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A COMPACT DIFFERENCE SCHEME FOR THE BIHARMONIC
EQUATION IN PLANAR IRREGULAR DOMAINS*
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Abstract. We present a finite difference scheme, applicable to general irregular planar domains,
to approximate the biharmonic equation. The irregular domain is embedded in a Cartesian grid. In
order to approximate A2® at a grid point we interpolate the data on the (irregular) stencil by a
polynomial of degree six. The finite difference scheme is A2Q4(0,0), where Qg is the interpolation
polynomial. The interpolation polynomial is not uniquely determined. We present a method to
construct such an interpolation polynomial and prove that our construction is second order accurate.
For a regular stencil, [M. Ben-Artzi, J.-P. Croisille, and D. Fishelov, STAM J. Sci. Comput., 31
(2008), pp. 303-333] shows that the proposed interpolation polynomial is fourth order accurate. We
present some suitable numerical examples.
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1. Introduction. In this paper we consider a compact finite difference scheme
for the Dirichlet problem for the biharmonic equation,

®(z,y) = g1(z,y)
(7, y) = g2(z,9)
A2(I)(Zli,y) = f(xa y)v (33, y) in .

(1) , (z,y) € 09,

Basically we propose a generalization to an irregular ) of the well-known nine-
point Stephenson scheme [31]. Such a scheme serves as the main building block in
the approximation of the two dimensional Navier—Stokes system in the pure stream-
function formulation [5, 6].

Due to the significance of the biharmonic operator, a large number of methods for
discretizing (1) have been proposed. It seems that the majority of these methods are
related to the finite elements methodology (see, for example, [3, 10, 14, 15, 29] and
the references therein). However, we concentrate here on finite difference methods.
In this category it seems that most of the works are limited to the case where €2 is a
rectangular domain. In this case our scheme is actually equivalent to [7], where a fast
direct solver is proposed.

1.1. Background. Let us review briefly some of the works which are closer in
spirit to the finite difference approach. In order to avoid the need to deal with a
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fourth order differential operator it has been proposed [2, 3, 12, 14, 15, 16, 17, 24] to
split (1) into two coupled Poisson equations for ® and ®4:

A¢($7y) = ({E, y)7

) A®(2,9) = flx.)

The difficulty with this approach is that the boundary conditions for ® are overde-
termined, while being underdetermined for the new unknown ®;. The boundary
conditions for ®; need to be approximated from the discrete form of (2). Within the
finite element methodology, many works have used this splitting, sometimes including
the use of multigrid technique as well. There have been also some finite difference
schemes related to (2). Most of them are limited to a rectangular domain (for exam-
ple, [17, 24]). In [2] this approach was used for nonregular meshes inside a rectangular
domain. Recently [12] suggested an algorithm for an irregular domain, which is based
on an immersed interface fast Poisson solver.

A different finite difference approach is to discretize (1) on a uniform grid us-
ing a 13-point (or 25-point) direct approximation of the biharmonic operator. Such
methods were presented in [9, 20] and are applicable only for a rectangular domain.
These approximations must always be modified at grid points near the boundary, a
modification which can reduce the accuracy of the scheme.

We mention other approaches to the biharmonic problem on a nonrectangular
domain. These include methods based on a conformal mapping to a disk [11, 27], in-
tegral equations [26], the fast multipole method [19], and orthogonal spline collocation
[4].

Another approach is to use a nine-point compact cell. This approach includes
discretizing (1) using not just the grid values of ® but also the values of the gradients
®, and ®,. This method does not require any modifications near the boundary, as
the boundary conditions also include the values of V® [31]. Some variations of this
approach and a multigrid technique were proposed in [1]. So far, all the algorithms
based on the nine-point stencil were applicable only to a rectangular domain.

1.2. Structure of the paper. In this paper we develop the idea of using a
nine-point compact cell utilizing the grid values of ®, and ®, in addition to ®.
However, it does not require the stencil to be regular, which enables our scheme to
discretize an irregular boundary. The finite difference coefficients are calculated using
an interpolation polynomial of degree six. This technique enables us to handle an
irregular domain without adding unnecessary grid points to the calculation.

The plan of this paper is as follows. In section 2 we describe the construction of
the grid, the assignment of the “calculated nodes,” and the treatment of the irregular
boundary. Section 3 is the core section of this paper. We develop here our polynomial
interpolation over compact irregular stencils and define the discretized approximation
to the biharmonic operator. This approximation is used for all the calculated nodes,
including near-boundary nodes. Our key result, Theorem 3.11, states that under
a reasonable structural assumption on the grid, the discrete approximation of the
biharmonic operator is second order accurate. The approximate grid values of ®,, ®,
are related to those of ® by means of a Hermitian form which guarantees fourth order
accuracy even in the irregular case. This construction is described in section 4. Some
numerical test cases are presented in section 5. Finally, we mention in the conclusion
the connection of this work with the Shortley—Weller scheme for the Poisson problem.
For a convergence proof of the new scheme, we refer to the forthcoming work [8].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



BIHARMONIC EQUATION IN IRREGULAR DOMAINS 3089

2. Embedding a Cartesian grid in an irregular domain. Consider a do-
main embedded in a large uniform grid of mesh size h. A grid point is a point
(ih,jh) for i,5 € Z. Most of the nodes, which are interior to €2, will be designated
as “calculated nodes,” i.e., nodes where the approximate functional values are actu-
ally calculated. These values are ®, ®,, ®,, which serve as approximate values to the
analytical values of ®, V& at the nodes. A small number of interior nodes close to
0f) are not calculated nodes and only serve in the construction of the scheme. There
are no approximate values associated with these nodes, and we label them as “edge
nodes.” In Figure 1 these nodes are marked with an “x.”

The division of the interior nodes between edge nodes and calculated nodes is a
parameter of the scheme. Some exterior nodes which are close to 92 serve in the
geometric phase of the scheme, as is explained below. They do not take part in the
calculations, i.e., they do not carry approximate values or serve as ghost points. They
are shown as simple dots “.” in Figure 1.

The essential step is to determine the nodes which are designated as “edge nodes.”
They are selected in a way which limits the distortion of irregular polygons. More
specifically, only nodes which are sufficiently close to the boundary are marked as
“edge nodes,” so that all resulting irregular polygons (as constructed in the following
paragraphs) satisfy the requirements imposed in (30) and also ensure the bounded-
ness of € in (48). This is achieved in turn by restricting the edge nodes to those
whose distance from the boundary is O(h). In practice, however, we use even stricter
requirements, as in Remark 5.1. Furthermore, selecting the edge nodes in a proper
fashion is crucial to carry out the convergence analysis; see [8].

F1c. 1. An ellipse embedded in the grid. + represents calculated nodes, x represents edge nodes,
- represents exterior nodes. The circles are the eight neighbors of the calculated node C.

