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Abstract. We present a fast direct solver methodology for the Dirichlet biharmonic problem
in a rectangle. The solver is applicable in the case of the second order Stephenson scheme [34] as
well as in the case of a new fourth order scheme, which is discussed in this paper. It is based on
the capacitance matrix method ([10], [8]). The discrete biharmonic operator is decomposed into
two components. The first is a diagonal operator in the eigenfunction basis of the Laplacian, to
which the FFT algorithm is applied. The second is a low rank perturbation operator (given by the
capacitance matrix), which is due to the deviation of the discrete operators from diagonal form. The
Sherman-Morrison formula [18] is applied to obtain a fast solution of the resulting linear system of
equations.
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1. Introduction. The accurate resolution of linear fourth order elliptic prob-
lems, such as the biharmonic equation, is of great importance in many fields of ap-
plied mathematics. Specific examples are the computation of the streamfunction in
incompressible fluid dynamics or in problems in elasticity theory. From the numerical
point of view, two essential issues are the accuracy of the scheme and the availability
of a fast solver.

Finite-difference schemes for the biharmonic problem on rectangles fall broadly
into two categories: Coupled and non-coupled schemes. In coupled schemes, the prob-
lem is decomposed into two Poisson problems, combined with boundary conditions.
Classical works include [32], [33], [14], [28]. When one applies such a scheme to the
Dirichlet biharmonic problem, one encounters difficulties in the design of artificial
boundary conditions for the first Poisson problem, whereas the second one is overde-
termined. In the fluid dynamics context, this question is related to the design of an
artificial boundary condition for the vorticity of the flow.

Here we focus on a non-coupled scheme, namely the nine point (second order)
Stephenson scheme introduced in [34]. This scheme has been successfully applied to
the numerical simulation of the time-dependent Navier-Stokes system (see [17], [4],
[3]). Its main advantage, in contrast with the usual thirteen point scheme (see e.g.
[24, 12, 10, 8]), is that it allows the construction of a time-dependent solver, which
is closely related to the partial differential problem. A crucial feature of the scheme
is the absence of artificial boundary conditions on the vorticity. This permits the
construction of a compact scheme, which handles near boundary points in the same
manner as internal points (see also [20], [19]). The solution of the linear system of
discretized equations requires a fast solver.
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The main goal of this paper is to present a fast solver for compact discretizations
of the biharmonic problem. This is done by the capacitance matrix formulation. In
the first part of the paper we construct the capacitance matrix formulation for the
Stephenson scheme on a rectangular grid. We show how it is efficiently applied to the
solution of the discrete biharmonic problem.

In the second part of the paper, a fourth order accurate extension of the Stephen-
son scheme is introduced. The new fourth order discrete biharmonic equation is solved
using a modified version of the second order algorithm. The key feature of the scheme
consists of simple representation of the capacitance matrix in the eigenfunction basis
of the Laplacian. It enables us to efficiently compute the capacitance matrix and to
solve the resulting low-rank linear system using a diagonal preconditioned conjugate-
gradient method. In addition, the gradient and the Laplacian of the solution of the
biharmonic problem are obtained as byproducts of the solver.

To put this paper in the context of existing literature, we make the following
remarks.

• A fourth order version of the Stephenson scheme was introduced in [34]. A
multigrid solver for this scheme is devised in [1]. In the context of the equation
∆2ψ = f , it uses the values of f at five points (in the nine point stencil). In
contrast, our scheme uses only the value of f at the center point. When f
itself is a function of ψ (e.g., ∆ψ), this leads to a significant simplification of
the algorithm.

• A scheme based on orthogonal spline collocation has been investigated in [35],
[26], [5]. This scheme is fourth order accurate and the linear system is solvable
at a cost of O(N2 Log(N)) operations, where N is the number of grid points
in one direction. An almost block diagonal solver, [16], [2], is used as a basis
of the fast solver in [5].

• The algorithm presented here runs parallel the lines of the capacitance matrix
principle of Golub (appendix of [15]), Buzzbee and Dorr [10]( thirteen points
scheme, O(N3) solver), Bjørstad [8](thirteen points scheme, O(N2) solver),
Bjørstad and Tjøstheim [9], and Legendre or Hermite Galerkin scheme of
Shen [30], [31], O(N3) solver. It consists basically of decomposition of the
matrix, which represents the scheme, into a sum of a diagonal operator in the
eigenfunction basis of the (five point) Laplacian, and of a low-rank pertur-
bation, called the capacitance matrix ([11]). Our algorithm is based on two
ingredients: (i) application of the Sherman-Morrison formula with a low-rank
capacitance matrix, (ii) resolution of the diagonal component in the inversion
formula by the FFT method (see [7] for a similar application). We emphasize
the fact that our algorithm is a direct (whereas in [21], [22] it is an iterative)
solver.

The outline of the paper is as follows. In Section 2 we recall the second order
Stephenson scheme, using the notation introduced in [4], [3]. In Section 3, we develop
our fast solver for the biharmonic problem, including detailed algebraic derivation
for the nine point second order Stephenson operator. Section 4 is devoted to the
new fourth order scheme, for which a similar fast algorithm is developed. Finally, in
Section 5, we represent numerical results for both the second order and the fourth
order schemes. The problems dealt with are mixed biharmonic-Laplacian problems,
subject to non-homogeneous Dirichlet boundary conditions. Computing efficiency are
reported for several fourth order problems. The computational cost appears to be
O(N2 Log(N)), where N is the number of grid points in each direction. We note that
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a typical computing time of the solver for a 1024× 1024 grid is ten seconds on a PC.

Finally, let us mention the work [29] for a comprehensive history of the biharmonic
problem in two dimensions.

2. Notation.

2.1. Finite difference operators. We consider a square Ω = (0, L)2 with a
uniform grid xi = ih, yj = jh, i, j = 0, ...N , h = 1/N . The internal points are
xi = ih, yj = jh, for 1 ≤ i, j ≤ N − 1. Denote by l2h,0 the space of one-dimensional

discrete functions (ui) defined on xi = ih, 1 ≤ i ≤ N − 1. In two dimensions, L2
h,0 is

the space of discrete functions (ψi,j) defined on xi = ih, yj = jh, for 1 ≤ i, j ≤ N −1.
The spaces l2h,0, L

2
h,0 are respectively equipped with the scalar products

(u, v)h = h
N−1∑

i=1

uivi, ∀u, v ∈ l2h,0 ; (u, v)h = h2
N−1∑

i,j=1

ui,jvi,j , ∀u, v ∈ L2
h,0. (2.1)

For discrete function in L2
h,0 we define the following centered operators





δxψi,j =
ψi+1,j − ψi−1,j

2h
, δ2xψi,j =

ψi+1,j + ψi−1,j − 2ψi,j

h2

δyψi,j =
ψi,j+1 − ψi,j−1

2h
, δ2yψi,j =

ψi,j+1 + ψi,j−1 − 2ψi,j

h2
.

(2.2)

and the mixed discrete derivative operator δxy

δxyψi,j = δxδyψi,j =
ψi+1,j+1 − ψi−1,j+1 − ψi+1,j−1 + ψi−1,j−1

4h2
, 1 ≤ i, j ≤ N−1.

(2.3)
Consider the following fourth order partial differential problem in the square Ω =
(0, L)2.

{ (
− a∆ + b∆2

)
ψ(x, y) = f , (x, y) ∈ Ω

ψ(x, y) = 0 ,
∂ψ

∂n
(x, y) = 0 , (x, y) ∈ ∂Ω,

(2.4)

where a ≥ 0, b > 0 are two real constants. Problem (2.4) is approximated by the
scheme





(
− a∆h + b∆2

h

)
ψi,j = fi,j , at interior points (i, j)

ψi,j = 0 ,

(
∂ψ

∂n

)

i,j

= 0, at boundary points (i, j),
(2.5)

where

• ∆hψi,j is the five points discrete Laplacian

∆hψi,j = δ2xψi,j + δ2yψi,j , 1 ≤ i, j ≤ N − 1. (2.6)

• and ∆2
h is the nine points discrete biharmonic (Stephenson approximation),

defined by

∆2
hψi,j = δ4xψi,j + δ4yψi,j + 2δ2xδ

2
yψi,j . (2.7)
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δ2xδ
2
y is the nine points operator defined by δ2xδ

2
y = δ2x ◦ δ2y. The finite difference

operators δ4x, δ4y (introduced in [4], [3]), approximating ∂4

∂x4ψ and ∂4

∂y4ψ are the one-
dimensional Stephenson operators





δ4xψ =
12

h2

(
δxψx − δ2xψ

)

δ4yψ =
12

h2

(
δyψy − δ2yψ

)
.

(2.8)

For any ψ ∈ L2
h,0, the Hermitian gradient (ψx, ψy) ∈ (L2

h,0)
2 in (2.8) is defined by the

following relations between ψ and ψx and between ψ and ψy.





