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SPECTRAL METHODS FOR THE SMALL, DISTURBANCE EQUATION
OF TRANSONIC FLOWS*

DALIA FISHELOVf

Abstract. Spectral methods for the small disturbance equation of transonic flows are developed. Two
schemes are presented. One of them is spectral in x and y and of second order in t. The other is spectral
in x and of second order in y and t. A method for extracting a highly accurate solution for problems
containing a discontinuity is presented. The solution is obtained by fitting the standard spectral approximation
to a sum of a step function and a truncated Chebyshev series. An application to the Burgers equation and
to the small disturbance equation is described.
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1. Introduction. The small disturbance equation describing transonic flows is
treated. This equation is a model for describing flow with Mach number close to 1
over a thin body. The steady-state equation is

(1.1) (kbx -1/2(y + 1)bx)x +4byy 0

and the time-dependent one is

2dptx=(kqbx-1/2(y+ 1)q)x + 4byy
(1.2)

where 4 is the velocity potential and k and y are positive constants.

If the Mach number far away from the body is close to 1, the solution of (1.1) or
(1.2) contains a shock (see [7], [20]). Moreover, the steady-state equation (1.1) is of
mixed type.

These equations were treated previously by E. Murman and J. Cole [20] and by
B. Engquist and S. Osher [7] (see also [3], [5], [15]), using finite differencing.

E. Murman and J. Cole [20] proposed a scheme for the steady-state equation
which is type dependent, i.e., in the hyperbolic region (supersonic flow) upward
differencing was used, while in the elliptic region (subsonic flow) centered differencing
was used. The difference equations are solved using relaxation procedure.

B. Engquist and S. Osher [7] modified this scheme in the region of interface
between supersonic and subsonic domains. The new scheme is nonlinearly stable and
does not admit solutions violating the entropy condition. It is of first order in the x
direction and of second order in the y and directions; at steady state the elliptic
domain becomes second order accurate in the x direction as well.

We offer a way of treating the small disturbance equation, using spectral methods.
As we are interested in the steady state only, we advance in time via a modified-Euler
scheme. In the x direction spectral differencing is used, while for the y variable we
choose either spectral differencing or finite differencing, depending on the number of
grid points we use in the y-direction. For a coarse grid (8 or 16 points) it is preferable
to use spectral differencing; for finer meshes we use finite differencing, due to the
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limiting time step. We may do it without affecting the accuracy too much as changes
spread slower in the y-direction.

Thus, we are looking for a scheme which is spectral in the x-direction and is
capable of capturing the shock.

In order to stabilize the scheme and capture the shock we add two filters every
time step. The first one is a filter offered by A. Majda, J. McDonough and S. Osher
18] which damps high modes in the Fourier space. The second filter is a second order
Shuman filter proposed by A. Hartan and H. Tal-Ezer [14]. The results, using these
filters, agree with those obtained by the Engquist-Osher (E-O) scheme, except near
the region of interface between the subsonic and supersonic regions. In the E-O
scheme, we used a grid which is four times finer in the x-direction than the spectral one.

The total time of computations depends on the shape of the airfoil. We have
checked two types of airfoils. For one of them the computational time for the spectral
method, as compared to the E-O scheme, is reduced by a factor of 1.3 and for the
other the factor is 3.3.

Since the Shuman filter may reduce the accuracy of the scheme, we removed the
two filters mentioned above for a few iterations (1-10) after reaching a steady state,
and applied a spectral filter. The latter fits the solution to a sum of a step function
with an unknown location and a smooth part. The smooth part is introduced by a
truncated Chebyshev series,

M

U d2S(x Xe)’ 2 bkTk(x)
k=O

where S(x, Xe) is a step function, having a jump at x Xe.

It turns out that we got the location of the shock very accurately, regardless of
the number of iterations for which we have removed the two filters applied until
reaching a steady state. The location of the shock agrees with that prescribed by the
E-O scheme, using a grid which is four times finer in the E-O scheme. Moreover, the
results are improved compared to those obtained before using the spectral filter,
especially in the neighborhood of the shock.