Our scheme is a compact scheme; all approximate values of high order derivatives
use values of ®, ®,, ®, at immediate neighbors. More specifically, given a node pg =
(ih, jh), we consider the following eight grid points:

p1= ((z - 1)h7 (] + 1)h)7 p2 = (ih, (] + 1)h)7 ps = ((7’ + 1)h7 (] + 1)h),
pa = ((i = 1)h,jh), ps = ((i + 1)h, jh),
Pe = ((z - 1)h7 (] - 1)h)7 pr = (ih, (] - 1)h)7 ps = ((7’ + 1)h7 (] - 1)h)'
Our goal is to construct suitable neighboring points p1, ..., ps, which are either

calculated nodes or boundary points. The values of ®,®,,®, at these points are all
that is needed in order to calculate the various approximate derivatives at pg.
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Suppose we wish to approximate A2®(xg,y0) at a calculated node po = (70, %0),
such that one of its neighbors p; = (z;,y;) is either an edge node or an exterior
node. Imagine the ray that begins at pg and goes through p;. This ray must cross
the boundary of the domain. We define the point where the ray first crosses the
boundary as p; (in the case of a convex domain there is only one point common to
the ray and the boundary). The calculation of the approximate value to A2®(xq, o)
relies on the data of p; rather p;. This idea is demonstrated in Figure 1. We have
a calculated node designated by C. We construct eight neighboring points p1q, ..., ps
which carry the data needed for the calculation at C. The four neighbors p1, p2, Ps, Ps
are other calculated nodes, so we use them in the calculation, i.e., p; = p;. The other
four neighbors py, pe, P7, Ps are either edge or exterior nodes, so they are replaced by
points on the boundary as described above. We therefore obtain p; (the eight circled
points), the actual points used in the calculation.

Once the eight points p; are determined and approximate values ®,®,, ®, are
assigned to them, we can proceed to evaluate an approximate value for A%2® at the
point pg. This is described in the following section.

3. The biharmonic A2® operator. In this section we define a scheme for the
approximation of the biharmonic operator. Figure 2 shows the nine-point irregular
stencil used for the approximation of A2® at pg = (0, 0). Each of the nine grid points
pi carries three values: ®,®,,®,. These are calculated values if p; is a calculated
node and given boundary data if p; is a boundary point.

+
0,-h =
+p6=(—h6,—h6) p7 ( 7) Ps—(haa—hs)
F1G. 2. The eight neighbors.

In order to approximate A2® of a given function ® at pg, we interpolate the data
®,®,, P, on the stencil pg,...,ps by a polynomial of degree six. This construction
is carried out below. To deal with an irregular stencil, we denote

(3) h=(hi,...,hs).

DEFINITION 3.1. The finite difference scheme A%CD for the approzimation of A2®
at po = (0,0) is AZQ(M;(O,O), where Q@,ﬁ is the interpolation polynomial of degree
stz mentioned above.

Remark 3.2. The actual connection between the values of ®, @, ®, at all nodes
is described in section 4. It uses a fourth order Hermitian form.
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3.1. Approximating the data using a sixth order polynomial. Let P’ be
the linear space of polynomials in two variables of degree < i. Let P* be their single
variable counterparts. There are 28 monomials in PS, so that P% =2 R28,

Let p; mark the neighboring points as shown in Figure 2: pg = (0,0),p1 =
(=h1,h1),...,ps = (hs, —hs).

Let Dat1g be the linear space of the following 19 data:

q)(pi)a 0 S 1 S 87
(4) ®4(pi), 1<i<8,
. (po), y(Po),

where @4 is the directional derivative, with the direction towards the origin (d €
+{x,y, %, %}) The above 19 data are the only data used to define the interpo-
lation polynomial.

Remark 3.3. The literature devoted to polynomial interpolations based on func-
tional values and their gradients, the so-called “Hermite—Birkhoff interpolations,” is
quite extensive (see [18] and the references therein). In the one dimensional case it
is also referred to as a “Lagrangian interpolation problem with repeated arguments.”
A general formula for this kind of problem is available; see [22]. However, the unique
character of our scheme (as well as that of [5], [6]) is that it is based solely on func-
tional values. The “gradient values” are evaluated as “Hermitian derivatives” and
derived from the functional values alone (see section 4).

The goal of this section is to find a polynomial in P® which interpolates the 19
data in Datqg.

Let A : P® — Datg be the linear transformation which is the evaluation operator.
That is, given Q € P,

0Q
" 0d

0Q
" od

(pa). 52 00). 52 b0}

AQ) = {Qpo)...-.Qlpa). G2 o).

PROPOSITION 3.4. A is surjective. That is, dim(Im(A)) = 19 and dim(ker(A4)) =
9.

Proof. Let d € Datyg, be a set of data as defined in (4). We will construct a
polynomial Q € P% such that A(Q) = d.

Let Q1 € P® be the unique single-variable fifth order polynomial such that Q1 (x)
interpolates the six data on the z-axis: ®(p4), ®(po), ®(Ps), P2(P4), P=(Po), P (P5).

Let Q2 € P* be the unique polynomial such that Q1 ()|z=o +yQ2(y) interpolates
the following five data on the y-axis: ®(p2), ®(p7), @4 (P2), Py (Po), Py(P7)-

In a similar fashion, let Q3 € P? be the unique polynomials such that zyQs(z —
y) + yQ2(y) + Q1(x) interpolates the values along the y = —2 diagonal:

®(p1), 2(ps), Po—y(P1), Pu—y(Ps)-

Finally, let Q4 € P2 be the unique polynomials such that zy(z + y)Q4(z + y) +
zyQs(z — y) + yQa2(y) + Q1(z) interpolates the values along the y = x diagonal:
®(p3), ®(Pe6); Po+y(P3), Paty(Ps)-

Let Q = Qu(x) + yQs(y) + wy@Qa(x — y) + 2y(@ + 1)Qa(w +y). At each step in
the construction above, the interpolations already made aren’t modified. Therefore,
Q interpolates all the required 19 data: A(Q) = d.

To show that dim(ker(A)) = 9, we note that dim(ker(A)) = dim(P®)—dim(Im(A))
=28—-19=09. 0
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Remark 3.5. Note that by restricting Q4 € P? in the previous proof, we obtain
Q(x,y) € P°, which can interpolate all but one of the 19 data (leaving out at most
one value on the z = y diagonal). This remark will be useful later on, in the proof of
Lemma 3.9.

Proposition 3.4 shows that it is always possible to interpolate the data in Dat;g
using a polynomial in PS. However, this interpolation is not unique, and therefore,
we construct a canonical (unique) interpolation polynomial. To do so, we must first
disregard the polynomials in ker(A) as they are not influenced by the data (even
though they might influence the biharmonic operator). Therefore, we will define a
polynomial space © such that

(5) P® = ker(A) @ ©.

The linear transformation A|g is one to one onto Datyg. Thus, using (Ale)~!, any
set of data will uniquely define an interpolation polynomial in © C PS.

