounded in [22] by h(m) jln h(, where h is the initial spacing 
and 6 is a cutoff parameter. The purpose of this paper is to represent a scheme 
which approximates the viscous term with high accuracy. 

In order to gain high-order accuracy for the viscous term we have to accurately 
approximate the Laplacian of the vorticity. The idea is to convolve the vorticity 
with a cutoff function and then approximate the second-order derivatives of the 
Laplacian operator by explicit differentiation of the cutoff function. In fact, other 
numerical methods, such as spectral and finite elements methods, can be represen- 
ted in the same way (see [15].) The numerical method is therefore determined by 
the choice of the cutoff function and the numerical approximation of the integrals 
involved in the convolution. The only distinction of the method represented here 
from other numerical approximations is the dependence of the grid on time. In 
vortex methods the grid is moving with the particles and one needs to accurately 
approximate spatial derivatives on a time-dependent grid. For this purpose we 
made use of the incompressibility of the flow to approximate integrals. It was there- 
fore possible to retain the accuracy of the integration formula, applied initially on 
a uniform grid. This scheme is simple to apply, retains the grid-free features of 
vortex methods, and is a natural extension of the non-viscous schemes. We prove 
the stability for the heat equation and the consistency for the heat and the 
Navier-Stokes equations and give error estimates. The truncation error is deter- 
mined by the order of the cutoff function. One may choose the cutoff function, such 
that arbitrary order of convergence is obtained. We applied the scheme to the 
Navier-Stokes equations, once with non-smooth initial conditions and once with 
periodic initial conditions. The numerical results demonstrate the accuracy of the 
scheme, even for a relatively coarse initial grid. 

Another deterministic method for the simulation of the convective diffusion equa- 
tions by particle methods was proposed in [ll]. This was done by replacing the 
diffusion operator by an integral one, and in this sense there is a similarity between 
the method represented in [ 1 l] and the one proposed here. It seems, though, that 
the approach represented here is less complicated and is easier to apply and 
analyze. Stability was proven in [ll] for a positive kernel. It is well known that 
high-order kernels cannot be positive everywhere. For the stability of the scheme 
for the heat equation we require that the Fourier transform of the cutoff function 
be non-negative. This can be achieved even for an infinite-order cutoff function. 

The paper is organized as follows. In Section 2 the new scheme is represented and 
in Sections 3 and 4 we prove the stability and the consistency of the scheme and 
give error estimates. In Section 5 we compare the core-spreading scheme with our 
scheme and in Section 6 we represent numerical results. 
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2. A NEW SCHEME FOR VISCOUS FLOWS 

The object of this paper is to give a high-order numerical app 
Navier-Stokes equations, using a vortex method. The Navier 
formulated for the vorticity 5 are given 

a,~+(U.V)5-(4.V)u=R--‘d~, 

div u = 0. 

where 5 = curl u, u = (u, v, w) is the velocity vector, and A = V2 is the La 
operator. R = ULjv is the Reynolds number, where U and E are typical velocity and 
length, respectively, and v is the viscosity. We follow the characteristic iines 

along which the vorticity evolution is given by 

$=(C’.V)uWA(. (2.2) 

Fn addition, the following relation between velocity and vorticity holds for incom- 
pressible flow [IO]. 

u(x, t) = j” K(x - x’) 5(x’, t) dx’. (2.3) 

rif we substitute (2.3) in (2.1), we get the system of ordinary differential equations, 

dx 
dt= 

s 
K(x - x’) <(x’, t) dx’, 

& --$=(5.V)u+R-‘d& 

(2.4) 

We set an initial uniform grid xi(O), j = 1, . . . . n with spacing hl, h,, h, for a three- 
dimensional problem and h,, h, for a two-dimensional one. For s~~~~~~it~, 
we assume h, =h2= h3 = h. We approximate the initial vorticity by th(x, 0) = 
xJtl 6(x-x,)$, h w ere rcP = hNt(xj, 0). Here iV= 2, 3 is the dimension of the 
problem. Let x;(t), t;(t) be the approximate particle locations and the a 
vorticity respectively at time t, then Eq. (2.4) is discretized by (see 17, 81) 

F= i &(x;(t)-x;(t)) t;(t) hN. 
/=I 

ere we approximate the singular kernel K(x) by a smoothed one K&(X), where 
K6 = 4, *‘K and db(x) = ( l/aN) 4(x/6). The function b(x) is called a cutoff function. 