In 2 we present the differential problem describing transonic flows and in 3
we describe the boundary conditions. Two schemes are presented in 4. One is spectral
in x and y and of second order in and the other is spectral in x and of second order
in y and t.

In 5 we discuss the problem of approximating discontinuous solutions using
spectral methods and in 6 we present a method to extract a highly accurate solution
by fitting the standard Fourier approximation to a sum of a saw-tooth function and a
truncated Fourier series. In 7 we develop a similar method for a nonperiodic problem,
using a step function instead of a saw-tooth function. An application to the small
disturbance equation of transonic flows is described in 8 and numerical results are
presented in 9.

2. Presentation of the problem. The formulation of the small disturbance problem
of transonic flows is as follows:

(2.1) 2dptx ( kdpx
y + I )2 dP2 +4fft)yy,

(2.2) b(-1, y, t) 0,

(2.3) 0__Ox(1, y,t) =0,
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(2.4) ,60___(x, + 1, t) F + (x),
Oy

(2.5) ch(x, y, O)= cho(x, y).

The steady-state equation is

(2.6) 2 ch2x -I- 4tyy 0

where b is the potential velocity and k and y are positive constants.

The small disturbance equation of transonic flow is derived by asymptotic
expansion procedure applied to the exact equations of gas dynamic. The small para-
meter of expansion is taken to be the airfoil thickness ration r, and the flow is presented
as small disturbance on a uniform stream. The freestream Mach number Mo is
considered to approach 1 and -- 0, such that the transonic similarity parameter k,
k (1 M)/r2/3 is fixed. For more details about the expansion procedure, including
high order approximation see [6], [5].

3. Boundary conditions. We consider a bounded spatial domain -1 _<-x, y-< 1, in
which the airfoil is represented by

y(x) -1 + rF(x), Ixl < Xo, Xo<< 1.

Assume that the boundaries x +1, y 1 can be viewed as far away from the
airfoil, so that the disturbed flow there is zero. Hence, we have

b(-1, y,t)=0, u(1, y,t)=0, by(x,l,t)=0.

On the airfoil the flow is tangent to the body. Since in our asymptotic expansion
tends to zero, this condition should be applied at y 1, Ixl < Xo. Thus

by(x, -1, t) / F’(x), Xo,

0, Ixl > x0.

We should supply initial conditions for (1.1)

c(x, y, O)= 4,o(x, y).

For a description of the boundary conditions and the geometry of the problem,
see Fig. 8 at the end of 9.

4. Discretization in time and space.
4.1. Discretization in time. As in [7], we split the problem (2.1)-(2.5) into two

differential problems. The first one is

(4.1) u, -(f(U))x,

(4.2) u(1, y, t) 0

where u bx, and

f(u)=
y+l
4

Observe that (4.1) is in conservative form.
The second is

(4.3) btx 2qbyy,

U2 k
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(4.4) b(-1, y, t)=0,

(4.5) dy(X, + l, t) F + (x).

Problems (4.1)-(4.2) and (4.3)-(4.5) must be supplied by initial conditions.
One may present both problems above in the form

Ut-- G(u).

For the first one

and for the second

G(u)= Gl(U)=-xf(U)

O2u
G(u)= G2(u)= 2 | dx.

0Y2J_

Since we are interested in the steady-state only, we discretize u, in (4.1) or (4.3)
using a modified-Euler scheme.

ztG(u,u"+1/2= u"+
2

un+l--un+AtG(un+/2).
Denote by La(At), L2(At) the operators acting on u" to get U

n+l for (4.1)-(4.2)
and (4.3)-(4.5) respectively by the modified-Euler scheme, and use a Strang-type
approximation:

(4.6) u "+1= L1 L2 L2 L1

According to [9], the above discretization in time is accurate up to order two in
the time variable, even in the nonlinear case. One may also consider an implicit time
integration. In this work we are concerned essentially with treating the shock using
spectral methods. One may modify the spectral scheme to be implicit in time, and
compare the results to an implicit scheme using the Murman-Cole switch [3], or the
Engquist-Osher one [16].

4.2. Discretization in space. In both problems (4.1)-(4.2) and (4.3)-(4.5) deriva-
tives or integrals with respect to the spatial variables x ory appear. It is sufficient to
describe how we discretize Ou/Ox and -1 u(-) dz.