Unfortunately, the equation P® = ker(A) @ © does not uniquely define ©. More-
over, a different choice of ©® might produce different results (a different finite differ-
ence scheme A% for the biharmonic operator; see Definition 3.1 and Example 3.12).
In order to construct ©, we first characterize ker(A) using the notion of indifferent
polynomials.

DEFINITION 3.6.

(i) A null-biharmonic polynomial Q € P° is a polynomial such that A2Q(0,0) =
0.
(ii) An indifferent polynomial is a null-biharmonic polynomial in ker(A) C PS.
(iii) An indifferent (resp., null-biharmonic) subspace L is a linear space such that
VY@ € L, Q is indifferent (resp., null-biharmonic).

The biharmonic operator is simply a linear functional operating on P6. The kernel
of this linear functional is the maximal null-biharmonic subspace. The importance
of indifferent polynomials is demonstrated by the following proposition, which shows
that © needs to be defined up to an indifferent subspace.

PRrROPOSITION 3.7. The finite difference scheme is identical for different ©’s
(satisfying (5)) which are equivalent up to an indifferent subspace. To be precise,
assume P = ker(A) @ O1, P® = ker(A) ® Oz, O3 C O1 @ L, where L is an indifferent
subspace, then the finite difference schemes using either ©1 or ©s are identical.

Proof. Let d € Datyg be a set of data. Define Q1 = A|(:)i(d), Q2 = A|(:);(d),
and their difference by Q = Q1 — Q2. Note that A(Q1) = A(Q2); hence Q € ker(A).
Since @ € ©1® L and L C ker(A), where L is an indifferent subspace, one has Q € L,
and therefore, @ is an indifferent polynomial. This shows that A2Q(0,0) = 0, and
therefore, A2Q1(0,0) = A?Q2(0,0), proving that the scheme is equivalent for ©1,
0. O

If ker(A) were an indifferent subspace, then the proposition shows that any ©
satisfying (5) would yield an equivalent scheme for the biharmonic operator. However,
this is not the case in general.

Ezample 3.8. In the regular grid (i.e., h; = h, 0 < i < 8) the following two
polynomials are in ker(A) and are not indifferent (not null-biharmonic):

(6)
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3.2. Choice of ©. The construction of © begins with the polynomials of degree
< 5. We note that P5 ~ R2!. Let A : P5 — Datyg be the evaluation operator. That
iS, A = A|[p>5.

Let

(7) ker(A) = £ @ £res,

where £4 is the maximal indifferent subspace and £ is a residual subspace satis-
fying (7). Let B be the principal ideal in P® generated by zy(z — y)(z + y):

(8) B={Q€eP’|Q=ay(z—y)(z+y)R, ReP}.

LEMMA 3.9.

(i) B is a siz dimensional indifferent subspace of ker(A) which is independent of
h (see (3)).

(ii) ker(A) = BNP® is an indifferent subspace of dimension 3, which is indepen-
dent of h.

Proof. (i) It is easy to see that B C ker(A), and that VQ € B, A?Q(0,0) = 0.

Since dim(P?) = 6, we have dim(B) = 6.
(ii) Using (8), let

(9) B=BnP°={QecP° |Q=uxy(xr—y)(x+y)R, ReP'}.

Note that B C ker(A), dim(B) = 3, thus dim(ker(A)) > 3 and dim(Im(A4)) < 18.
We show that dim(Im(A)) > 18, and hence ker(A) = B, which concludes our proof.
Refer to the proof of Proposition 3.4 and Remark 3.5. Using a polynomial Q € P®
we can interpolate at least 18 of the data. Thus, we know that the image of the
polynomials of degree five creates a subspace of dimension > 18. Altogether we have
dim(I'm(A)) = 18 and dim(ker(A)) = 3, as required. 0

Note that in the regular case B # L4 since xy(z? + y2 — 2h2)? € ker(A) is an
indifferent polynomial.

Let

(10) © =sp{l,z,2% 2% 2, 2%, y,0%,v°, y*, 0", 2y, 2y (x + y);

zy(x +y)% wy(e +y)°, zy(e — y), zvy(z — y)*, 2yl —y)°);
O is spanned by 18 polynomials. Note that ker([l) N O = 0. Indeed, if Qz,y) €
ker(A) N© C P°, it should be divisible by zy(z + y)(z — y). It is readily seen, from

the definition of © in (10), that no nontrivial Q in © is divisible by zy(z +y)(z — y).
Therefore, we can conclude that

(11) P° = ker(A) 0 = Ba 6.

We construct © by adding one more polynomial of degree six to ©. This yields
the desired 19 dimensional space. The choice of © determines the finite difference
scheme (as presented in Definition 3.1).

We note that Proposition 3.7 and Lemma 3.9 show that any choice of © satisfying
(11) would result in an equivalent scheme.

The polynomial that should be added to © must not be in © & ker(A). In the
regular case h; = h, 0 <1 < 8, we have

(12) £ = sp{B,zy(a® +y* — 2h%)*},
(13) £ = sp{G1, Ga),
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where £, £ were defined in (7) and Gy, G were defined in (6). It can then be
easily verified that

(14) {28, 2%y, 239°, 2%, 4%} c @ @ L @ LT,
This leaves just two monomials of degree six: xz*y?, z2y*. Note that zty? —22y* =
2*y*(z — y)(z + y) € B is an indifferent polynomial. Thus, Proposition 3.7 tells us

that adding 22y* or 2%y? to O yields an equivalent scheme. Therefore, the scheme is
essentially determined for the regular case. For the sake of symmetry we define

(15) 0 = sp{0, 2%y (z* + y?)}.

PROPOSITION 3.10. The subspace © as defined in (15) satisfies our requirement
in (5), namely the direct sum © @ ker(A) = PS.

Proof. For the regular case the claim follows from the preceding discussion. One
must show that z2y%(z2 + y?) ¢ sp{©,ker(A)}. The comment after (14) shows that
it is equivalent to show that z'y? ¢ sp{©,ker(A4)}.

Assume the contrary:

(16) 2P =Q1+Q2, Q1€0O, Q€ ker(A).

We have A(z?y?) = A(Q1). Consider the restrictions of these polynomials on the z =
y diagonal. The six data on the x = y diagonal, ®(po), ®(p3), P(P6), Poty(Po); Loty
(p3), ®.1y(P6), are identical. Therefore, the polynomial 2% — Q;(z,x) has three
double zeros and must be of the form Cz?(x — h3)?(x + he)?, where C is an arbitrary
constant. By comparing the x° coefficient one has C' = 1:

(17) 25 — Qq(x,x) = 2% (x — h3)*(x + he)>.
A similar argument on the x = —y diagonal gives us
(18) 2% — Qi(z, —x) = 2%(x — he)*(z + h1)>.