214 DALIA FISHELOV 

The object now is to approximate the spatial derivatives appearing in (2.5). One 
of the terms in which spatial derivatives appear is 4 . Vu. This term is called the 
stretching term and vanishes in the two-dimensional case. For a three-dimensional 
problem we approximate the stretching term by explicit approximation of the 
smoothed kernel, as suggested in [l]. More explicitly, we approximate this term by 

Here V,K, is an explicit differentiation of the smoothed kernel in Euleran coor- 
dinates. 

We now represent the approximation for the viscous term R-’ At. The idea is to 
approximate the vorticity by convolving it with a cutoff function, therefore 5 is 
approximated by db * 5. We then derive an approximation to the Laplacian of the 
vorticity by differentiating this convolution, i.e., by .4(ba * t) = Ad, * 5. Finally, we 
approximate the integrals involved in the convolution by the trapezoid rule and 
obtain 

dxf(t) n 
(2.6) 

+ R-’ i &,(x:(t) - x;(t)) t;(t) hN. (2.7) 
j=l 

This yields a scheme which is similar in nature to that applied for the Euler’s 
equations. 

It is also possible to construct a similar scheme if one wishes to apply time- 
splitting to the Navier-Stokes equations. In this case, one may split the Navier- 
Stokes equations to the Euler and the heat equations. The approximation for the 
Euler equations is therefore 

q= i K,(x;(t)-x;(t)) $(t)hN 
j=l 

@h(t) 
I= 4:(t). jil Yd%(x:(f) -x;(t)) 5;(t) AN, 

dt 

633 1 

and the approximation for the heat equation is 

-= R-’ f d&(x:(t)-x;(t)) <jh(t)h”‘. 
at;(t) 

at j=l 
(2.9) 
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3. STABILITY 

We shall prove stability for the heat equation in two and three dimensions. For 
simplicity, we consider the continuous version of (2.9). The discrete one (2.9) may 
be treated in a similar way, using discrete Fourier transforms rather tha 
continuous ones. Therefore, in our proof we shall consider the case, in whi 
approximation for the Laplacian is given by the convolution Ad * lh, instead of the 
trapezoid sum. Consider 

am6 t) 
-= R-’ A#s(x) * <“(x, t), at (3.1) 

Let us define for p E [ 1, 00) and m >, 0 the Sobolev spaces 

wm2p= {f, ayELP( (al en> 

and by /I . jl m, p the norm 

llf llm,p = 
( 

and for p = cc the usual modification. 

STABILITY THEOREM. Let I$ E W2a ‘(RN) and let the Fourier transform of the cutoff 
function be non-negative, 

J(s) 3 0: (3.2) 

then (3.1) is stable, i.e., 

j (Th(x, t))’ dx < 1 (th(x, 0))2 dx. 

1Dro0J Taking the Fourier transform of (3.1) yields 

g (s, t) = -R-‘(s .s) q?,(s) 4”(s, t). 

Multiplying the last equality by the complex conjugate of gh(s, t) and i~teg~at~~~ 
over s yields 

;j If”@, t)l* ds= -R-l j (s+)$(&) jp(s> t>j2 ds. (3.3) 

Mere we also used the relation d,(s) = &as). The right-hand side of (3.3) is 
non-positive by (3.2), therefore if we apply the parseval equality, we find that 

j (th(x, t))* dx d j (th(x> 0))’ dx. 
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We list several examples for which condition (3.2) is satisfied. In all of them, 
except Example 5, the cutoff function is radially symmetric. 

EXAMPLE 1. Second-order cutoff function 4(r) = (l/n) eer2 suggested by Beale 
and Majda [4]. To calculate the Fourier transform, we use polar coordinates and 
the identity [25, 191 [F eirrsin) C@ = 271J0(rt). We also use the following property of 
Bessel functions [25, p. 3931. 

Jo(w) rep &= d,. = mm!- e - &4P2 

2p2 ’ 

where Jo(s) is a Bessel function of order zero. We therefore find that the Fourier 
transform of 4 is 

E(s) = 2 6 Jo(m) reer2 dr = e-s2’4. 

It is clear that with this cutoff function the method is stable. 

EXAMPLE 2. Fourth-order cutoff function [4] b(r) = (1/2x)[4e-‘* - e-rZj2]. In 
this case 

&cs) =2e-“2/4_e-“2/2=e-“2/4[2-e-“2/4] 20. 

We used this cutoff function in our numerical experiments. 