Let PNu be the Chebyshev-pseudospectral projection of u on the subspace of
polynomials of degree N or less.

N

uv(x, y)= Pvu(x, y)= a.(y) T.(x)
n=O

where

us(xi, y)= u(xi, y), xi cos-,
We discretize O/Ox by differentiating Psu(x, y), i.e.,

O<-_i<__N.

N NLu=PN-xPU= Y. a.(y)T’.(x)= Y. b.(y)T.(x)
n=O n=O
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where

bN(y) ----0, bN-I(y)=2NaN(y)

and

?kbk(y) bk+2(y)+2(k+ 1)ak+l(y), 0_<_ k__< N-2,

C-o c- 2

and

--1,

We apply LNU for every yj

I<=j<_N-1.

O<=j<-M.

Next, integration is done in a similar way, i.e.,

IN PN PNU d’r PN ., a,, (y TN ’) dr
n=0

N+I

=PN , d,,(y)T,,(x).
n-----0

By integrating the recurrence formula

2 T.(x)
T+,(x)
n+l

T_,(x)

we have

aN
dN+l-2(N+2)’

aN-1

2(N+ 1)’

1 an-1 an+l
d,,=- n

3_-<n__<N-1,

al a3d2
4 4’

a2
d ao 2

and we choose do such that

N+I., d,,(y)T,,(-1)=O.

Two types of schemes for the discretization of 02/Oy2 are possible. The first is
spectral in y, and the second is a finite-difference one. We may use the latter, since in
the transonic problem perturbations spread much slower in the y-direction, in com-
parison to those in the x-direction. In this way we avoid the stability limited time step

o(1)
for the spectral discretization, where M is the number of points in the y direction.
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Using finite differences in the y direction implies

o( )o
In this case we have

o u(x, y+)-2u(x, y)+ u(x, y_)uDM(y)u(x,y)=
Oy

9 (Ay)z

where Ay 2/M, yj 1 (Ay). j, 1 =<j -< M 1.
We apply DM(y) at

x xi cos-, O<-i<-_N-1.

Denote by U the approximation to u and by the approximation to b, where

Hence, the semidiscrete approximation to (4.1)-(4.2) is

(4.7)
0 U_ Lrq(x)f( U),
Ot

(4.8) U(-1, y,t)=O.

And for (4.3)-(4.5),
0

(4.9) 2Irv(x)D(y),
Ot

(x,, 1)-(x,, 1-Ay)
(4.10)

Ay
F+(x,), 0 <- <- N- 1,

b(x,, -l + Ay)-(x,, -1)
(4.11)

Ay
F_(x,), 0 <- <- N 1

where INU.
This scheme has spectral accuracy in the x-variable and is of second order in the

y-variable. For further analysis of the schemes above see [8].

5. Spectral methods for problems containing a discontinuity. In 4 we described
two schemes for the small disturbance equation, which have spectral accuracy in x
and are of second order in t. One of the schemes has spectral accuracy in y while the
other is of second order in y.

For low Mach numbers no shock appears in the solution; hence we apply the
scheme presented in (4.6)-(4.11) and show numerical results in Fig. 1.

When Mo begins to approach 1, shocks appear in the solution (see [20] and [7])
and we have to treat the discontinuity. To illustrate the problem caused by the
discontinuities, we treat a linear problem, though we shall apply our new method to
nonlinear problems as well.

Consider the problem
ut tu,

u(x,O)=uo(x)
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FIG. 1.- spectral (49, 17); ---, E-O (121, 17); quantity displayed is u(x,-1, t) at steady state,

M 0.57, airfoil given by (9.1).

where u belongs to a Hilbert space H, L is a spatial linear operator, x is a scalar or
vector spatial variable.

Denote by Ps a projection operator Ps :H - Bs, where Bs is a finite-dimensional
subspace Bs c H.

Let us be the solution of the semidiscrete problem

Ous PLPIU,
ot

UN(O) PNUo
where UN BN.