(I +
h2

6
δ2x)ψx,i,j = δxψi,j , 1 ≤ i, j ≤ N − 1

(I +
h2

6
δ2y)ψy,i,j = δyψi,j , 1 ≤ i, j ≤ N − 1.

(2.9)

The latter form fourth order approximation for ψx for given values of ψ and fourth
order approximations for ψy for given values of ψ. The two operators δ4xψ, δ4yψ are

fourth order approximations for ∂4

∂x4ψ and ∂4

∂y4ψ in the Fourier sense (see [3]). Then,

the numerical scheme (2.5) may be written in the following way. Find ψi,j ∈ L2
h,0

such that
(
−a∆h + b∆2

h

)
ψi,j = fi,j . (2.10)

The operator −a∆h + b∆2
h is second order accurate because of the second order accu-

racy of the mixed term δ2xδ
2
y in (2.7) and of the five points Laplacian (2.6). However,

we will see in Section 4 that the order of accuracy can be easily increased to fourth
order by a slight modification of ∆2

h and ∆h, keeping a pointwise source term fi,j .

2.2. Matrix operators. We relate the bidimensional finite difference operators
acting in L2

h,0 with matrix operators of size (N − 1) × (N − 1) (N ≥ 2), acting on

a vector ui,j ∈ L2
h,0. Most of those operators are obtained as Kronecker products of

(N − 1) × (N − 1) matrices.
We use the indexing of ui,j ∈ L2

h,0 as the column vector

U =

[
u1,1, ...u1,N−1;u2,1, ...u2,N−1; ...;uN−1,1, ...uN−1,N−1

]T

∈ R
(N−1)2 (2.11)

The bottom ordering of vector U ∈ R
(N−1)2 is obtained by letting the index j vary

first. The notation “vect” stands indifferently for the operator which transforms any
one-dimensional discrete function ui ∈ l2h,0 to the vector U = [u1, .., uN−1]

T ∈ R
N−1

or any two-dimensional discrete function ui,j ∈ L2
h,0 to the vector U defined by (2.11)

(see [25]). 1 Recall that the Kronecker product of the matrices A ∈ Mm,n and
B ∈ Mp,q is the matrix A⊗B ∈ Mmp,nq defined by

A⊗B =




a1,1B a1,2B ... a1,nB
...
...

am,1B a(N−1),2B ... am,nB


 . (2.12)

1Actually , in [25], the ordering of U is by lines.
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Let us define several (N−1)×(N−1) matrices that will be useful for the representation
of our fast algorithm.

• Centered one-dimensional Laplacian matrix
The symmetric positive definite matrix T is the standard tridiagonal matrix
related to the 3 points Laplacian

Ti,m =





2, m = i
−1, |m− i| = 1
0, |m− i| ≥ 2

T =




2 −1 0 . . . 0
−1 2 −1 . . . 0
...

...
... . . .

...
0 . . . −1 2 −1
0 . . . 0 −1 2



. (2.13)

• The symmetric positive definite matrix P is deduced from T by

P = 6I − T, (2.14)

or equivalently by

Pi,m =





4, m = i
1, |m− i| = 1
0, |m− i| ≥ 2

, P =




4 1 0 . . . 0
1 4 1 . . . 0
...

...
... . . .

...
0 . . . 1 4 1
0 . . . 0 1 4



. (2.15)

We also define P̄ = I − 1
6T .

• The antisymmetric matrix K = (Ki,m)1≤i,m≤N−1 is given by

Ki,m =

{
sgn(m− i), |m− i| = 1
0, |m− i| 6= 1.

, K =




0 1 0 . . . 0
−1 0 1 . . . 0
...

...
... . . .

...
0 . . . −1 0 1
0 . . . 0 −1 0



.

(2.16)
• For all 1 ≤ i ≤ N − 1, ei ∈ R

N−1 is the column vector of the canonical basis
of R

N−1. The (N − 1) × (N − 1) matrix Ei is defined by

Ei = eie
T
i , 1 ≤ i ≤ N − 1 (2.17)

For all u ∈ l2h,0 and U = vect(u) ∈ R
N−1,

(EiU)j = δi,jUj, 1 ≤ i, j ≤ N − 1 (2.18)

with δi,j the Kronecker symbol. If U = vect(u), Ux = vect(ux) ∈ R
N−1 then the

following identities hold.
• One-dimensional second order derivative δ2x

− vect(δ2xu) =
1

h2
TU. (2.19)

• One-dimensional centered gradient δx

vect(δxu) =
1

2h
KU. (2.20)
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• One-dimensional hermitian gradient ux

vect(ux) =
3

h
P−1KU. (2.21)

• One-dimensional Stephenson operator

vect(δ4xu) =
12

h2

[
3

2h2
KP−1K +

1

h2
T

]
U =

6

h4

[
3KP−1K + 2T

]
U. (2.22)

Remark: The isomorphism operator “vect” which maps the discrete function u ∈
L2

h,0 to the vector U = vect(u) ∈ R
(N−1)2 , induces a natural isomorphism of space

operators. Let us denote by < L, u > the resulting discrete function obtained by the
operation of a x linear operator L on a discrete function u, We associate to L an
operator L̃, which acts on a vector U , such that

< L, u >=< L̃, U > . (2.23)

To simplify notation, from now on we identify the operators L and L̃ in cases where
this notation does not lead to any confusion. For example (2.19) will be written

−δ2x =
1

h2
T. (2.24)

Now we apply the same identification between operators in the bidimensional
framework. We identify the discrete functions u ∈ L2

h,0 and the vector U ∈ R
(N−1)2 .

The following bidimensional operators are expressed as Kronecker product operators:
• Bidimensional second order derivation operators δ2x, δ2y

−δ2x =
1

h2
T ⊗ I , −δ2y =

1

h2
I ⊗ T. (2.25)

• Bidimensional first order derivation operators δx, δy

δx =
1

2h
K ⊗ I , δy =

1

2h
I ⊗K. (2.26)

• Bidimensional Hermitian gradient

Ux =
3

h

[
P−1K ⊗ I

]
U. Uy =

3

h

[
I ⊗ P−1K

]
U. (2.27)

• Mixed derivative δ2xδ
2
y

δ2xδ
2
y =

1

h4
T ⊗ T . (2.28)

• Fourth order derivation operators in two dimensions





δ4x =
12

h2

[ 3

2h2
KP−1K +

1

h2
T
]
⊗ I

δ4y =
12

h2
I ⊗

[ 3

2h2
KP−1K +

1

h2
T
]
.

(2.29)
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The following summarizes several preliminary results about matrices K,P ,T
Lemma 2.1. (i) The commutator of P and K is

[P,K] = PK −KP = 2 (EN−1 − E1) . (2.30)

(ii) The commutator of P−1 and K is

[P−1,K] = P−1K −KP−1 = −2P−1
(
EN−1 − E1

)
P−1. (2.31)

(iii) The symmetric matrix K2 is related to T by

K2 = T 2 − 4T + 2(E1 + EN−1). (2.32)

Proof. (i) is easily verified and (ii) is deduced from (i) by conjugasion by P−1.
(iii): The following identities are simply verified.





(K2U)i = Ui+2 + Ui−2 − 2Ui , 2 ≤ i ≤ N − 2
(K2U)1 = U3 − U1

(K2U)N−1 = −UN−1 + UN−3

(2.33)





(T 2U)i = Ui+2 − 4Ui+1 + 6Ui − 4Ui−1 + Ui−2 , 2 ≤ i ≤ N − 2
(T 2U)1 = −(TU)2 + 2(TU)1 = U3 − 4U2 + 5U1

(T 2U)N−1 = UN−3 − 4UN−2 + 5UN−1.
(2.34)

Therefore,





(
(K2 − T 2)U

)
i
= 4Ui+1 − 8Ui + 4Ui−1 = −4(TU)i , 2 ≤ i ≤ N − 2(

(K2 − T 2)U
)
1

= −4(TU)1 + 2U1(
(K2 − T 2)U

)
N−1

= −4(TU)N−1 + 2UN−1,
(2.35)

which gives (2.32). �

3. A fast FFT solver for the Stephenson biharmonic.

3.1. The FFT Poisson solver. We recall here briefly the standard FFT algo-
rithm for the discrete Laplacian according to [6], [27]. Consider the Poisson problem
in the square Ω = (0, L)2

{
−∆u(x, y) = f, (x, y) ∈ Ω = (0, L)2

u(x, y) = 0, (x, y) ∈ ∂Ω,
(3.1)

Its discrete form is, (see (2.6)),

{
−∆hui,j = fi,j , 1 ≤ i, j ≤ N − 1
ui,j = 0 , i ∈ {0, N} or j ∈ {0, N}. (3.2)

The eigenvectors of −δ2x, which form a basis of l2h,0, are zk ∈ l2h,0 defined by, (L is the
length of the interval).

zk
j =

(
2

L

)1/2

sin
kjπh

L
, 1 ≤ k, j ≤ N − 1, (3.3)
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They form an orthonormal basis for the one-dimensional scalar product (., .)h

(zk, zl)h = δk,l, 1 ≤ k, l ≤ N − 1. (3.4)