EXAMPLE 3. Hald’s infinite-order cutoff function [19], 

The Fourier transform is 

i 

1, O<s<l 
J(s)= 4-s*, 1 <s<2 

0, s 3 2. 

EXAMPLE 4. Another example of Hald’s infinite-order cutoff function [19]. 

d(r)=& [ 16J3(4r) -‘lOJ,(2r) + J3(r)]. 

1, O<S<l 

&s) = 

1 

44 + 2s2 - s4, l<s62 
256 - 32s2 + s2, 2~~64 
0, s B 4. 

This function is non-negative for all s. 



ANEWVORTEXSCHEME 217 

EXAMPLE 5. For a periodic problem one may use a spectrally accurate cutoff 
function [IS]. This function is not radially symmetric, 

1 
db, Y) = g--# 

i 

P P 

1+ 2 c ax kc 1 + 2 c CQS ly 
k=l I=1 

In this case &k, I) = 1, for k, 1= 0, + 1, . ..) -i-p, and otherwise d(s) = 0. 

e turn now to the question of the accuracy of the scheme. 

4. CONSISTENCY 

CONSISTENCY THEOREM. Let the cutoff function q5 satisfy the c~~d~tio~§ 

Let xj, j= 1, . . . . n be uniformly distributed grid points in N. Theta, there exists a 
constapZt C such that 

BrooJ: We write the truncation error in (2.9) as a sum of the regu~ar~za~~o~ 
error and the discretization one, 

j=l 

where 

ed= Aq5, * 5 - i Aq5Jx - xi) t.ihN. 
j=l 

We approximate the regularization error by expanding its Fourier transform in 
Taylor series [I, 23, p. 2671. This yields 

Therefore, we find that 
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This yields 

lldl0,2 d C~dlltlld+2,2. (4.3) 

The discretization error originates from the replacement of the integral in the 
convolution by the trapezoidal rule. It was proven in [23, p. 2621 that if 
gE P1(RN) n Wm-l~l(R”‘) for m > 3, then 

II 
gdx- i &j)hN dCh”llgllm,l. 

j=l 

Therefore, if [E w”,* n PVP1,‘(RN) for m > 3, then 

iiedii2 < ch" 1 IId”& * @Cll*. 
ial+lBlcm 

We also apply the inequality 

IV* gll26 llflll llg112~ 

which was proven in [23, p. 2671, and find 

IId”@, * @~llz G ll~“~4,llI lI~~5112. 

(4.4) 

Since ~~~6~~m+2,1 < CF(m+2) (see [23, p. 275]), we find 

Combining (4.3) and (4.5) yields the desired result. 

CONSISTENCY THEOREM FOR NAVIER-STOKES EQUATIONS. Let the cutofffunc- 
tion 4 satisfy the following conditions, 

#E WM+*,‘(RN), m> 1, (4.6) 

I R”cm)~=l~ j RN xv(x) dx = 0, (~1 d d- 1, s RN Ixldq3(x) dx < co. (4.7) 

Let xj(0), j = 1, . . . . n, be uniformly distributed grid points in RN. Then, there exists a 
constant C such that 

A5: - i Addx - xi) tjhN 
j=l 

lI~tll0,2= K* 5- i Ka(X-Xj) 5ihN 
Ii j=l 
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Proof. The proof is similar to the one for the heat equation. The only d~ffere~cc 
is the approximation of the truncation error vt for the locations of the particles. 
This is a standard estimate in vortex methods and need not be repeated here (see; 
for example, [ 1, 31). 

5. CORE SPREADING VERSUS THE NEW ALGORITHM 

We reproduce the argument of Greengard [17] to demonstrate the di 
between the core spreading technique and the new algorithm. We shall dis 
two-dimensional case with R = 1. The core spreading changes the shape of each 
vortex core 4(x, t) at time t. Thus, 4(x, t)= G(x, t) * Q(x, 0) where G(x, 
(47-U-’ e -‘x/2’2r is the heat kernel. It was proven in [17] that the core sprea 
algorithm approximates 

z= -G(x, t)* (u.V$)+A[, 

where $ is the transport of the initial weights Qx, O)hN. 
On the other hand, our algorithm approximates 

dx 
x = s K(x - x’) [(x’) dx’, 

which is equivalent to 

at y$= -(II .V)( +A& 

Therefore, one can see that the difference between the core spreading algorithm and 
our scheme is the equation the vorticity approximates. In the core spreading 
algorithm the vorticity approximates the wrong equation, rather than the Navier- 
tokes equation. Thus, vorticity is correctly diffuse but incorrectly convected. 