Then, by [13] and [4], for spectral methods

(5.1) Ilu(t)-Pu(t)llo<=CN-p+lllull,,, uHP()

were H"() is a Sobolev space, for whie u and its derivatives up to order iv are in

We invoke results in [4]:

(5.2) IIPNu Ul[o -< CN-Pllullp, u HP(D,).

Combining (5.1) and (5.2), we may deduce that

(5.3)

From the last inequality it is clear that when the solution u or its derivatives have
discontinuities, the rate of convergence of the approximated solution us to the exact
one u may be very poor.

In fact, it is well known (the Gibbs phenomenon) that for a piecewise smooth
function

away from the discontinuity and Psu is an oscillatory function.
Can we extract a piecewise C function from its oscillations ? In 19], M. S. Mock

and P. D. Lax have argued that for high order schemes moments are preserved within
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high accuracy (see also [17] for the high resolution of high order schemes). In 6
and 7 we show how we use this idea to deduce pointwise convergence by a postprocess-
ing. We refer the reader to [12] for another kind of postprocessing. We shall first
describe the method for a periodic problem, since in this case the theory is more
complete.

Our method is based also on the idea of S. Abarbanel and D. Gottlieb appearing
in [1] of looking for a solution which is a sum of a step function (or a saw-tooth
function in the periodic case) and a smooth function.

For a periodic problem S. Abarbanel and D. Gottlieb 1] minimized

H , uN(xj, t)- d2FN(Xj, xt) bk ei
j=0 k=-M

where urv is a pseudospectral-Fourier approximation to the differential problem. Fu
is a pseudospectral-Fourier projection of a saw-tooth function F(x, Xl) onto the sub-
space spanned by {e ik} k___, where

(5.4) F(x, xt) ! x’ 0 < X Xl,

x 2r, x <-_ x <- 2 7r.

The jump 2"n’d2, its location x and bk are unknowns.
For a nonperiodic problem, instead of a saw-tooth function, they looked for a

step function S(x, Xl)

0, -1 x Xl,
(5.5) S(x, x)

1, xt < x-< 1

and then minimized

H o-- UN(Xj, t)- d_SN(Xj, Xl)- bkTk(Xj)
= c =o

IMI < N and Szv(X, Xl) is the pseudospectral projection of S(x, Xl) onto the subspace
spanned by {Tk(X)}=o. Tk(X) is a Chebyshev polynomial of degree k. Note that is
real, not necessarily an integer.

We also refer the reader to theorems appearing in [2], which show that for spectral
Fourier methods moments are preserved within spectral accuracy and then show how
to fit the numerical solution to a sum of a step function (or a saw-tooth) and a smooth
part, based on preservation of moments.

5.1. Preservation of moments for the Galerkin-Fourier method. We consider first
the Fourier-Galerkin method. Define the inner product

(u, v) u(x,t)(x,t)dx.

Let u be a solution of

(5.6) u,=Lu, 0<x<27r, t>0,

(5.7) u(x, O) f(x),

(5.8) u(x, t) u(x + 27r, t)

where L is a linear operator

(5.9) L= a(x)--x, a(x)=a(x+27r)

and f(x) is a piecewise C function.
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Let Un be the Galerkin-Fourier approximation of u satisfying (5.6)-(5.9), i.e., uN
satisfies

(5.10)

(5.11)

(5.12)

where

UN Lnu,

u(x, O)= Pf(x),

u(x, t) un(x + 27r, t)

(5.14)

(5.15)

(5.16)

where

Lu PuLPu
and Pu is the Galerkin-Fourier projection defined in 11 and 13].

THEOREM 5.1 (S. Abarbanel, D. Gottlieb and E. Tadmor [2]). Let u(t) satisfy
(5.6)-(5.9) and let uN(t) satisfy (5.10)-(5.12) where f(x) is a piecewise C; then

(5.13) (un(T), v(T))=(u(T), v(T))+E

for every v HV(O, 27r) and E satisfies

IElfN-+llvll.
5.2. Preseation of moments for the Fourier-pseudospectral method. Consider now

the Fourier-pseudospectral method.
Define the discrete inner product

2N-1

Z u(x)(x)(u, v)
N 2=o

where x=j/N, 0j2N-1.
Let u be a pseudospectral-Fourier approximation to (5.6)-(5.9), i.e., u satisfies

(u),=Lu, 0<x<2m t>0,

u(x,o)=ef(x),
u(x, t) u(x + 2m t)

L PsLP
and pO and P are the Galerkin and pseudospectral-Fourier projection respectively
defined in [13].