Cast in vector form, we introduce the column vector Zk ∈ R
N−1 and row vector

Zj ∈ R
N−1 defined by

Zk = h1/2zk , Zj = h1/2zj, 1 ≤ k, j ≤ N − 1 (3.5)

Zk
j =

(
2

N

)1/2

sin
kjπ

N
, 1 ≤ k, j ≤ N − 1, (3.6)

The matrix Z ∈ MN−1(R) whose k−th column is Zk and j−th row is Zj is a symmetric
positive definite unitary matrix, thus

Z2 = ZZT = IN−1. (3.7)

The eigenvalues of the matrix T are given by, (see (2.19),

λk = 4 sin2

(
kπ

2N

)
. (3.8)

In matrix form, the scheme (3.2) reduces to the linear system with right-hand side

F = h2 vect(f) ∈ R
(N−1)2 and unknown U = vect(u) ∈ R

(N−1)2

(T ⊗ I + I ⊗ T )U = F. (3.9)

The orthonormal basis (in R
(N−1)2 of T ⊗ I + I ⊗ T is (Zk ⊗ Z l)1≤k,l≤N−1, with

eigenvalues (λk + λl)1≤k,l≤N−1.
The algorithm of the fast Poisson solver is in 3 steps (see [27, 6] for more details).
Algorithm 1 (Fast FFT Poisson solver).
• Step 1:

Decompose the source term F = h2 vect(f) on the orthonormal basis Zk⊗Z l.
This step consists of computing the coefficients FZ

k,l = (F,Zk ⊗ Z l) and is
performed by FFT (actually the fast sine transform).

• Step 2 :

Solve system (3.9) in the Fourier space by

uZ
k,l =

FZ
k,l

λk + λl
(3.10)

• Step 3:

Assemble componentwise the solution using the decomposition of the grid
function U ∈ R

(N−1)2 in Zk ⊗ Z l

Ui,j =

N−1∑

k,l=1

UZ
k,lZ

k
i Z

l
j. (3.11)

The grid function u ∈ L2
h,0 is such that U = vect(u), therefore

ui,j = Ui,j , 1 ≤ i, j ≤ N − 1 (3.12)

Steps 1 and 3 areO(N2 Log(N)), and Step 2 isO(N2), which gives aO(N2 Log(N))
algorithm. For the complexity analysis of the FFT, we refer to [25] or [23].
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3.2. The Stephenson operator. Let us begin by representing the finite differ-
ence operator δ4x (2.8) in matrix form.

Lemma 3.1. The operator Pδ4xu has the following matrix form

Pδ4x =
6

h4
T 2 +

36

h4

[
e1(e1 +KP−1e1)

T + eN−1(eN−1 −KP−1eN−1)
T
]
. (3.13)

Observe that Pδ4xu is not symmetric.

Proof. We use systematically that for all column vectors u, v ∈ R
N−1, then

uT , vT ∈ R
N−1 are row vectors. For A a (N − 1) × (N − 1) matrix, the following

relation holds

u(vTA) = (uvT )A = u(AT v)T (3.14)

The finite difference operator δ4x reads in matrix form (see (2.22))

δ4x =
6

h4

[
3KP−1K + 2T

]
. (3.15)

Multiplying on the left by P gives, using (2.30),

Pδ4x =
6

h4

[
3PKP−1K + 2PT

]

=
6

h4

[
3[P,K]P−1K + 3KPP−1K + 2PT

]

=
6

h4

[
6(EN−1 − E1)P

−1K + 3K2 + 2(6I − T )T

]
.

Using the expression of K2 as a function of T , (see (2.32)) and (P−1)T = P−1,
KT = −K,

Pδ4x =
6

h4

[
6eN−1e

T
N−1P

−1K − 6e1e
T
1 P

−1K

+ 3(T 2 − 4T + 2e1e
T
1 + 2eN−1e

T
N−1) + 12T − 2T 2

]

=
6

h4

[
− 6eN−1e

T
N−1(P

−1)TKT + 6e1e
T
1 (P−1)TKT + T 2 + 6e1e

T
1 + 6eN−1e

T
N−1)

]

=
6

h4
T 2 +

36

h4

[
e1(e1 +KP−1e1)

T + eN−1(eN−1 −KP−1eN−1)
T

]
,

which is the result. �

Lemma 3.2. The symmetric positive definite operator δ4x (see (2.22) has the
alternative matrix form

δ4x =
6

h4
P−1T 2 +

36

h4

(
v1v

T
1 + v2v

T
2

)
, (3.16)

where the vectors v1, v2 are




v1 = (α− β)1/2P−1
[√2

2
e1 −

√
2

2
eN−1

]

v2 = (α+ β)1/2P−1
[√2

2
e1 +

√
2

2
eN−1

]
.

(3.17)
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The matrix P is given in (2.14), and the constants α, β are

{
α = 2(2 − eT

1 P
−1e1)

β = 2eT
N−1P

−1e1.
(3.18)

Proof. Applying P−1 to both sides of (3.13), we obtain

δ4x = P−1(Pδ4x)

=
6

h4
P−1T 2 +

36

h4

{
P−1e1(e1 +KP−1e1)

T + P−1eN−1(eN−1 −KP−1eN−1)
T

}
.

Therefore, the term in braces, referred as (I),

(I) = P−1e1(e1 +KP−1e1)
T + P−1eN−1(eN−1 −KP−1eN−1)

T (3.19)

is expanded as

(I) = P−1e1e
T
1 − P−1e1e

T
1 P

−1K + P−1eN−1e
T
N−1 + P−1eN−1e

T
N−1P

−1K

= P−1e1e
T
1 − P−1e1e

T
1KP

−1 + P−1e1e
T
1 [K,P−1] + P−1eN−1e

T
N−1

+ P−1eN−1e
T
N−1KP

−1 + P−1eN−1e
T
N−1[P

−1,K].

Using the value of the commutator (2.31)

[K,P−1] = −2P−1(E1−EN−1)P
−1 = −2P−1

(
e1e

T
1 − eN−1e

T
N−1

)
P−1 = −[P−1,K],

we obtain that (I) is the conjugate of (II) by P−1, i.e.,

(I) = P−1(II)P−1, (3.20)

with (II) defined as

(II) = e1e
T
1 P − e1e

T
1K − 2e1e

T
1 P

−1e1e
T
1 + 2e1e

T
1 P

−1eN−1e
T
N−1

+ eN−1e
T
N−1P + eN−1e

T
N−1K + 2eN−1e

T
N−1P

−1e1e
T
1 − 2eN−1e

T
N−1P

−1eN−1e
T
N−1.

Therefore, (I) rewrites

(I) = P−1
{
(S) + (S′)

}
P−1, (3.21)

where (S) and (S′) are the matrices defined by

(S) = −2e1e
T
1 P

−1e1e
T
1 − 2eN−1e

T
N−1P

−1eN−1e
T
N−1

+ 2
(
e1e

T
1 P

−1eN−1e
T
N−1 + eN−1e

T
N−1P

−1e1e
T
1

)

(S′) = e1[(P +K)e1]
T + eN−1[(P −K)eN−1]

T .

The matrix (S) is clearly symmetric. In addition, we verify easily that

{
(P +K)e1 = 4e1
(P −K)eN−1 = 4eN−1.

(3.22)

Therefore, the matrix (S′) reduces to

(S′) = 4e1e
T
1 + 4eN−1e

T
N−1 (3.23)
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and is as well symmetric. We deduce from (3.21) that (I) can be written as

(I) = P−1
[
− 2e1e

T
1 P

−1e1e
T
1 − 2eN−1e

T
N−1P

−1eN−1e
T
N−1

+ 2e1e
T
1 P

−1eN−1e
T
N−1 + 2eN−1e

T
N−1P

−1e1e
T
1 + 4e1e

T
1 + 4eN−1e

T
N−1

]
P−1,

or

(I) = P−1

[
e1, eN−1

][
α β
β α

][
eT
1

eT
N−1

]
P−1, (3.24)

with {
α = 4 − 2eT

1 P
−1e1 = 4 − 2eT

N−1P
−1eN−1

β = 2eT
1 P

−1eN−1 = 2eT
N−1P

−1e1.
(3.25)

Using, in (3.24), that

[
α β
β α

]
=




√
2

2

√
2

2
−
√

2

2

√
2

2



[
α− β 0
0 α+ β

]



√
2

2
−
√

2

2√
2

2

√
2

2


 , (3.26)

we obtain that (I) is the symmetric matrix

(I) =

[
v1, v2

][
vT
1

vT
2

]
, (3.27)

where the vectors v1, v2 are




v1 = (α− β)1/2P−1

(√
2

2
e1 −

√
2

2
eN−1

)

v2 = (α+ β)1/2P−1

(√
2

2
e1 +

√
2

2
eN−1

)
.