Consider the restriction of (16) to the x axis. Applying A to both sides we have
A(Q1(z,0)) = 0. There are six data on the x axis, and therefore, Q1 (z,0) has three
double zeros . Since Q1(x,0) is a polynomial of degree five we have Q1(z,0) = 0. A
similar argument shows that @1(0,y) = 0. In particular, there are no pure powers of
zoryin Q1(x,y). Thus, the only second order term in Q1 (z,y) is axy. However, (17)
(resp., (18)) shows that « is positive (resp., negative); hence 0. This is a contradiction
to (17) and (18), which contain a nonzero coefficient of zy in Q. O

In the regular case h; = h, 0 < i < 8, the coefficients of the finite difference
scheme for A?® are equivalent to the fourth order scheme presented in [7]:

AZ®(0,0) = A?Qq ;(0,0)
- %{12@(0, 0) + &(—h, h) — 4D(0, h) + D(h, h) — 4D(—h, 0)
(19)  — 4D(h,0) + (—h, —h) — 40(0, —h) + ®(h, —h)}
1
2 (=R ) = o, h) = 88u(—h, 0) + 80, (1, 0) + By (—h, )

— &, (h,—h) — ®y(—h,h) +82,(0,h) — &, (h,h) + D, (—h,—h)
—82,(0,—h) + @,(h,—h)}.
In the irregular case we are still left with a degree of freedom in the definition of ©.
However, we proceed to show that taking © as presented in (15) also for the irregular

case yields second order accuracy. Proposition 3.10 assures that the requirement (5)
is conserved.
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3.3. Accuracy of the finite difference scheme. For the accuracy analysis of
the finite difference scheme AQE (Definition 3.1), we assume ® is a regular function,

differentiable as much as needed. Using the seventh degree Taylor formula around
(0,0),

(200 D(zy)= > %ﬂo’o)xmg“z +O(WE(z,y), o= (a1,a),
0<a|<6
where
|E(x,y)| < Csup 7).
Combining (5) and (7),
(21) PS =0 Lo L.

We assume all the derivatives of ® of degree < 7 are bounded with a universal bound.
Decomposing the polynomial part of (20) by the direct sum (21),

(22) O(z,y) = &+ O(h")E(w,y), € PP,
where
(23) (i) _ (1)6 + (I)ind + (I)rcs’ (1)6 c @, (bind c Lind’ dres ¢ pres

Let Qg i; € © be the interpolating polynomial of ® using the 19 data in Datqg
on the h stencil (see (3), (4)). Recall (Definition 3.1) that A%Q, (0,0) is the finite
difference scheme for the biharmonic operator. Note that ®© — Qg ; 1s not identical

to zero since it is the polynomial interpolating the 19 data of the term O(h")E(x,y).
Let K} be the approximation (truncation) error for the biharmonic operator:

(24) Kg(®) = A?®(0,0) — A%Qy 5(0,0).
We note that

(25) Se€c0=K;(S) =0,

(26) Re ™ = K (R)=0.

Indeed, if S € O, then S = Qg by definition. If R € £ then R € ker(A) is

an indifferent polynomial, and therefore, @, = 0 and A%R(0,0) = 0.
Thus we are left with

(27) K5 (®) = K5(2™) + O(h") K5 (E).

This equation shows us something we already suspected: the error of the scheme
results from polynomials which are in ker(A) and are not indifferent (in addition to
the negligible error resulting from the Taylor remainder term of degree > 7; see (20)).

For the irregular mesh analysis we continue to use a grid parameter h > 0 (see

section 2) and define the ratios,

h;
28 ;= —
(28) =
(29) ¢={c

, 0< ¢y,

,...708}.
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Note that ¢; can be greater than, less than, or equal to 1. This can be seen in Figure
1 where the boundary points used in the calculation of the scheme can be closer or
farther apart than the neighboring grid point in the same direction.

Assume that there exists a constant M > 1 such that

1
(30) g SGsM 1<i<s

Our fundamental result is the following theorem.
THEOREM 3.11. The finite difference scheme A% for the biharmonic operator

using (15) is second order accurate.

Proof. The proof is given in several steps.

Step I. We claim that the coefficients of the ® terms in A%(b are O(;%), while the
coefficients of the @, ®, terms in A2 are O(43).

This claim is obvious in the regular case; see (19). For an irregular stencil the

proof is obtained by a scaling argument. The details are given in the appendix.
Step II. We claim that

(31) K (@) = A%9"(0,0) + O(h%).
Calculating the error,
Kg(E) = A%E(0,0) — A*Q 5(0,0).
Using Step 1,

2,500 = 320 () 0 + 320 (55 ) Boton + 320 (55 ) Bt

% %

Since A%E(0,0) is a constant, altogether we have

Ki(E)=0 (%) .

Equation (31) now follows from (27).

Step I11. We construct a smooth, with respect to ﬁ, basis {G1 (ﬁ, Z,Y)y ey Gg(ﬁ; x, y)}
of ker(Aﬁ)

Note. We add the h subscript to A to clarify the stencil in which the calculation
is done.

To this end we let
(32)

0° = B @ sp{a%, 2%y, ty? — a2yt 133, 1y, 4}

6

= sp{a’y — ay®, 2ty — 2%y3, 23y — zy? 28, 2Py, 2ty? — 2%yt 2%yR P C )

In view of (15),
(33) Pl =0 @ 0°.

Indeed, P® = @@ B (see (11)) and © includes only one polynomial of degree six, while
the other six are in ©°.
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Let
F:Rix@cx(a—»Datlg,
H:R{ x0°—0©
be defined as follows:
(34) F(h,T1,T) = Az (Ty + To), heRd, Ty €0° Th €O,
(35) H(h,Ty) = —Qy, 5» heRy, T) € ©°
where QT n€ O is the interpolation polynomial of T with respect to the h stencil.

Recalling Propomtlon 3.10, we_know that this interpolation polynomial is uniquely
determined in ©. Moreover, V he R+, T, €0° T, € O,

(36) HmT) =T, & F(hT,Ts) =0.

Using the implicit function theorem it is readily seen that H (ﬁ, T') is continuously
differentiable with respect to all its variables.
From (36) it follows that

(37) ker( ) = {Tl + H(h Tl) | T, € @C}
Let e;(z,y) 1 <i <9 be the nine homogeneous polynomials spanning ©¢. We define

Gi(h;z,y) = e;(w,y) + H(h, ei(z,y)),
=ei(z,y) - Q,, (r,y), 1<i<9,

and note that these polynomials constitute the desired smooth basis of ker(A ). In-
deed, the linear independence of the G;’s follows from the fact that the e;’s form a
basis for ©¢ while Qei,l'_{ € O is the complementary subspace.

Step IV. We can now conclude the proof of the theorem.