THEOREM 5.2 (S. Abarbanel, D. Gottlieb and E. Tadmor [2]). Let u(t) be the
solution of (5.6)-(5.9) and let Ul(t) be a solution of (5.14)-(5.16).

Assume that (5.14)-(5.16) is stable. Then

(5.17) (u(T), v(T)) (u(T), v( T))v + E
where

6. Fitting the approximated solution to a saw-tooth function (periodic problem). In
the previous section we have quoted theorems stating that spectral-Fourier methods,
applied to linear problems, preserve moments within spectral accuracy.

The question is how to extract pointwise convergence from that property.
For a periodic problem (5.6)-(5.9), we assume that the nonsmooth part of the

problem is a saw-tooth function and approximate the smooth part by a truncated
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Fourier series, i.e.,

M

(6.0) u(x, t)-- d2F(x, x,)+ Z bk e
Ikl--0

where F(x, x) is a saw-tooth function defined in (5.4).
If there are other types of singularities, we may add other singular functions to

the sum (6.0), i.e.,

M M

u(x, t)" , dkFk(X, Xl)+ Y. bk e ik’

Ikl--0 Ikl=0

where Fo(x, x) F(x, x) and Fk(X, x) are periodic functions, they and their derivatives
up to order k- 1 are continuous, and their kth derivative has a discontinuity at xt. In
this paper a representation similar to (6.0) for nonperiodic problems was used, but it
is possible to include more nonsmooth terms as suggested in order to improve the results.

In (6.0) the location of the jump x, its magnitude 2r d2 and the coefficients bk
are prescribed using preservation of moments.

For the Galerkin-Fourier method, we substitute (6.0) for (5.13) and choose the
smooth functions v(T) in (5.13) to be e ij’, ]jl =0, ,M+2 and M such that

M<_N-2.

The following set of equations results"

(d2F(x, Xl)+ ’. bk e ikx) e --ijx dx uN(x) e-ijx dx

for IJl- 0, , M+ 2.

For the pseudospectral-Fourier method, we get (using (5.17) instead of (5.13))

(6.1)

2N-1 M 2N-1_, (d2FN(Xn, Xl)-" Z bk e ikxn) e -ijxn . UN(Xn) e-ijx"

=0 Ikl =0 n-0

for [j[-0,..., M+2

where

7-n
xn- N’ 0=< n_-<2N- 1,

and FN(x, Xl) is the pseudospectral-Fourier projection of F(x, x), i.e.,

N

Fs(x, Xl)= Y’, Ak(X,) e ’k,
(6.2)

Ikl=0

Ao=- l-N+

Ak_
Tr 2(1--e-k(t+l)/N 7rk )2Nct 1-e-’/ +cot-I l[klN,

(6.3)
ct=l forlllN-1, c=2 forl/l=S.

Letting be real, though not necessarily an integer, enables us to locate the jump
within spectral accuracy. It is clear that its profile would be sharp.
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Equations (6.1) can be written in a simpler form, but we shall write this simpler
form in detail for the nonperiodic case, because of the similarity of these two cases,
and since our goal in this work is to apply the method for the nonperiodic small
disturbance equation of transonic flow.

7. Fitting the approximated solution to a step function-(nonperiodic problem). We
now develop a similar method to the one presented in 6 for a nonperiodic problem,
using Chebyshev polynomials. Assuming that the nonsmooth part of the solution is a
step function, we search for a solution which is a sum of a step function and a truncated
Chebychev series, i.e.,

M

(7.0) U(X, t) d2S(x Xl) -- bkTk(X)
k=0

where S(x, x) is a step function defined in (5.5).
The location of the jump x, its magnitude d2 and the coefficients bk are prescribed

using preservation of moments. For a nonperiodic case, we choose the smooth function
v(T) to be T(x), j--0,..., M+ 2, and M such that

M<__N-2.