(3.28)

which gives (3.16). �

Cast in the matrix framework, formula (3.16) is a decomposition of the one-
dimensional Stephenson biharmonic operator δ4x in two parts,

A = h4δ4x = 6P−1T 2
︸ ︷︷ ︸

B

+ 36[v1, v2]

[
vT
1

vT
2

]

︸ ︷︷ ︸
C

. (3.29)

We note that B ∈ Span(T ), since P = 6I − T and that C is a rank 2 matrix. We can
therefore use the Sherman-Morrison formula.

Formula 3.1 (Sherman-Morrison, [18], Chap.2, p. 50). Suppose that A,B ∈
MN (R) are two invertible matrices such that

A = B +RST , (3.30)

with R,S ∈ MN,n(R),n ≤ N , then the inverse of the matrix A can be written as

A−1 = B−1 −B−1R(I + STB−1R)−1STB−1. (3.31)

provided that the matrix I + STB−1R ∈ Mn(R) be invertible. When n << N , the
matrix A is a low-rank perturbation of the matrix B. Hence, in the case that B is
easily invertible, (3.31) provides an efficient way to invert A. In the following section
(3.31) is used to solve the biharmonic problem in a rectangle.
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3.3. Solution procedure. We now turn to the study of the discrete differential
operators in the two-dimensional setting.

Proposition 3.3. The Stephenson discrete biharmonic operator ∆2
h can be ex-

pressed as (see the Remark after (2.22)).

∆2
h =

1

h4

[
6P−1T 2 ⊗ I + 6I ⊗ P−1T 2 + 2T ⊗ T

]
(3.32)

+
36

h4

[
v1, v2

][ vT
1

vT
2

]
⊗ IN−1 +

36

h4
IN−1 ⊗

[
v1, v2

][ vT
1

vT
2

]
.

Proof. This is a simple consequence of the definition (2.7) of ∆2
h and of (2.29,3.16).

Recall that x-operators act as left factors in Kronecker products, and that y-factor
operate as right factors. The term 2T ⊗ T corresponds to the mixed derivative δ2xδ

2
y.

�

We decompose now the bidimensional discrete operator h4∆2
h according to (3.32) to

a diagonal part (with respect to the basis Zk ⊗ Z l, (3.3)), and a perturbation part,
which will turn out to be lower dimensional. We therefore write

A = B + C, (3.33)

where the matrices A,B, C are specified as
• A is the matrix corresponding to h4∆2

h in (3.32).
• B is the (N − 1)2 × (N − 1)2 matrix

B = 6P−1T 2 ⊗ IN−1 + 6IN−1 ⊗ P−1T 2 + 2T ⊗ T. (3.34)

B is diagonal in the basis Zk ⊗Z l and will be referred for convenience as the
“diagonal” part of matrix A.

• C is the (N − 1)2 × (N − 1)2 matrix, (see (3.28) for the definition of v1, v2),

C = 36

(
[v1, v2]

[
vT
1

vT
2

]
⊗ IN−1 + IN−1 ⊗

[
v1, v2

][ vT
1

vT
2

])
. (3.35)

Denoting by Zk, Zl respectively the column and line vectors of the unitary matrix
(3.5), we replace in (3.35) the identity matrix IN−1 by

IN−1 = ZZT =
[
Z1, Z2, .., ZN−1

]



Z1

.

.
ZN−1


 . (3.36)

The interest of the decomposition of the identity operator (3.36), instead of the trivial
one, will appear in the resolution of the capacitance system, see Appendix A.

The matrix in braces in (3.35) is therefore

[
v1, v2

][ vT
1

vT
2

]
⊗
[
Z1, Z2, .., ZN−1

]



Z1

.

.
ZN−1




︸ ︷︷ ︸
(a)

+
[
Z1, Z2, .., ZN−1

]



Z1

.

.
ZN−1


⊗

[
v1, v2

][ vT
1

vT
2

]

︸ ︷︷ ︸
(b)

.

(3.37)
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At this point we use several rules of the Kronecker product alegebra, (see [25]), namely
(i) For all matrices A,B,C,D,

(A⊗B)(C ⊗D) = (AC) ⊗ (BD) (3.38)

assuming that the ordinary products AC and BD are defined.
(ii) For all matrices A,B,

(A⊗B)T = AT ⊗BT (3.39)

Applying (3.38), (3.39), and the definition of the Kronecker product (2.12), the term
(a) in (3.37) can be rewritten as

(a) =
([
v1, v2

]
⊗
[
Z1, Z2, .., ZN−1

])


[
vT
1

vT
2

]
⊗




Z1

.

.
ZN−1







=
[
v1 ⊗ Z1, .., v1 ⊗ ZN−1

]



vT
1 ⊗ Z1

.

.
vT
1 ⊗ ZN−1


+

[
v2 ⊗ Z1, .., v2 ⊗ ZN−1

]



vT
2 ⊗ Z1

.

.
v2 ⊗ ZN−1




Combining this with similar calculations applied to term (b) in (3.37), it turns out
that the matrix C in (3.35) can be expressed as a low-rank (N −1)2× (N−1)2 matrix
in the form

C = 36RRT , (3.40)

where R is a matrix (N − 1)2 × 4(N − 1), written in the form

R = [R1, R2, R3, R4] . (3.41)

In the sequel, we refer to C as the “perturbation” (or capacitance) part of Ā.
The four (N − 1)2 × (N − 1) matrices Rk are





R1 = [v1 ⊗ Z1, v1 ⊗ Z2, ..., v1 ⊗ ZN−1]
R2 = [v2 ⊗ Z1, v2 ⊗ Z2, ..., v2 ⊗ ZN−1]
R3 = [Z1 ⊗ v1, Z

2 ⊗ v1, ..., Z
N−1 ⊗ v1]

R4 = [Z1 ⊗ v2, Z
2 ⊗ v2, ..., Z

N−1 ⊗ v2].

(3.42)

The interest of this decomposition (instead of the one using the canonical factorization
of the identity operator), will appear clearly in Subsection A. Applying the Sherman-
Morrison formula to the matrix

A = B + 36RRT , (3.43)

allows to express A−1 as

A−1 = B−1 − 36B−1R
[
I4(N−1) + 36RTB−1R

]−1

RTB−1. (3.44)

We use now (3.44) to solve the system

AU = F (3.45)
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with A = h4∆2
h, F = h4 vect(f).

The following algorithm summarizes the solution procedure according to formula
(3.31). Indications of the computing complexity are given at each step of the algo-
rithm.

Algorithm 2 (Fast FFT algorithm for the biharmonic problem).

• Step1: Solve Bg = F . Let F ∈ R
(N−1)2 be the source-term vector F =

h4 vect(f). The linear system for g ∈ R
(N−1)2

Bg = F, (3.46)

is solved using the FFT transform as follows. First F is decomposed on the
basis Zk ⊗ Z l where the vector Zk, k = 1, .., N − 1 are the eigenfunctions
(3.5) of matrix T , as

F =
N−1∑

k,l=1

FZ
k,lZ

k ⊗ Z l, (3.47)

where the coefficients FZ
k,l are

FZ
k,l = (F,Zk ⊗ Z l) , 1 ≤ k, l ≤ N − 1. (3.48)

(3.48) is computed by FFT. The eigenvalues of B are

µk,l =
λ2

k

(1 − λk/6)
+

λ2
l

(1 − λl/6)
+ 2λkλl, (3.49)

and g = B−1F is given by

g =

N−1∑

k,l=1

FZ
k,l

µk,l
Zk ⊗ Z l. (3.50)

The vector g ∈ R
(N−1)2 is stored for Step 7. The FFT computation (3.48) is

O(N2 Log(N)) and (3.50) is O(N2).
• Step2:

Compute the vector RT g ∈ R
4(N−1),

RT g =




RT
1 g

RT
2 g

RT
3 g

RT
4 g


 . (3.51)

We have for example

RT
1 g =




(v1 ⊗ Z1)T g
.
.
(v1 ⊗ ZN−1)T g


 . (3.52)

The l− component of vector RT
1 g in (3.52) is

(v1 ⊗ Z l)T g =

N−1∑

i=1

(v1)i

N−1∑

j=1

gi,jZ
j
l . (3.53)
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Each term

N−1∑

j=1

gi,jZ
j
l , 1 ≤ i ≤ N − 1 (3.54)

is computed by FFT (actually the fast sine transform) via

N−1∑

j=1

gi,jZ
j
l =

(
2

N

)1/2 N−1∑

j=1

gi,j sin
ljπ

N
. (3.55)

Similarly, the k-th component in RT
3 g is

(RT
3 g)k = (Zk ⊗ v1)

T g =

N−1∑

j=1

(v1)j

N−1∑

i=1

gi,jZ
i
k. (3.56)

The FFT is used to compute

N−1∑

i=1

gi,jZ
i
k =

(
2

N

)1/2 N−1∑

i=1

gi,j sin
ikπ

N
. (3.57)

The expressions of RT
2 g and RT

4 g are similar, replacing v1 by v2. As for the
counting complexity, of Step 2, (3.54) is O(N Log(N)) for each value of i,
which gives O(N2 Log(N)) in all. Then (3.52) is O(N2) using (3.53). The
same is true for each of the four components of RT g in (3.51).