Combining (5) and (20),

(38)

d(z <I>®+ZbG )+ O(h")E(z,y), ®° € ©, Gi(h) € ker(A})

=9° ¢ Z biH(h,e;) + Z bie; + O(h")E(x,y).
i=1 i=1
Note that ®© + Z?:l biH(h,e;) € ©. In terms of the decomposition (33), the ©°
component of ®(z,y) is Yo, bie;. Since {e;, 1 < i < 9} are fixed polynomials
(independent of h), the coefficients {b;, 1 < i < 9} are constants which depend only

on the derivatives of ® of degree < 6.
Using (31),

9
(39) Kp(®) = > b A2Gy(h; z,y)

i=1

+O(h®).

x=0,y=0

Recalling the assumption (30), we now show that

(40) ‘A2Gi(ﬁ;x,y)‘ <h?J, heR}, 1<i<9,

(0,0)
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where
1 8
41 J = su AG (C;x ‘ [—,M] C RS,
(1) 1<159 Y |(0 0) M
Since A2G;(h;z, y)‘(o 0) is a continuous function of h, it attains a maximum in

the compact cube [ﬁ, M]S C R8,
Using the definition (32) of ©°¢,

O°NP° = B.

Let 1 <i <9 Ife; € O NP then e; € B C ker(Aj). Hence, H(h,e;) = 0
and G;(h; z,y) = e;. It follows that A2G;(h;z,y |(0 0) = 0 (since B is an indifferent

subspace). Otherwise, e; is one of the six homogeneous polynomials of degree six in
(32). Consider the decomposition (33) of the polynomial R(x,y) = h°G;(C; ¥, %) =
RO (e;(%, %)+ H(C e;(£,%))). Its ©° component is h® (e;(£,£)) = e;(z,y). Also,
notice that R is 0 on all the data on the h stencil. Hence, R € ker(Aj) and R =
€i— Q5= G;(h), using (38). Altogether,

Gi(h;z,y) = h°G, (6; % %)

Hence,
24 (1. | A2 2
‘A Gz(hw,y)\(m)‘ = |5 A Gi( |(00) h2J.
It now follows from (39) and the last estimate that
9
(42) |K5(@)] <) [bilh®T + O(h) = O(h%). O

i=1

Ezample 3.12. We calculate A?®5(0,0) for a regular grid.

Using G1, G2 as in (6), we have £ = sp{G1, G2} (see (13)). Using our choice
(15) of ©, there are no polynomials containing the 2° or y® monomials in ©. Also,
there are no polynomials containing these monomials in £ (see (12)). Comparing
the coefficients of 2% and 3°® in £ and in (20), we have

ros toaki toaki
o (66( )G1+36(00)G>

and therefore,
|A2D5(0,0)] < Gl (48 sup |®(©|h? + 48 sup |® 6)|h2)
— O(h?).

A different choice of © could give us different results.
J— 6 2,2
Let © = (0U{y}) \ {y*}. Using G2 € ker(A;;), we know that y* — 7 — th €
ker(Ap). Therefore, © satisfies (5). We rewrite (23), using ©,

b =0%+ 0"+ 9™ 39cB, onlend P e £
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In this case, we must compare the coefficients of 2® and 3* in both £ and in
(20):

10 oG
6! 0x6 Yoyt on

— 48 24
m%m&WSEww@@W+wa@w

= 0(h%) +0(1)
= 0(1).

q)ﬁ_

Summary. Our goal is to approximate the biharmonic operator at (0,0) given the
data from our nine-point irregular stencil (Figure 2). We use 19 data from the stencil,
as defined in (4). We first approximate the data by a polynomial in © C PS5, which is
defined in (10), (15). Proposition 3.10 shows that there exists a unique polynomial,
Q € O, which interpolates our 19 data. A2Q(0,0) is the finite difference approxima-
tion of the biharmonic operator at (0,0). The discussion preceding Proposition 3.10
explains the logic in the construction of ©. Theorem 3.11 shows the resulting scheme
and yields the optimal second order accuracy.

Finally, note that we can interpret Stephenson’s scheme on a regular stencil [5,
31] using our polynomial approach. Let A : P* — Datys, where Datys is the 13
dimensional linear space spanned by the 13 data used in the Stephenson scheme. It is
easy to show that ker(A) = sp{zy(z—y)(x+y), zy(x—h)(z+h)}, showing that ker(A)
is an indifferent subspace (we are limiting the investigation to a regular stencil). Using
Proposition 3.7 we know that any space ©13, such that P* = ker(A) @ O3, yields an
equivalent scheme, e.g., one can define ©13 by omitting the following two polynomials
from P*: 23y and zy, obtaining an equivalent scheme to the one presented in the
paper [31] (where 23y and xy3 were omitted).

4. The Hermitian connection between ® and ®,, ®,. Given a smooth
function ® in €, we described in section 3 our finite difference approximation of A2®
at grid points. This approximation is based on the knowledge of the values of ®, ®,,
and ®, at these points. The grid values for ® are those coming from the function
® evaluated at the grid points or suitable approximation given to these values. The
values of ®,, ®, are supposed to approximate values of the gradient of ®. However,
they are not obtained independently. Instead, they are obtained by an interpolation
procedure from the values of the grid function @ itself.

In this section, we describe a Hermitian interpolation procedure, which connects
these values to the values of ® in a linear nonlocal connection. The values ®,, aligned
parallel to the x axis will be connected only to values of ® along this line. A similar
treatment is granted to the values of ®, aligned parallel to the y axis. This is in
agreement with the classical Hermitian methods and serves as a generalization of the
method presented in [5, 6]. Other generalizations related to high order connections of
discretized values of a function and its derivative can be found in [18, 30].

Assume a one dimensional function f : [0,1] — R, differentiable as much as
needed. Fix n+ 1 points 0 = o < 1 < --- < z, = 1. We are given the following
data:

D, = f(x;), 0<i<n
43 ' )
“3) A AR
Using these data to find values {g;, 1 <i <n — 1}, approximating the derivative

values {f'(x;), 1 <1i < n—1} is in fact a classical problem tractable, for example,
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by spline theory [28]. Here, we describe how it can be handled by a finite difference
analysis, using a so-called Hermitian approach.

We consider for each three-point stencil z;_1, z;, x;41 the fourth order interpola-
tion polynomial

gi(z) = asi(z — x)* + asq(x — 2;)® 4 agi(r — x;)* + ari(r — x;) + ao,

defined by the following five interpolation conditions:
(44)
gi(xi—1) = i1, gi(ws) = @iy gi(@ig1) = iy, gi(Tim1) = Gic1, 9i(Tiv1) = Gig1.
See Remark 3.3 concerning the class of such interpolation problems.
The unknown value g; is then obtained as ¢’(z;) = a1,;. Using a suitable Hermitian

integration formula, we obtain the following tridiagonal linear system for the collection
of unknowns {¢;,1 <i<n-—1}

(45) 01,iGi—1 + @i + 02,iGiv1 = B1,iPi—1 + B2, Pi + 53, Piy1, 1<i<n—1

The five coefficients 1,4, 2 4, 61)1', 62)1', ﬂg,i are

h? h2
Q= P ki
Li (hit1+h:)?? 2y (hit1+hs)??
(46) Byi=— 2h{ +4h3 1k By = 2h}, +4hi  hi—4hi 1 h—2h}
Li = T hiz1(hit1+hi)oh; 2% hig1(hip1+hi)3h; ’
By = 2hi4+4h;11hd
350 = hyg1(hit1i+hi)3hy "