6. NUMERICAL RESULTS 

We show numerical results for two test problems. The first one is the two-di 
sional Navier-Stokes equation with non-smooth initial vorticity. 
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This problem was tested numerically by Roberts [24], using a random walk 
algorithm. We represent numerical results for this problem and compare them to 
the random walk results. In [24] several Reynolds number were tested for the 
Navier-Stokes equations. The range was R = 1250,5000, 20,000, 80,000. The 
scheme was more sensitive to lower Reynolds number, therefore we show numerical 
results for R = 1250. We checked the rate of the change in the ratio of some 
moments of the vorticity. For this purpose, we used the functional 

L(r)=JR2 lx12 5(X> t) dx 
J,P t(x, t) dx ’ 

which satisfies L(t) = L(0) + 4t/R. This functional was approximated by 

Here xj is the intensity of the jth particle. As was suggested in [24], to eliminate 
the startup error, due to the approximation of the initial condition, we check the 
relative error 

e(t) = IA(t) - 40) - WRI 
I&t)1 . 

We also smoothed the initial conditions to get more accurate results for the 
non-smooth solution. We assigned zero intensity to all particles 1x1 > 1 + E, where 
E = h/,/5. Therefore, E is the largest distance for which vorticity is non-zero if we 
initially locate particles at 1x1 < 1. We assigned h2 intensity to every initial particle 
at 1x1 ,< 1 - 8 and varied the intensity linearly for 1 -E ,< 1x1 < 1 + E. In Table I the 
relative error e(t) is given for different time levels and compared with the random 
walk results. We chose the cutoff function described in Example 2 above, with the 
cutoff parameter 6 = 1.8 $. For this cutoff function 

In both schemes we used initial spacing between the particles to be h = hl = h, = 0.2 
in Tables I and II and h = 0.1 in Table III. We stepped the equation in time via the, 
second-order modified Euler scheme [12, 131, for which the time step was chosen 
as At = 0.2 in Table I and At = 0.1 in Tables II and III. This produced a stable 
scheme, since we have to require At d Cd2 = ch for stability. 

One may notice that the error from the random walk is larger than the one from 
the deterministic process. It is also clear, from the numerical results shown here, 
that in most cases the error decrease as one refines the time step and the initial grid. 
Note from Tables I and III that it sometimes happen that the error in the diffusion 
rate of the disk might decrease in time. This may happen when the error changes 
sign, and therefore, since it is continuous as a function of time, it is zero at some 
time in between. 
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The second problem for which we checked the accuracy of our scheme is a 
periodic one. This problem served as a test problem for Chorin’s smite-difference 
scheme for the Navier-Stokes equations [6]. The initial vorticity is given by 
5(x, y,O) = 2 cos(x) cos(y). We performed our computations for 0 < x, 
exact solution for this problem is 4(x, y, t) = 2e--2*‘R cos(x) cos(y). 
scheme for R = 1 and R = 100. The periodic boundary conditions were i 
as follows. For ea computational particle we added the ~o~trib~t~o~s of 
eight particles, located at (x)2n, y), (x, y+2rc), (xf_%c, yf2n), (X 

is reasonable, since the further are the particles from the ~~rn~~tat~~n~~ 
am the smaller is their contribution. We checked the error u-r the discrete I., 

norm, 

e chose the initial spacing between the particles to e h=h,=h,=2n/8 in 
Table IV, h=h, =h,=2rc/16 in Tables V and VII, and h=h, =h2=2~/32 in 

TABLE I 

h = At = 0.2 

Time Random walk 

t=1 1.2E-2 _ 3.9E-4 
t=2 7.2E-2 4.4E-4 
t=3 1.6E-1 3.4E-4 
t=4 2.6E-1 8.48-5 

TABLE II 

h=0.2,di=O.l 

Time Random walk 

t=l 7.3E-3 l.lE-4 
t=2 l.OE-2 2.lE-4 
t=3 5.75-3 4.9E-4 
t=4 2.5E-2 7.5E-4 

TABLE III 

h=At=O.! 