• Step 3:

Assemble the 4(N − 1) × 4(N − 1) capacitance matrix matrix in brackets in
formula (3.44)

I4(N−1) + 36RTB−1R. (3.58)

We refer to the Appendix A for the detailed structure of the symmetric matrix
(3.58), as well as for the O(N2) computing complexity of its assembling. Note
that matrix (3.58) is computed once for all.

• Step 4:

Solve the 4(N − 1) × 4(N − 1) linear system

(
I4(N−1) + 36RTB−1R

)
s = RT g. (3.59)

The computing complexity of the whole algorithm relies on the efficiency of
this solving. It is performed by the preconditionned conjugate gradient method.
Numerical evidence displays a O(N2 Log(N)) computing cost. We refer to
Appendix A for more details. The solution s ∈ R

4(N−1) is decomposed in

s = [s1, s2, s3, s4]
T , s1, s2, s3, s4 ∈ R

N−1 (3.60)

• Step 5:

Perform the product of t = Rs, s ∈ R
4(N−1), t ∈ R

(N−1)2 .

t = t1 + t2 + t3 + t4, (3.61)
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with




t1 =
(
v1 ⊗ [Z1, ..., ZN−1]

)
s1

t2 =
(
v2 ⊗ [Z1, ..., ZN−1]

)
s2

t3 =
(
[Z1, ..., ZN−1] ⊗ v1

)
s3

t4 =
(
[Z1, ..., ZN−1] ⊗ v2

)
s4.

(3.62)

For 1 ≤ i, j ≤ N − 1,




(t1)i,j = (v1)i

N−1∑

l=1

(s1)lZ
l
j

(t2)i,j = (v2)i

N−1∑

l=1

(s2)lZ
l
j

(t3)i,j = (v1)j

N−1∑

k=1

(s3)kZ
k
i

(t4)i,j = (v2)j

N−1∑

k=1

(s4)kZ
k
i .

(3.63)

Each sum in each right-hand-side in (3.63) is computed by FFT, which gives

a cost of O(N Log(N)). The computation of the vector t ∈ R
(N−1)2 in (3.61)

is therefore O(N2 Log(N)).
• Step 6:

Resolution of the linear system in R
(N−1)2

v = B−1t (3.64)

via the fast FFT solver as in Step 1. The cost is O(N2 Log(N)).
• Step 7:

Assemble the solution ψ ∈ R
(N−1)2 vect≃ L2

h,0 of the biharmonic problem (2.5)
(with (a, b) = (0, 1)) by

ψ = g − 36v (3.65)

where g, v ∈ R
(N−1)2 are given in (3.50,3.64). The cost is O(N2).

• Step 8:

Compute the hermitian gradient ψx, ψy ∈ R
(N−1)2 as a post-processing of the

grid values of ψ by




ψx =

(
3

h
P−1K ⊗ I

)
ψ

ψy =

(
3

h
I ⊗ P−1K

)
ψ

(3.66)

Computation (3.66) is performed using the one-dimensional FFT for a global
cost O(N2 Log(N)).

The overall computing cost of Algorithm 2 is therefore O(N2) Log(N) under the
assumption that Step 4 is at most O(N2 Log(N)). See Appendix A. Let us conclude
this Section by considering now the case of problem (2.4) discretized by (2.5), with
a ≥ 0, b > 0. The matrix form of the finite difference operator −a∆h + b∆2

h is

−a∆h + b∆2
h =

a

h2
[T ⊗ I + I ⊗ T ] +

b

h4
(B + C) . (3.67)
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Defining

Ba,b = ah2 [T ⊗ I + I ⊗ T ] + bB, (3.68)

we have

h4(−a∆h + b∆2
h) = Ba,b + bC. (3.69)

It turns out that the algorithm that solves problem (2.5) is now exactly the same as
Algorithm 2, replacing the eigenvalues µk,l of B by

µa,b
k,l = ah2(λk + λl) + b

(
λ2

k

(1 − λk/6)
+

λ2
l

(1 − λl/6)
+ 2λkλl

)
. (3.70)

In addition C is replaced by bC in (3.40, 3.44).

3.4. Treatment of non-homogeneous boundary conditions. Let us first
consider the modifications of δ4xu at near boundary points. We write

δ4xu =
12

h2
(δxux − δ2xu). (3.71)

Let U be a one dimensional vector of length N − 1, associated with the values of the
solution u for a fixed y. The vector Ux is associated with the approximated derivative
of u. At near boundary point x = x1 we have

(δxux)x=x1
=

1

2h
((Ux)2 − (Ux)0). (3.72)

Similarly for x = xN−1

(δxux)x=xN−1
=

1

2h
((Ux)N − (Ux)N−2). (3.73)

Therefore, we can write

δxux =
1

2h
KUx +

1

2h




−(Ux)0
.
.
(Ux)N


 . (3.74)

We replace KUx by KP−1PUx and get

δxux =
1

2h
KP−1PUx +

1

2h




−(Ux)0
.
.
(Ux)N


. (3.75)

Now, for i = 1, , , N − 1 we have (Ux)i+1 + 4(Ux)i + (Ux)i−1 = 6
2h (Ui+1 − Ui−1).

For i = 1 we have

(Ux)2 + 4(Ux)1 =
6

2h
U2 −

6

2h
U0 − (Ux)0. (3.76)

Similarly, for i = N − 1

4(Ux)N−1 + (Ux)N−2 = − 6

2h
UN−2 +

6

2h
UN − (Ux)N . (3.77)
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Thus, it follows that

PUx =
6

2h
KU. (3.78)

For i = 1 we have

(Ux)2 + 4(Ux)1 =
6

2h
U2 −

6

2h
U0 − (Ux)0. (3.79)

Similarly, for i = N − 1

4(Ux)N−1 + (Ux)N−2 = − 6

2h
UN−2 +

6

2h
UN − (Ux)N . (3.80)

Thus, it follows that

PUx =
6

2h
KU +




− 6
2hU0 − (Ux)0

.

.
6
2hUN − (Ux)N


 . (3.81)

Therefore,

δxux =
3

2h2
KP−1KU +

1

2h
KP−1




− 6
2hU0 − (Ux)0

0
.
.
0
6
2hUN − (Ux)N




+
1

2h




−(Ux)0
0
.
.
0
(Ux)N



. (3.82)

We also have that

(δ2xu)x=x1
=

1

h2
(U2 − 2U1 + U0). (3.83)

Similarly for x = xN−1

(δ2xu)x=x1
=

1

h2
(UN − 2UN−1 + UN−2). (3.84)

Thus,

δ2xu = − T

h2
U +

1

h2




U0

.

.
UN


 . (3.85)

Therefore,

δ4xu =
12

h2




[
3

2h2
KP−1K +

1

h2
T

]
U +

1

2h
KP−1




− 6
2hU0 − (Ux)0

0
.
.
0
6
2hUN − (Ux)N




+
1

2h




−(Ux)0
0
.
.
0
(Ux)N



− 1

h2




U0

0
.
.
0
UN






.

(3.86)
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Note that the previous expression is a perturbation of the operator δ4x that we
received in equation (2.22), where the additional terms come from the boundary.
Since the value of the solution, along with its first order derivatives are known on the
boundary, they may be transformed to the right hand side of the equation.

δ4yu may be expressed in a similar way. The mixed derivative δ2xδ
2
yu yields modi-

fications involving the values of U only at the boundary.

4. A fourth order compact scheme for biharmonic problems.

4.1. Fourth order accurate nine points compact schemes. In this subsec-
tion, we describe how to modify the 9 points biharmonic operator (2.7) and the 5
points Laplacian (2.6) in order to obtain fourth-order accuracy.

The 1-D operators δ4xψi,j , δ
4
yψi,j in (4.1) are given as functions of ψ, ψx, ψy by

δ4xψi,j =
12

h2

[
(δxψx)i,j − (δ2xψ)i,j

]
; δ4yψi,j =

12

h2

[
(δyψy)i,j − (δ2yψ)i,j

]
. (4.1)

These two operators are fourth order accurate (see [3]). The second order accuracy
of the operator ∆2

h is due only to the term δ2xδ
2
yψi,j . Thus, the local truncation error

is δ2xδ
2
yψi,j − ∂2

x∂
2
yψi,j = O(h2). The later may be checked using Taylor expansion of

ψ around (xi, yj), or by checking the truncation error in δ2xδ
2
yψi,j by applying it to

a Fourier mode ψ = ei(kx+ly). We refer to [3] for the study of the accuracy at near
boundary points.

In order to derive a fourth order approximation to ∂2
xψ we proceed as follows.