To analyze the accuracy of the scheme, we use the parameters h, €, defined by

(47) h= 1g1?§arf(71{hi}7
B . hivi i
(48) €T 1<ign { hi " higa } '

LEMMA 4.1. Assume f to be a regular function on [0,1]. Then the truncation
error

(49) Ry = arif (wic1) + f/(xi) + i f (xiv1) — B1,iPic1 — B2,Pi — B3, Pit1

satisfies

(50) |R;| < C1h* Hf(s)Hoo,[o,u'

Proof. Fix 1 <i <n— 1. Let H(z) be the fourth order Taylor polynomial for
f(x) around = = x;. The following five identities hold:
(51)

D Zf(ﬂii—1):H($i—1)—}g—?f@(&,l), Oip1=f(zi41)= H(zit1) + %f@(fzﬂ),
\ ;= f(w;) = H(zy), \
Flxicn) = B (wic1) — S fO (&), f(win) = H (i) + 52 fO)(€3.4),
where & ; € [zi-1,zi1], 1 < j < 4 Replacing f(zi-1), f(@:), f(zit1), f/(wi-1),

f/(xi41) by their values in (49) and observing that R; = 0 for any fourth order
polynomial (in particular H(x)) yields the estimate (50). O
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So far we showed that f satisfies the equation up to fourth order accuracy. Fol-
lowing a routine procedure we show that solving the tridiagonal system (45) does not
amplify this error.

LEMMA 4.2. The system (45) has a unique solution. Assuming [ is a regular
function, the solution is “almost” fourth order accurate:

B4
max_|f'(@:) - ¢ < € || 79|
€ o]

1<i<n—1 0,1’

where h, e are as defined in (47), (48).
Proof. Writing the system (45) in matrix notation one has

(52) Pv=w,
where
1 a2 1 0 0
q1
1.2 1 g9 0 q2
P=1 9 ' 0 ;U= : :
: 0 aip-2 1 52 Zn_Q
0 te 0 a1 n—1 1 n-l

—a1,1q0 + B1,1P0 + 2,1 P1 + B3,1P2
B1,2®1 4 B2,2P2 + (3,2P3

Bin—2®n_3+ Bon2®Pn2o+ B3n2Pr1
—21qn + Brn-1Pn2+ B2n—1Pn_1 + B3,n-1Pn

Note that ag ; + a2,; < 1; hence P is diagonally dominant, therefore invertible. This
proves that our system has a unique solution.
Lemma 4.1 shows that

(54) Pf =w+ h'K,
where
f'(w1) —K
(55) f= ; K=
f/(xn—l) _Kn—l

Using, finally, the principle of the proof of Lemma 3.1 in [6], we obtain that

B
Ny — il < OT @W ,
(56) 18 /(i) —ail <C € Hf 00,[0,1]

Remark 4.3. In [6] the scheme presented here is shown to be fourth order accurate

on the regular grid. On the irregular grid, Lemma 4.2 shows that the result is almost
as good, as long as the grid isn’t very “irregular” (% is bounded).
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TABLE 1
Recovering ®(x,y) = 23In(1 +y) + HL(E from A2® in the unit square.

16 x 16 Rate 32 x 32 Rate 64 x 64

Our scheme 49-10°7 40 31-100% 41  1.8-107°
Fourth order Stephenson scheme [1]  8.9-1078 3.9 5.8-107° 3.8 4.1-10710

TABLE 2
Recovering ®(x,y) = z3In(1 +y) + Hiz from A2® in the ellipse % + % <1.
Our scheme
h=12  Rate h=2%2 Rate h=17
Error 3.0-100% 48 1.1-1007 6.2 15-107°
1IM [12]
h = % Rate h = % Rate h = % Rate h = %

Error 3.7-10% 1.9  9.5-107° 22  21-107° 2.1 5.0-10-6

5. Numerical results. For the biharmonic operator in a rectangular domain
our results are identical to the fourth order scheme in [7], and therefore, we mainly
focus on irregular domains. In all the following examples we try to recover the values
of a certain function ® inside a domain € from the knowledge of A%2® inside 2 and
®, VP on the boundary 9. That is, we try to solve (1) for given f, g1, g2, and
unknown ®. The given values are those of an exact solution which we try to recover.
We observed an average fourth order accuracy throughout the numerical tests.

Remark 5.1. In irregular domains we chose an interior node as a calculated node
(see section 2) if the distance from the boundary of the ellipse > 2h2. This constant
gave us good numerical results throughout our tests.

Example 5.2. We try to recover the values of the function

Y

_ .3
(57) O(z,y) = z°In(l +y) + T+

(z,y) € Q,
from the knowledge of A2®. The domain is the unit square: Q = [0,1] x [0, 1]. Table 1
shows the L error at each level (maximal difference between the computed solution
and the exact one). We compare our results with [1]. It seems that in this case
the truncation error is slightly smaller in the fourth order Stephenson scheme than
in ours. However, the convergence rate is just as good (even slightly better). The
fourth order Stephenson scheme requires five values of the source term for each grid
point (equation (9) in [1]). This poses a difficulty when using the scheme for the
Navier—Stokes system as done in [5].

Ezample 5.3. We recover the same function ® (57) from the knowledge of AZ®

inside the skinny ellipse suggested in [12]: Q = {(z,y) | 0?22 + % < 1}. Table 2
shows the resulting errors. We chose the grid size to be multiples of A = 1.2 to match
the calculated domain from [12], which is [-0.6,0.6] x [—0.3,0.3]. The immersed
interface method presented in [12] is fast and calculates using a much larger mesh
than ours. However, even under a large mesh, with h = X2, the error in [12] is
5.0 - 1075, which is comparable to a mesh with h = % using the proposed scheme.
Our scheme performs well; the more than expected rate of convergence (4.8), (6.2) is

attributed to two reasons:
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TABLE 3
Recovering ®(x,y) = e*tY from A2® in the unit disk x2 +y? < 1.

Our Scheme

-1 =1 =1
h=3 h= 16 h= 33,

GP =29 Rate GP =177 Rate GP =749 Rate GP = 3149

Error 3.7-107% 5.5 8.4-10~6 2.6 1.4.10°6 6.6 1.4.10°8

Scheme of [23]
GP =1024 Rate GP = 2048 Rate GP =4096 Rate

Error 1.2-1073 1.92 3.2-104 1.98 8.1-10~° 1.99
GP = 8192 Rate GP = 16384
Error  2.0-107° 1.99 5.1-10-6

TABLE 4 R R
Recovering ®(z,y) = (1 — 22)2(1 — y2)2 from A2® in the ellipse Z+eE <L

h=1 Rate h=1% Rate ~ h=

3 Rate h =

L1 1
16 32

Our scheme  3.49-10—3 4.7 1.33-104 50  4.28-10-¢ 4.1 2.43-107

e The small amount of calculated nodes means the asymptotic behavior is not
reached.
e When the mesh size is decreased the amount of calculated points increases
beyond the expected amount. This is because the boundary layer, in which
interior nodes are not calculated nodes, is also decreased (Remark 5.1), i.e.,
when the grid size is halved the amount of calculated nodes is more than
quadrupled.
Ezample 5.4. We compare our scheme to a numerical example given in [23]. In
this case we try to recover the function

Pz, y) =", (z,y) €Q,

from A%® in the unit disk, Q = {(x,y) | 22 + y* < 1}. Table 3 shows the resulting
errors. To compare the results with the polar grid used in [23], we denote by GP the
number of grid points used in the calculation. The assignment of grid points in [23] is
based on an algorithm which sets the points on a certain amount of concentric circles.
As in the previous example, our scheme is slower, but compares favorably for much
smaller mesh sizes.