For the Galerkin-Chebyshev method we interpret (5.13) in the following way:

S(x, x,l + br(xl r(xl( xl-/ ax u(x(x( x-/ ax
-1 k=O -1

for j=0,..- ,M+2.

For the pseudospectral-Chebyshev method, we require that

=0 Cn k=0 n=0 Cn
(7.1)

for j=0,.-. ,M+2
where

c,=l forl=<j_-<N-1, c,=2 forj=0, N,

7rn
cos 0--< n =< N.N’

SN(x, x) is the pseudospectral-Chebyshev projection of S(x, Xl), i.e.,
N

SN(x, x,) _, Ak(X,) Tk(X)
k=0

where x cos (Tr/N)

1 1
(7.2) Ao _--z l, A sin rl,

N 2N

1 kcr
(7.3) Ak=--sin---l/sin2N l<k<N-1.

Equations (7.1) form a set of M + 3 equations for the M + 3 unknowns

d2, Xl, bo, b.
We shall now write down the system of equations resulting from (7.1).
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Define

--u(xj, t)Tk(xj),(7.4) Fk( t)
CkN j=o Cj

We use orthogonality properties
s 1
--T(x)Tk(X)=O, kl,

=o c
and the following system of equations results from (7.1):

(7.5) doAo+ bo Fo,

(7.6) dEAk + bk Fk,

(7.7) dEAM+ FM+I,

(7.8) dEA+2 FM+.

l<-k<-M,

k=0,...,N.

O<=k,l<-N

There is a solution to the system (7.5)-(7.8) if and only if

(7.9) FM+IAM+2 FM+2AM+I.

Equation (7.9) is a nonlinear equation for x, which is solved iteratively.
Then, we get

d2 FM+I/AM+I,

bo Fo- d2Ao,

bk Fk d2Ak, 1 <- k <- M.

Therefore, the position of the jump x, its magnitude d2 and the smooth part of
the solution

., bkTk(X)
k=O

are prescribed within spectral accuracy, provided that the singular part of the solution
is a step function.

8. Application to the transonic problem. In our approximations to the solution of
the transonic problem, we are interested in the solution in the steady state. Using the
scheme presented in 4 we have a nonstable procedure due to nonlinear instabilities
which appears in the presence of a shock for large enough.

In order to stabilize the procedure we have used two filters ((a) and (b)).
(a) A. Majda, J. McDonough and S. Osher in [18] have offered a procedure for

damping high modes in the approximated solution.
If

(8.1)

where

(8.2)

N

u(x)= Z akTk(X),
k=O

N

a(x)= E a,,T,,(x)
k=O

{1,ak _a(k_ko)4e
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and ko is an integer which depends on the strength of the shock, we choose

ko"N.
This is a very weak filter since there is no change in the low modes.
In [18] it was proved that for linear problems, this filter insures stability for the

Fourier method. Moreover, if we also smooth the initial data in a certain way, (see
[18, preliminary section]) this filter leads to a spectral accurate approximation away
from a set of discontinuities of the exact solutions.

(b) The smoothing described in (a) was not sufficient for our nonlinear problem.
Therefore, we applied every time step a Shuman filter as well.

Denote by Uj"k the values of the approximated velocity u(x, y) in the x-direction
at the point (xj, Yk) at time tn. The filtered values j"k are given by

(8.3)

The smoothing factors (R) are chosen such that they are small in the smooth part
of the solution and become large (0(1)) only in the neighborhood of the discontinuities.

Following Harten and Tal-Ezer [14], we choose

I(u+2.k(8.4)

where 0 </3 < 1.
We used/3 0.01 in our calculations. This filter was also used by D. Gottlieb, L.

Lustman and S. Orszag [ 10]. It reduces the order of accuracy of our scheme. But our
strategy was first to reach a steady state and afterwards to construct a highly accurate
approximation.

After achieving a steady state, we omitted the two filters described above for a
few iterations (1-10) and applied the spectral filter presented in (7.5)-(7.8).

To conclude:

(8.5) We first worked out the scheme described in (4.6)-(4.11).