The Taylor expansion of δ2xψ, δxψx are

δ2xψi = ∂2
xψi +

h2

12
∂4

xψi + O(h4), (4.2)

δxψx,i = ∂2
xψi +

h2

6
∂4

xψi +O(h4). (4.3)

A linear combination of these two operators allows us to derive the fourth order
accurate approximation δ̃2x to ∂2

xψ, eliminating the h2 term in the following way

δ̃2xψi = 2δ2xψi − δxψx,i = ∂2
xψi +O(h4). (4.4)

In a similar way we derive a fourth-order accurate scheme for ∂2
yψ, i.e.,

δ̃2yψi = 2δ2yψi − δyψy,i = ∂2
yψi +O(h4). (4.5)

Therefore, a fourth order approximation for the Laplacian is

∆̃hψi,j = 2δ2xψi,j − δxψx,i,j + 2δ2yψi,j − δyψy,i,j . (4.6)

Invoking

δxψx − δ2xψ =
h2

12
δ4xψ, δyψy − δ2yψ =

h2

12
δ4yψ, (4.7)

and applying it to (4.6), we find that the operator ∆̃h may be rewritten as a pertur-
bation of ∆h in the following way

∆̃h = δ2x − h2

12
δ4x + δ2y − h2

12
δ4y = ∆h − h2

12
(δ4x + δ4y). (4.8)



20 M. Ben-Artzi, J-P. Croisille, D. Fishelov

In a similar manner we construct a fourth-order accurate approximation to ∂2
x∂

2
yψi,j .

First we expand δ2yδxψ in powers of h

δ2yδxψx,i,j = ∂2
y

[
∂2

xψi,j +
h2

6
∂4

xψi,j +O(h4)

]
+
h2

12
∂4

y

[
∂2

xψi,j +
h2

6
∂4

xψi,j +O(h4).

]
(4.9)

Thus,

δ2yδxψx,i,j = ∂2
x∂

2
yψi,j +

h2

6
∂2

y∂
4
xψi,j +

h2

12
∂4

y∂
2
xψi,j +O(h4). (4.10)

Symmetrically,

δ2xδyψy,i,j = ∂2
x∂

2
yψi,j +

h2

6
∂2

x∂
4
yψi,j +

h2

12
∂4

x∂
2
yψi,j +O(h4). (4.11)

The Taylor expansion of the mixed operator δ2xδ
2
y is therefore

δ2xδ
2
yψi,j = ∂2

x∂
2
yψi,j +

h2

12
∂2

x∂
4
yψi,j +

h2

12
∂2

y∂
4
xψi,j +O(h4). (4.12)

Combining (4.12), (4.11), (4.9), we define the new mixed finite-difference operator

δ̃2xδ
2
yψi,j as

δ̃2xδ
2
yψi,j = 3δ2xδ

2
yψi,j − δ2xδyψy,i,j − δ2yδxψx,i,j = ∂2

x∂
2
yψi,j +O(h4). (4.13)

Keeping δ4x and δ4y as before, we define the 4th order biharmonic operator ∆̃2
h as

∆̃2
hψi,j = δ4xψi,j + δ4yψi,j + 2δ̃2xδ

2
yψi,j . (4.14)

Invoking (4.7) again allows us to rewrite the 4th order operator ∆̃2
h as a perturbation

of ∆2
h in the following way.

∆̃2
h = δ4x

(
I − h2

6
δ2y

)
+ δ4y

(
I − h2

6
δ2x

)
+ 2δ2xδ

2
y. (4.15)

Finally, the new fourth order scheme which approximates (2.4) is
{ [

− a∆̃h + b∆̃2
h

]
ψi,j = fi,j , 1 ≤ i, j ≤ N − 1

ψi,j = 0 , ψx,i,j = ψy,i,j = 0, , i ∈ {0, N}, j ∈ {0, N}. (4.16)

As a consequence of (4.15) a fourth-order approximation to the biharmonic equation
∆2ψ = f is

∆̃2
h = δ4x

(
I − h2

6
δ2y

)
+ δ4y

(
I − h2

6
δ2x

)
+ 2δ2xδ

2
y = f. (4.17)

Note that in the right-hand-side of (4.17) only the value of f(i, j) is involved in
the discretization of the differential equation at (xi, yj). This feature of the scheme is
important in cases where the biharmonic problem has to be solved when the function
f in unknown on the boundary, but is known only at interior points (see [3] ). A
different fourth-order accurate scheme for the biharmonic equation ∆2ψ = f was
presented in ([34], Sec.3.2) and a multigrid solver was designed for this scheme in [1].
The scheme in ([34], Sec.3.2) involves the five values of f , fi,j, fi+1,j , fi−1,j , fi,j+1 and
fi,j−1, in order to construct a fourth-order approximation to the biharmonic operator.

Note finally that in (4.17) the gradient (ψx, ψy) is used at all the nine points of
the stencil of the scheme. In a forthcoming paper, an analogous scheme for irregular
domains will be derived, using directional derivatives at corner points.
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4.2. Fast solution procedure. The fast solution procedure for solving (4.15)
follows exactly the same lines as in Section 3. The matrix forms of the positive
operators ∆̃2

h and −(∆̃h) are





∆̃2
h = 1

h4

(
6P−1T 2 ⊗

(
IN−1 + T

6

)
+ 6

(
IN−1 + T

6

)
⊗ P−1T 2 + 2T ⊗ T

)

+ 36
h4

[
v1, v2

][ vT
1

vT
2

]
⊗
(
IN−1 + T

6

)
+ 36

h4

(
IN−1 + T

6

)
⊗
[
v1, v2

][ vT
1

vT
2

]

−(∆̃h) = 1
h2

(
T ⊗ I + I ⊗ T + 1

2 [P−1T 2 ⊗ IN−1 + IN−1 ⊗ P−1T 2]

)

+ 3
h2 [v1, v2]

[
vT
1

vT
2

]
⊗ IN−1 + 3

h2 IN−1 ⊗ [v1, v2]

[
vT
1

vT
2

]
.

The matrix form A′ of the fourth order operator h4
(
−a∆̃h + b∆̃2

h

)
as a “diagonal”

part B′ and a “capacitance” part C′, (see Section 3.3) is

A′ = B′ + C′ (4.18)

with

B′ = ah2

(
T ⊗ I + I ⊗ T +

1

2
[P−1T 2 ⊗ IN−1 + IN−1 ⊗ P−1T 2]

)

+ b

(
6P−1T 2 ⊗

(
IN−1 +

T

6

)
+ 6

(
IN−1 +

T

6

)
⊗ P−1T 2 + 2T ⊗ T

)
.

The eigenvectors of B′ are Zk ⊗ Z l and the eigenvalues are

µ′
k,l = ah2

(
(λk + λl) +

1

12

λ2
k

(1 − λk/6)
+

1

12

λ2
l

(1 − λl/6)

)

+ b

(
λ2

k

1 + λl/6

1 − λk/6
+ λ2

l

1 + λk/6

1 − λl/6
+ 2λkλl

)
.

The capacitance part of A′ is

C′ = 36

(
[v1, v2]

[
vT
1

vT
2

]
⊗
(

(
ah2

12
+ b)IN−1 + b

T

6

)
+

(
(
ah2

12
+ b)IN−1 + b

T

6

)
⊗
[
v1, v2

][ vT
1

vT
2

])
.

(4.19)
The structure of C′ is the same as precedingly,

C′ = 36R′R′T (4.20)

where R′ is the (N − 1)2 × 4(N − 1) matrix

R′ = [R′
1, R

′
2, R

′
3, R

′
4] , (4.21)

and




R′
1 = [v1 ⊗ Z ′,1, v1 ⊗ Z ′,2, ..., v1 ⊗ Z ′,N−1]

R′
2 = [v2 ⊗ Z ′,1, v2 ⊗ Z ′,2, ..., v2 ⊗ Z ′,N−1]

R′
3 = [Z ′,1 ⊗ v1, Z

′,2 ⊗ v1, ..., Z
′,N−1 ⊗ v1]

R′
4 = [Z ′,1 ⊗ v2, Z

′,2 ⊗ v2, ..., Z
′,N−1 ⊗ v2]

(4.22)
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with

Z ′ =
[
Z ′,1, Z ′,2, .., Z ′,N−1

]
, Z ′,j =

(
ah2

12
+ b(1 +

λj

6
)

)1/2

Zj , 1 ≤ j ≤ N − 1

(4.23)
The numerical algorithm for (4.16) is the same as Algorithm 2, replacing B, C,R, Z,
by B′, C′,R′, Z ′. Non homogeneous boundary conditions are treated as in Subsection
3.4.

5. Numerical results. The numerical results presented in the sequel have been
obtained with a code written in FORTRAN90. The package fftpack of Swarztrauber
[36] has been used for computing the FFT. In addition we have used the g95 compiler
[37] without optimization. The computations have been ran in double precision on a
laptop with a processor Intel Pentium M, 2.13 GHZ, with 1GB memory.