Example 5.5. We try to recover the function

fI’(x,y) = (1 - 332)2(1 - y2)27 ($,y) €,

from A2® in the ellipse: Q = {(x,y) | f—j + g—i < 1}. Table 4 shows the numerical
results for this example. The scheme maintains a high numerical convergence rate.

6. Conclusion. The problem solved in this paper consists of a natural general-
ization of the compact scheme of Stephenson [31] to irregular geometries. Contrary to
the classical finite element method, which uses a weak form of the biharmonic prob-
lem, we stick here to the design of compactly supported finite difference operators
using high order interpolating polynomials. This work can also be seen as an exten-
sion of the Shortley—Weller scheme for the Laplacian [25] to the biharmonic problem.
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As observed in section 3, a significant difficulty in our approach was due to the fact
that we used 19 “natural” data (over a stencil of nine points) to be interpolated by a
sixth order polynomial. This generated a nontrivial kernel. It was a delicate matter
to “optimize” the direct complement to this kernel so as to get good accuracy for the
approximation of the biharmonic operator.

Another approach consists of providing sufficiently many points for a given order
of the class of polynomials considered. The interpolation problem is then uniquely
solved and the error estimates for the approximation of a given differential operation
are then based on suitable norms (such as Sobolev norms) of the interpolating poly-
nomial. We refer the reader to [13] for more details. The final setup of the scheme
makes use of a Hermitian connection between the primary data ® and the gradient
data ®,, P, presented in section 4. The efficiency of the resulting scheme is clearly
demonstrated in section 5. While the scheme presented here is shown to be second-
order accurate, the problem concerning its convergence is considerably more delicate,
and is treated in a forthcoming paper [8]. Contrary to the variational approach of
the finite element method, it relies on a careful examination of each kind of point
present in the domain, in the spirit of the proofs of the Shortley—Weller scheme for
the Poisson problem; see [21, 25] and the references therein.

7. Appendix. We prove Step I of Theorem 3.11.
Let

A0 d
Q<I>7ﬁ =Wt Q@,ﬁ’

where Q?b i interpolates the ® data, while substituting 0 for all the ®,,®, data. In a
similar fashion, be ;; satifies the following (as in (4) after substituting 0 for all the ¢
data): /

2P =0, 0<i<S8,
Q7 .
827}1 (pl) = q)d(pi)a 1< <8,
Q¢ - Q¢
5 (Po) = @a(Po), —5 2 (Po) = @, (Po).

First, we show that the coefficients of Q?b ; are O(:%).

Let So(z,y) be a basis of © consisting of homogeneous polynomials of degree
n(a). Let

(58) QS s(w.v) =D al; (B) B(po)Saa.y),

where the sum ison ¢ =0,1,...,8.
Proposition 3.10 assures us that there is always a unique representation as pre-
sented in (58). Clearly, the al (h) are continuous functions of h € R®. Since the

cube [+, M }8 C R® is compact, we have a uniform bound:

(59) N = max |ad; ()]
ce[4, M|
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We proceed by a homogeneity argument to prove that agﬂ- (ﬁ), the coefficients of
Q;H(x,y) are O (7%). Let
(60) by = P(\z, \y), A>0.

Evaluate the polynomial R(z,y) = QO B (%,4) at p;. Since qu is the inter-

b
DY

polation polynomial of ®) on the : stencﬂ we have

0 bi) _ Pi\ _ %o
(61) Rips) = Q) (F) = () = (e,
Notice also that all the derivative data is 0:

OR .
(62) %(Pi) =0,0<i<8,

including both derivatives at pg.
Combining (61) and (62) and using the uniqueness of the interpolation polyno-
mial,

R(QJ, y) = Q%j(xv y)

Expanding the above equation using (58),

Tt (1) ()5 (5 2) = o ) s
Z (§>n(a) ag“z‘ (g) D(pi)Sa(z,y) = ;ag)i (ﬁ) ®(p;)Salz,y).

a,t

(63)

Thus, we have

(64) agm (E) = ﬁa&i (g) ‘

. 1 h
0 _ o (R
aOt7i (h) - hn(a) aOt7i (h) ‘
1
< ey

1
:O<W>'

Not all the a&i(ﬁ) are significant in the calculation of A%:

AQ) Zam( ) ©(pi)Sa(.y)
2=0,y=0
(65) —Zaw( R) @(p1) A% 0,9
) ;Mb g ; ( ) d(p;) = ;O <%) @(pi),
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where b, = AQSa(x,y)|$:O y=0"
We proceed to show that the coefficients of Q‘é ; are O(5%). Let

(66) Zaa i ( ) ®4(pi)Salz,y),

where the sum includes both derivatives at pg, and assume that the approximate
values of the derivatives satisfy

(67) (Pr); = (2(Az, Ay)), = ADg(Az, Ay).

This equation is a natural requirement on the connection between ® and ®,,®,.
Equation (67) follows from

(68) (®y), = A\D,(\z).

To verify this relation we must first describe the interval on Wthh d, is deﬁned.

Ti

This interval is [0, A] where the spaces between the grid points are —" Let x =
mark the new grid points. We show that (®)), = A®,(A\x) is a solutlon to the system
described in (45). Recalling (44) and defining the function g; »(z) = g;(Ax), we obtain

gin(@ ) = (®@2)ic1, gin(@}) = (®n)i,  gi(Azy ) = (Pa)ig,
gin@ry) =ric1, gia(@hg) = ris1,

where 7; = Ag;. Thus, (®y), = AP, (Ax) is a solution to the equation. Lemma 4.2
tells us that the solution is unique, and therefore, we can conclude that

(®2), = AP, (A).

Returning to the estimate of the coefficients ai,i in (66), we evaluate the polyno-
mial R (z,y) = QiM% (%, %) at p;. In a fashion similar to (61),

0Q* L (B) 0Q?
OR? e, 8 VA 17, 8 rpiy 1 pi
Y R S ¥ (X) =5 (N ( )\) ®a(ps),

where the last equality follows from (67). Notice also that
R (p;) =0,
and therefore, by uniqueness,
Rd(xv y) = Qiﬁ(xv y)
We expand the equality above using (66),

2 as (%) (2)q (%)Sa (§ %) =" als (B) @upo)Sale, ).

a,t

> G)n(a)l at (E) a(p:)S Z at; (B) @a(ps)Sa(w,y).
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Repeating calculations (64), (65) using the previous equation,
1
2294 50.0) = 320 3 ) @t
which completes the required proof.