(8.6) At each time step applied the filters described in (8.1)-(8.2) and (8.3)-(8.4).

(8.7) After reaching a steady state we removed the above filters and applied a
spectral filter presented in (7.5)-(7.8).

9. Numerical results. We first show results for the "inviscid" Burgers’ equation

u,-,(U2)x =0,
u(1, t)= 1,

u(-1, t) =-1,

u(x,O)=x.

This is a nonperiodic problem, for which one can easily verify that a shock appears
in the solution at 1. The exact solution for > 1 is u(x, t)=-1 for negative x, and
u(x, t) 1 for positive x. In the numerical solution 9/dt is approximated by a modified
Euler scheme and cg/dx by a polynomial pseudospectral method described in 4 with
N 32. At every time step we applied the step function filter (7.5)-(7.8) and got the
following results at 2.176 (see Table 1).

Next, we approximated the solution of the small disturbance problem of transonic
flows around a symmetric airfoil, described in 2. The computational domain is -1 -< x,
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TABLE

.9952 .51 (-5)

.9239 .14 (-4)

.7730 .90 (-5)

.5556 .53(-5)

.2903 .39 (-4)

.0000 .37 (-3)
-.2903 .18 (-4)
-.5556 .89(-5)
-.7730 .85 (-5)
-.9239 .19 (-4)
-.9952 .37 (-5)

y-< 1. The airfoil is located at -Xo-<-x<-_Xo, y=-l. We divided the domain into three
parts: -1 -<_ x -< -Xo, -Xo=< x =< Xo, Xo -< x -< 1, and approximated uN in each subdomain
by a Chebyshev polynomial. That gives a natural refinement of the grid near the tips
of the airfoil. Typically Xo 1/2 in our calculations.

The shape of the airfoil is given by

y -1 + ’F(x), Ixl-<- Xo.
Note that in the expansion procedure -- O; hence the airfoil is represented by

the segment -Xo<=X<-Xo, y=-l. The shape of the airfoil only affects the boundary
condition applied to by on this segment. For

(9.1) F(x) ko cos 1.57rx, Ixl-<- Xo,
where ko was chosen to be (2/37r),

F’(x)=-l.57rkosin 1.57rx, Ixl<xo,
0, Ixl > Xo.

Note that by is discontinuous at x +Xo.
The calculations were continued until steady state was approximated, i.e., until

maxj,k ]Uk+1 Ujkl <__ 10-3.(9.2) e
At

For all the numerical results displayed for the small disturbance equation (Figs.
1-7) we used second order finite differencing in y (as in the E-O scheme), therefore
the number of grid points in the y direction is identical (17) for both schemes. In Figs.
1-7 the quantity presented is u(x,-1, t) as c, i.e., the steady-state velocity in the
x direction on the airfoil.

We first ran the scheme for low Mach numbers. In this case no shock appears,
so we were able to apply the Strang-type scheme (4.6) described in 4 for marching
in time, ad (4.7)-(4.11) for discretization in the spatial variables. There was no need
to add filters.

As an example, Fig. 1 contains the results for M=.57, z =0.1, which implies
k 2.89. The airfoil is presented by (9.1) and the grid is of (49x 17) points. The results
are compared to those obtained by the E-O scheme [7]. One should take a grid of
(121 x 17) points in the E-O scheme to get similar results to those obtained by the
spectral method, with a grid of (49 x 17) points.
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While increasing Moo, we were able to use the same scheme up to Moo approximately
0.85. For Moo> 0.85 we added filters to capture the shock. In Figs. 2-5 we present
results for Moo= .9, "- .1 which implies k -.822 for two types of airfoils described in
(9.3) and (9.1). As a shock appears in the solution, we have used the procedure
described in the previous section ((8.5)-(8.8)).

We have carried out the calculation for two shapes of airfoils. The first is presented
by

where

y -1 + zF(x),

(9.3) F(x)=kocos-l.5crx, ko =.8 (3-) 2

The second is presented in (9.1). Notice that for (9.3)

F’(x) 37rko sin 3zrx, Ix] < Xo,- 0, Ixl > Xo

by is continuous at x +Xo.
The results for this case are presented in Fig. 2. The location ofthe shock prescribed

by the spectral method was

x .08127.