5.1. Accuracy. We report numerical results obtained so far with the two ver-
sions of the scheme, the second order and the fourth order versions. The discrete L2,
and L∞ errors are defined by





‖ψ − ψh‖h =

[
h2
∑

i,j

(ψ(xi, yj) − ψi,j)
2

]1/2

(a),

‖ψ − ψh‖∞,h = sup
i,j=1,..N−1

|ψ(xi, yj) − ψi,j | (c).
(5.1)

Taking into account non homogeneous boundary conditions gives an additional contri-
bution to the right-hand side for near boundary points, whose value is simply deduced
from the boundary values of ψ, ψx, ψy on the four edges, which appear in the expres-
sion of the discrete Laplacian and Biharmonic operators.
• Example 1
The problem solved is (2.5) with exact solution ψ(x, y) = sin2(x) sin2(y) on the square
Ω = [0, π]2. That test is the same as Example 2 in [1] and Example 1 in [5]. Table
5.1 reports the numerical results with the second order accurate scheme (2.5) (with
(a, b) = (0, 1). The source term is ∆2ψ(x, y) and the boundary conditions are zeros
on the four sides of the square. We observe the second order accuracy of the scheme
for ψ, the gradient (ψx, ψy) as well as for the Laplacian ∆ψ ≃ ∆hψ.

Table 5.2 reports the numerical results with the fourth order scheme (4.16). The
scheme exhibits a fourth order accuracy, for ψ, (ψx, ψy) as well as for ∆ψ ≃ ∆̃hψ, up
to a 512×512 grid, where the numerical accuracy of the computer is reached, (double
precision).

• Example 2
We consider Problem (2.5) with zero source term and boundary conditions





∆2ψ(x, y) = 0, (x, y) ∈ Ω
ψ(x, y) = 0
∂ψ

∂x
(0, y) =

∂ψ

∂x
(1, y) =

∂ψ

∂y
(x, 0) = 0

∂ψ

∂y
(x, 1) = −1

(5.2)

This corresponds to the Stokes problem in pure streamfunction form for a driven
cavity setting. See Example 6 in [5], Problem 3 in [1]. The fourth order scheme has
been used.
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N ‖ψ − ψh‖∞,h ‖ψx − ψx,h‖∞,h ‖ψ − ψy,h‖∞,h ‖∆ψ − ∆hψh‖∞,h

N = 16 6.46(-3) 6.59(-3) 6.59(-3) 2.24(-2)
conv. rate 2.00 1.98 1.98 2.00
N = 32 1.61(-3) 1.67(-3) 1.67(-3) 5.58(-3)
conv. rate 1.99 1.98 1.98 2.00
N = 64 4.04(-4) 4.22(-4) 4.22(-4) 1.39(-3)
conv. rate 2.00 1.99 1.99 1.99
N = 128 1.01(-4) 1.06(-4) 1.06(-4) 3.49(-4)
conv. rate 1.99 2.00 2.00 2.00
N = 256 2.53(-5) 2.65(-5) 2.65(-5) 8.72(-5)
conv. rate 2.00 2.00 2.00 2.00
N = 512 6.32(-6) 6.61(-6) 6.61(-6) 2.18(-5)
conv. rate 2.00 2.00 2.00 1.99
N = 1024 1.58(-6) 1.65(-6) 1.65(-6) 5.47(-6)

Table 5.1
Error and convergence rate for Test Case 1 with the second order scheme (2.5).

N ‖ψ − ψh‖∞,h ‖ψx − ψx,h‖∞,h ‖ψ − ψy,h‖∞,h ‖∆ψ − ∆̃hψh‖∞,h

N = 16 3.42(-5) 1.00(-4) 1.00(-4) 3.99(-4)
conv. rate 4.04 4.01 4.01 4.00
N = 32 2.08(-6) 6.21(-6) 6.21(-6) 2.48(-5)
conv. rate 4.01 4.00 4.00 4.00
N = 64 1.29(-7) 3.87(-7) 3.87(-7) 1.55(-6)
conv. rate 4.00 4.00 4.00 4.00
N = 128 8.06(-9) 2.41(-8) 2.41(-8) 9.68(-8)
conv. rate 3.99 3.99 3.99 3.83
N = 256 5.04(-10) 1.51(-9) 1.51(-9) 6.77(-9)
conv. rate 3.74 4.02 4.02 -0.22
N = 512 3.76(-11) 9.27(-11) 9.07(-11) 7.90(-9)
conv. rate -0.13 0.19 0.19 0.59
N = 1024 4.12(-11) 8.09(-11) 8.09(-11) 5.22(-8)

Table 5.2
Error and convergence rate for Test Case 1 with the fourth order scheme (4.16)

N max|ψ| location (x, y)
64 0.1000803 (0.5, 0.765625)
128 0.1000767 (0.5, 0.765625)
256 0.1000759 (0.5, 0.765625)

Bialecki(N=128)[5] 0.100076276 (0.5, 0.765)
Altas et al.(N=64)[1] 0.10008 (0.5, 0.766)

Table 5.3
Maximum value and location of max |ψ| in Stokes Problem (5.2) with the fourth order

scheme (4.16).

• Example 3
In order to demonstrate the efficiency of the fourth order scheme (4.16), we present
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several examples of problems (2.4) with coefficients (a, b) = (1, 2) for which we applied
our fourth order scheme (4.16). For the first test problem

ψ(x, y) = (1 + x2)(1 + y2) (5.3)

Here we received zero error up to the machine accuracy, according to the fact that
the scheme is exact for fourth order polynomials.

• Example 4

Consider the case where the exact solution is

ψ(x, y) = (1 − x2)2(1 − y2)2, − 1 ≤ x, y ≤ 1. (5.4)

This function solves the equation

−∆ψ + 2∆2ψ = f(x, y),

where f(x, y) = −∆ψ + 2∆2ψ is the forcing term. In this case we have homogeneous
boundary conditions.

Table 5.4 summarizes the errors, e = ‖ψ − ψh‖h, and the error in the x and
y-derivatives ex = ‖∂xψ − ψx,h‖h, ey = ‖∂yψ − ψy,h‖h.

N 32 Rate 64 Rate 128 Rate 256
e 2.0763(−6) 4.03 1.2735(−7) 4.00 7.9604(−9) 4.08 4.9762(−10)
ex 3.4466(−6) 4.00 2.1542(−7) 4.00 1.3465(−8) 4.00 8.4173(−10)
ey 3.4466(−6) 4.00 2.1542(−7) 4.00 1.3465(−8) 4.00 8.4173(−10)

Table 5.4
Error and convergence rate in ‖.‖h norm for ψ(x, y) = (1− x2)2(1− y2)2, (a, b) = (1, 2)

with the fourth order scheme (4.16).

• Example 5

An additional example with non-zero boundary conditions is

ψ(x, y) = (x4 + y4)2.

The results are summarized in Table 5.5.

N 32 Rate 64 Rate 128 Rate 256
e 2.5796(−4) 3.98 1.6385(−5) 3.99 1.0296(−6) 3.98 6.5118(−8)
ex 1.4434(−4) 3.91 9.6212(−6) 3.96 6.1936(−7) 3.82 4.3760(−8)
ey 1.4434(−4) 3.91 9.6212(−6) 3.96 6.1936(−7) 3.82 4.3760(−8)

Table 5.5
Error and convergence rate in ‖.‖h norm for ψ(x, y) = (x4 + y4)2, (a, b) = (1, 2) with

the fourth order scheme (4.16).

5.2. Computing efficiency. We report here the CPU time in seconds for the
fourth order scheme (4.16) (FORTRAN90, Intel Pentium 2.13GHZ, 1GB memory).
In Table 5.6 we display the CPU time for some of the results in Table 5.2. CPUtot

stands for the time which corresponds to obtain the complete solution of the linear
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system, while CPU∞ stands for the CPU time for the solution procedure without
the assembling the capacitance matrix (3.58) (Step 3 of algorithm 2). Note that the
capacitance matrix does not depend on the right-hand-side of the system of equations,
thus for a time-dependent problem it may be computed only once. In 5.2 we also
report on the ratio CPUtot /(N

2 Log(N)). It seems from the computations that this
ratio is slowly decreasing to a constant. In addition, we report on the number of the
iterations in the CG algorithm for the capacitance linear system to converge within a
prescribed accuracy of 10−20. We refer the reader to Appendix A for some estimates
on the condition number of the capacitance matrix. It can be observed in 5.2 that the
number of iterations in the CG algorithm grow very slowly. In practice, we observe
that the spectral part of the solution procedure is more demanding in computing
resources compared to the capacitance matrix solving part.

N N=64 N=128 N=256 N=512 N=1024 N=2048
CPUtot 0.016s 0.11s 0.47s 1.91s 7.67s 33.52s
CPU∞ 0.016s 0.093s 0.38s 1.52s 6.28s 27.28s

CPUtot /(N
2 Log(N)) 9.17(-7) 1.37(-6) 1.29(-6) 1.17(-6) 1.06(-6) 1.05(-6)

kCG 17 18 19 19 21 23
Table 5.6

Indicative CPU time for results in Table 5.2.

In Table 5.7 we report on the computing efficiency, as well as the number of CG
iterations, of our solver for a non-separable biharmonic problem in Ω = [0, 1]2, [1],
with exact solution

ψ(x, y) = x3 ln(1 + y) +
y

1 + x
(5.5)

Observe that, for this example too, the number of iterations in the CG algorithm
growth very slowly.