Time Random waik 

t=1 5,8E-3 1.2E-5 
t=2 5.4E-3 8.9E-5 
t=3 1.2E-2 1.7E-5 
t=4 2.4&2 1.9E-5 
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TABLE IV 

R = 1000, h = 2n/8 

Time Heat equation Navier-Stokes 

t=l 1.2E-2 9.8E-2 
r=2 2.5E-2 2.1E-1 
t=3 3.6E-2 3.3E-1 
r=4 4.9E-2 4.3E-1 

TABLE V 

R= 1000, h=2n/16 

Time Heat equation Navier-Stokes 

t=l 1.9E-3 2.6E-3 
t=2 7.8E-3 1.2E-2 
I=3 1.7E-2 2.4E-2 
t=4 3.1E-2 3.9E-2 

Table VI. It is possible to pick a different cutoff parameter (6,) for the smoothing 
of the singular kernel in (2.6)-(2.7) or (2.8) and a different one (6,) for the smooth- 
ing of the vorticity by its convolution with a cutoff function q3g in (2.7) or (2.9). This 
was done to keep the grid less distorted as time evolves, since the locations of the 
particles are determined by their computed velocity. We chose 6, = 8 fi and 

TABLE VI 

R = 1000, h = 271132 

Time Heat equation Navier-Stokes 

t=l 1.3E-4 1.5E-4 
t=2 5.1E-4 6.OE-4 
t=3 l.lE,-3 1.3E-3 
t=4 2.OE-3 2.4E-3 

TABLE VII 

R = 100, h = 2~116 

Time Heat equation Navier-Stokes 

t=l 3.7E-3 3.5E-3 
t=2 1.2E-2 1.4E-2 
r=3 2.6E-2 3.OE-2 
t=4 4.5E-2 5.2E-2 
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TABLE VIII 

R = 100, h = 27$3, Spectral Cutofl 

Time Heat equation Navier-Stokes 

2=1 5.4E-4 6.9E-4 
t=2 2.lE-3 2.6E-3 
t=3 4SE-3 5.7s-3 
t=4 7.8E-3 9.9E-3 

6, = 2 $ for R = 1000. The time step was At = 0.1. Tables IV-VI refer to 
and Tables VII and VIII to R = 100. In all tables we give the error when we applied 
the scheme once for the heat equation and once for the Navier-Stokes equations. 
For the heat equation we did not have to specify 6 1. 

One can learn from Tables IV-VI that the computed convergence rate of the 
scheme is between 3 and 4, since as one halves h, the error decreases by a factor of 
8 to 16. In Table VII we show numerical results for R = 100. All the parameters 
were chosen as for R = 1000, except that in this case we set 6, = 4 $. The cutoff 
coefficient may depend on the problem and in particular on the Reynolds number. 
To keep the discretization error independent of the Reynolds number, we have to 
adjust the constant C in 6, = C $. For this choice d the discretizatio~ error is 
of order I%~/~-‘JRG~+~, therefore C has to be of order ~ M’+ m), where 5 E $%‘“. 2. 

In Table VIII we represent numerical results for the periodic cutoff function 
in Example 5, Section 3. This cutoff function was applied to (2.7) to evalua 
vorticity. Since the cutoff function is periodic, we did mot have to add extra ~~rtie~es 
to satisfy the periodic boundary conditions for the heat equations. To update the 
particle locations (2.6) for the Navier-Stokes equations we use the ~ourth~order 
cutoff function of Beale and Majda, since the smoothed kernel 6 is not p&&i@. 
For, the nonperiodic kernel which connects the velocity and vorticity we di 
to add extra points to update the locations of the particles in the Navier-Stokes 
equations. We chose p = 4, h =271/g, and At = I/(~zP)‘, to satisfy the §ta~i~~ty 
condition for periodic spectral cutoffs. Note that for the spectral cutoff we were a 
to achieve the same accuracy as for the fourth-order scheme with much fewer gri 
points This is one of the features of the spectrally accurate cutoff functions. 

5. CONCLUSIONS 

Both theoretical and numerical arguments show that one may approximate th.e 
l’davier-Stokes equations using vortex methods with high accuracy. For the first 
time we used a new formulation for the Navier-Stokes equations, in whit 
vorticity is tracked along particle trajectories. On the di~erential level, we 
approximated the Laplacian of the vorticity by an explicit differentiation of a cutoIT 
function. Therefore, the proposed scheme for viscous flows is a natural extension of 
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the non-viscous vortex schemes. In the numerical experiments, we observed a com- 
puted rate of convergence between three and four. The rate of convergence can be 
made as high as desired by choosing a high-order cutoff function. If we choose a 
cutoff function whose Fourier transform is positive, stability is assured for the heat 
equation. 
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