In the E-O scheme a(u)= (y + 1)u- k is positive for x2 .08163 and is negative for
x3--.0918. According to a one-dimensional analysis done in [7], the shock might be

.80--

.67

.54

.41

.28

-.0
-.5 -.4 -.3 -.2 -.1 0.0

X-AXIS
.2 .3 .4 .5

FIG. 2. spectral (49, 17), *--, E-O 121, 17), quantity displayed is u x, 1, t) at steady state, M 0.9,
airfoil given by (9.3).
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.80

.67

.41

.28

.15

.02

-.11

.24

-.37

.50
,5 .4

X-AXIS
FIG. 5. o--, spectral (49, 17), *--, E-O (197, 17), quantity displayed is u(x, -1, t) at steady state, M: 0.9,

airfoil given by (9.1).

spread over two grid points and therefore might occur between their neighboring
points" Xl .07143 and x4 .102.

Next, we increased the number of grid points in the E-O scheme to 197 17.
Still the spectral location of the shock agrees with that prescribed by the E-O scheme.
Moreover, the results are closer to the spectral ones (in comparison to the coarser
finite difference grid), especially near the shock. These results are presented in Fig. 3.
Results obtained before using the spectral filter are presented in Fig. 6.

In Table 2 we compare the number of iterations NI to reach a steady state by the
(197 x 17) E-O scheme and the spectral one. The total computational time T is compared
as well.

The next example is an airfoil whose shape satisfies (9.1). In this case 4)y is
discontinuous at x- +x0. The results are shown in Fig. 4. The shock location found
by the spectral method is

x .1291,

which is between the two E-O grid points .1 .122, X2 .132, corresponding to the
197x 17 grid. There are some differences in the results near x=+xo, due to the
discontinuity of y. In order to get better results we should add continuous functions
which have discontinuous derivatives to the sum (7.0). The number of grid points
taken for the E-O scheme is 121 x 17 in Fig. 4 and 197 x 17 in Fig. 5. Note that for
this shape of airfoil too there is more agreement with the spectral results in the finer
E-O grid, especially near the shock. Results obtained before using the spectral filter
are presented in Fig. 7.
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.80-

.67’

.54

.41

.28

.15

.02

-.11

-.37

..5 4
..I..

-.3 -.2 -.1 0.0 .2 .3 .4 .5

FIG. 6. o--, spectral beforefiltering (49, 17), ,m, E-O (197, 17), quantity displayed is u(x, -1, t) at steady
state, Mo 0.9, airfoil given by (9.3).

TABLE 2

E-O Spectral

grid 197x 17 49x 17
NI 4,810 6,007
T 6,335 4,938

In Table 3 we compare the same quantities as in Table 2 for the airfoil presented
in (9.1). In this case NI and T corresponds to el 10-2 in (9.2).

10. Conclusions. Both analytic and computational evidence show that spectral
methods can be applied efficiently to the small disturbance equation of transonic flows.

Moreover, the method presented in 7 for fitting the standard spectral approxima-
tion to a sum of a step function and a truncated Chebyshev series is applicable to

TABLE 3

E-O Spectral

grid 197 x 17 49x 17
NI 13,660 6,607
T 17,920 5,432
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.80

.67

.54

.41

.28

.02

.37

.50
.5 .4.

X .15

-.3 -.2 -.1 0.0 .2 .3 .4 .5

X-AXIS

FIG. 7. o--, spectral beforefiltering (49, 17), *--, E-O (197, 17), quantity displayed is u(x, -1, t) at steady
state, M 0.9, airfoil given by (9.1).

*(-1,y,t) -Xo

ty=O

*y(X,l,t) 0

xo

,,--F’(X) ,y--O
the body

,x(l,y,t)

FIG. 8. Description of boundary conditions. The body is represented by the segment y -1, -x =< x-<_ x
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other problems, such as Burgers’ equation, which contain a discontinuity. If the
nonsmooth part of the solution is a step function, the method has spectral accuracy.

Acknowledgment. I would like to thank my thesis supervisor, Professor David
Gottlieb, for his stimulating ideas.
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