REFERENCES

(1] I. Arras, J. Dym, M. M. GupTa, AND R. P. MANOHAR, Mutigrid solution of automatically
generated high-order discretizations for the biharmonic equation, SIAM J. Sci. Comput.,
19 (1998), pp. 1575-1585.

[2] M. ARAD, A. YAKHOT, AND G. BEN-DOR, A highly accurate numerical solution of a biharmonic
equation, Numer. Methods Partial Differential Equations, 13 (1998), pp. 375-391.

[3] D. N. ARNOLD AND F. BREzzI, Mized and nonconforming finite element methods: Implemen-
tation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér., 19 (1985),
pp. 7-32.

[4] B. BIALECKI, A fast solver for the orthogonal spline collocation solution of the biharmonic
Dirichlet problem on rectangles, J. Comput. Phys., 191 (2003), pp. 601-621.

[5] M. BEN-ARTzI, J.-P. CROISILLE, D. FISHELOV, AND S. TRACHTENBERG, A pure-compact scheme
for the streamfunction formulation of Navier-Stokes equations, J. Comput. Phys., 205
(2005), pp. 640-664.

[6] M. BEN-ARTzI, J.-P. CROISILLE, AND D. FISHELOV, Convergence of a compact scheme for the
pure streamfunction formulation of the unsteady Navier-Stokes system, STAM J. Numer.
Anal., 44 (2006), pp. 1997-2024.

[7] M. BEN-ARTzI, J.-P. CROISILLE, AND D. FISHELOV, A fast direct solver for the biharmonic
problem in a rectangular grid, SIAM J. Sci. Comput., 31 (2008), pp. 303-333.

[8] M. BEN-ARTzI, I. CHOREV, J.-P. CROISILLE, AND D. FISHELOV, The biharmonic operator in
irreqular planar domains: Convergence of a compact scheme, in preparation, 2009.

[9] P. BJORSTAD, Fast numerical solution of the biharmonic dirichlet problem on rectangles, STAM
J. Numer. Anal., 20 (1983), pp. 59-71.

[10] S. C. BRENNER, An optimal-order nonconforming multigrid method for the biharmonic equa-
tion, STAM J. Numer. Anal., 26 (1989), pp. 1124-1138.

[11] R. H. CuaN, T. K. DELILLO, AND M. A. HORN, The numerical solution of the biharmonic
equation by conformal mapping, SIAM J. Sci. Comput., 18 (1997), pp. 1571-1582.

[12] G. CHEN, Z. L1, AND P. LIN, A fast finite difference method for biharmonic equations on
irreqular domains and its application to an incompressible Stokes flow, Adv. Comput.
Math., 29 (2008), pp. 113-133.

[13] P. A. CIARLET AND P. G. RAVIART, General Lagrange and Hermite interpolation in R™ with
applications to finite element methods, Arch. Rational Mech. Anal., 46 (1972), pp. 177-199.

[14] P. A. CIARLET AND P. G. RAVIART, A mized finite element method for the biharmonic equation,
in Mathematical Aspects of Finite Elements in Partial Differential Equations, Academic
Press, New York, 1974, pp. 125-145.

[15] C. DAVINI AND I. PITACCO, An unconstrained mized method for the biharmonic problem, SIAM
J. Numer. Anal., 38 (2001), pp. 820-836.

[16] E. J. DEAN, R. GLOWINSKI, AND O. PIRONNEAU, [terative solution of the stream function-
vorticity formulation of the Stokes problem, applications to the numerical simulation of
incompressible viscous flow, Comput. Methods Appl. Mech. Engrg., 87 (1991), pp. 117-155.

[17] L. W. EHRLICH AND M. M. GUPTA, Some difference schemes for the biharmonic equation,
SIAM J. Numer. Anal., 12 (1975), pp. 773-790.

[18] W. F. FINDEN, An error term and uniqueness for Hermite—Birkhoff interpolation involving
only function values and/or first derivative values, J. Comput. Appl. Math., 212 (2008),
pp. 1-15.

[19] A. GREENBAUM, L. GREENGARD, AND A. MAYO, On the numerical solution of the biharmonic
equation in the plane, Phys. D, 60 (1992) pp. 216-225.

[20] M. M. GurTA AND R. P. MANOHAR, Direct solution of biharmonic equation using noncoupled
approach, J. Comput. Phys., 33 (1979), pp. 236-248.

[21] Z. JoMAA AND C. MACASKILL, The embedded finite difference method for the Poisson equation
in a domain with an irregular boundary and Dirichlet boundary conditions, J. Comput.
Phys., 202 (2005), pp. 488-506.

[22] J. KUNTZMANN, Méthodes numériques. Interpolation, dérivées, Dunod, Paris, 1959.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



3108 BEN-ARTZI, CHOREV, CROISILLE, AND FISHELOV

[23] M.-C. Lar AND H.-C. Liu, Fast direct solver for the biharmonic equation on a disk and its
application to incompressible flows, Appl. Math. Comput., 164 (2005), pp. 679-695.

[24] J. LINDEN, A Multigrid Method for Solving the Biharmonic Equation on Rectangular Domains,

Notes Numer. Fluid Mech. 11, Vieweg, Braunschweig, 1985.
N. MATSUNAGA AND T. YAMAMOTO, Superconvergence of the Shortley- Weller approximation
for Dirichlet problems, J. Comput. Appl. Math., 116 (2000), pp. 263-273.

[26] A. MAYO, The fast solution of Poisson’s and the biharmonic equations on irregular regions,
SIAM J. Numer. Anal., 21 (1984), pp. 285-299.

[27] S. K. PANDIT, On the use of compact streamfunction-velocity formulation of steady Navier-
Stokes equations on geometries beyond rectangular, J. Sci. Comput., 36 (2008), pp. 219—
242.

[28] L. L. SCHUMAKER, Spline Functions: Basic Theory, 3rd ed., Cambridge University Press,
Cambridge, UK, 2007.

[29] B. ScHIFF, D. FISHELOV, AND J. R. WHITEMAN, Determination of a stress intensity factor using
local mesh refinement, in Mathematics of Finite Elements and Applications, Academic
Press, London-New York, 1979, pp. 55—64.

[30] R. K. SHUKLA AND X. ZHONG, Derivation of high-order compact finite difference schemes for
non-uniform grid using polynomial interpolation, J. Comput. Phys., 204 (2005), pp. 404—
429.

[31] J. W. STEPHENSON, Single cell discretizations of order two and four for biharmonic problems,
J. Comput. Phys., 55 (1984), pp. 65-80.

[25]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