N N=16 N=32 N=64 N=128 N=256 N=512
CPUtot 0.00s 0.00s 0.06s 0.13s 0.56s 2.09s

CPUtot /(N
2 Log(N)) 0. 0. 3.70(-6) 1.57(-6) 1.46(-6) 1.27(-6)

kCG 23 26 28 30 32 34

Table 5.7
Indicative CPU time for the biharmonic problem with exact solution (5.5) and the fourth

order scheme

6. Conclusion. The capacitance matrix method, applied to the second order
Stephenson scheme (2.10) and to the fourth order scheme (4.16), appears to be effi-
cient. It seems that it is competitive with the multigrid method reported by Altas
et al, [1]. In the latter the solver is designed for the fourth order Stephenson scheme
and the numerical results are limited to 128 × 128 grids. In addition, the design of
our algorithm seems to be simpler than the fast solver presented in [5] for the OSC
scheme.

In fact, we currently use the new algorithm to solve the time-dependent Navier-
Stokes equation on fine grids. Finally, note that the extension of the solution pro-
cedure to problems with boundary condition on ∆ψ can be handled without major
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modifications. The latter can be carried out using the discretizations (2.6) or (4.6).
In addition, the extension to three-dimensional problems appears to be tractable by
a similar procedure.
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Appendix

Appendix A. Resolution of the capacitance linear system. In this subsection
we focus on the resolution of the capacitance system (3.59). Consider first the 4(N −
1) × 4(N − 1) matrix RB−1RT which has a 4 × 4 block structure

RTB−1R =




RT
1 B−1R1 RT

1 B−1R2 RT
1 B−1R3 RT

1 B−1R4

RT
2 B−1R1 RT

2 B−1R2 RT
2 B−1R3 RT

2 B−1R4

RT
3 B−1R1 RT

3 B−1R2 RT
3 B−1R3 RT

3 B−1R4

RT
4 B−1R1 RT

4 B−1R2 RT
4 B−1R3 RT

4 B−1R4


 , (A.1)

where the four (N − 1)2 × (N − 1) matrices Rk are given in (3.42). By symmetry,
only the upper diagonal part of (A.1) has to be computed. The vector Zj ∈ R

N−1

is given in (3.6) and the vectors v1, v2 ∈ R
N−1 in (3.28) are decomposed as a linear

combination of Zk by





v1 = (α− β)1/2

√
2

2

N−1∑

k=1

Zk
1 − Zk

N−1

6 − λk
Zk

v2 = (α+ β)1/2

√
2

2

N−1∑

k=1

Zk
1 + Zk

N−1

6 − λk
Zk.

(A.2)

Therefore for i = 1, .., N − 1,




v1 ⊗ Zi = (α− β)1/2

√
2

2

N−1∑

k=1

Zk
1 − Zk

N−1

6 − λk
Zk ⊗ Zi, (i)

v2 ⊗ Zi = (α+ β)1/2

√
2

2

N−1∑

k=1

Zk
1 + Zk

N−1

6 − λk
Zk ⊗ Zi, (ii)

Zi ⊗ v1 = (α− β)1/2

√
2

2

N−1∑

k=1

Zk
1 − Zk

N−1

6 − λk
Zi ⊗ Zk, (iii)

Zi ⊗ v2 = (α+ β)1/2

√
2

2

N−1∑

k=1

Zk
1 + Zk

N−1

6 − λk
Zi ⊗ Zk. (iv)

(A.3)

Operating with B−1 on the left in (A.3)i,ii,iii,iv gives for j = 1, .., N − 1





B−1(v1 ⊗ Zj) = (α− β)1/2

√
2

2

N−1∑

k=1

Zk
1 − Zk

N−1

(6 − λk)µk,j
Zk ⊗ Zj , (i)

B−1(v2 ⊗ Zj) = (α+ β)1/2

√
2

2

N−1∑

k=1

Zk
1 + Zk

N−1

(6 − λk)µk,j
Zk ⊗ Zj , (ii)

B−1(Zj ⊗ v1) = (α− β)1/2

√
2

2

N−1∑

k=1

Zk
1 − Zk

N−1

(6 − λk)µk,j
Zk ⊗ Zj , (iii)

B−1(Zj ⊗ v2) = (α+ β)1/2

√
2

2

N−1∑

k=1

Zk
1 + Zk

N−1

(6 − λk)µk,j
Zk ⊗ Zj . (iv)

(A.4)

Taking the R
(N−1)2 scalar product of (A.3) and (A.4), and using that

(
Zk ⊗ Z l, Zk′ ⊗ Z l′

)
= δk,k′δl,l′ , 1 ≤ k, k′, l, l′ ≤ N − 1, (A.5)
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yields the term (i, j) of the matrix RT
1 B−1R1 is

(v1 ⊗ Zi)TB−1(v1 ⊗ Zj) =
α− β

2
δi,j

N−1∑

k=1

(
Zk

1 − Zk
N−1

6 − λk

)2
1

µk,j
. (A.6)

This proves that the (N − 1) × (N − 1) matrix D1 = RT
1 B−1R1 is actually diagonal.

Using

Zk
N−1 =

(
2

N

)1/2

sin
k(N − 1)π

N
= (−1)k+1

(
2

N

)1/2

sin
kπ

N
= (−1)k+1Zk

1 (A.7)

in (A.6) yields that the diagonal coefficient (D1)j is

[
RT

1 B−1R1

]

j,j

=
4(α− β)

N

N−1∑

k=1,k even

sin2

(
kπ

N

)
1

(6 − λk)2µk,j
. (A.8)

Similarly, we find that the matrix D2 = RT
2 B−1R2 is diagonal as well, with j-th

coefficient

(v2 ⊗ Zj)TB−1(v2 ⊗ Zj) =
1

2
(α + β)

N−1∑

k=1

(
Zk

1 + Zk
N−1

6 − λk

)2
1

µk,j

=
4(α+ β)

N

N−1∑

k=1,k odd

sin2

(
kπ

N

)
1

(6 − λk)2µk,j
.

In addition, using that µk,l = µl,k it is easy to verify that

{
RT

3 B−1R3 = RT
1 B−1R1

RT
4 B−1R4 = RT

2 B−1R2
(A.9)

and that
{
RT

1 B−1R2 = 0
RT

3 B−1R4 = 0.
(A.10)

Finally, we obtain that the matrices M1,3 = RT
1 B−1R3, M1,4 = RT

1 B−1R4, M2,4 =
RT

2 B−1R4 are given by

(RT
1 B−1R3)i,j =





4(α− β)

N

sin iπ
N sin jπ

N

(6 − λi)(6 − λj)µi,j
if i even , j even

0 if i odd or j odd

(A.11)

(RT
1 B−1R4)i,j =





4(α− β)1/2(α+ β)1/2

N

sin iπ
N sin jπ

N

(6 − λi)(6 − λj)µi,j
if i odd , j even

0 if i even or j odd
(A.12)

(RT
2 B−1R3)i,j =





4(α− β)1/2(α+ β)1/2

N

sin iπ
N sin jπ

N

(6 − λi)(6 − λj)µi,j
if i even , j odd

0 if i odd or j even
(A.13)
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(RT
2 B−1R4)i,j =





4(α+ β)

N

sin iπ
N sin jπ

N

(6 − λi)(6 − λj)µi,j
if i odd , j odd .

0 if i even or j even

(A.14)

Using that

(RT
1 B−1R4)

T = (RT
2 B−1R3), (A.15)

it results that the 4(N − 1)× 4(N − 1) matrix RTB−1R has the 4× 4 block structure

RTB−1R =




D1 0 M1,3 M1,4

0 D2 MT
1,4 M2,4

M1,3 M1,4 D1 0
MT

1,4 M2,4 0 D2


 , (A.16)

Formulas (A.8, A.11, A.12, A.13, A.14) show that the computing cost for the assem-
bling is O(N2). The capacitance matrix I + 36RTB−1R in (3.59) is therefore

I + 36RTB−1R =




I + 36D1 0 36M1,3 36M1,4

0 I + 36D2 36MT
1,4 36M2,4

36M1,3 36M1,4 I + 36D1 0
36MT

1,4 36M2,4 0 I + 36D2


 . (A.17)

This symmetric positive matrix has the form I4(N−1) + Z̃T Z̃ ≥ I, where

Z̃ = 6(B−1)1/2R. (A.18)

The conjugate gradient method can be applied to (3.59). The simple diagonal pre-
conditioning yields a linear system Mg = g′ with matrix of the form

M =

[
I2(N−1) M̄
M̄T I2(N−1)

]
, (A.19)

where M̄ ∈ M2(N−1)(R) is defined by

M̄ =

[
( 1
36I +D1)

−1M13 ( 1
36I +D1)

−1M14

( 1
36I +D2)

−1MT
14 ( 1

36I +D2)
−1M24

]
. (A.20)

Solving (3.59) with the CG method for the matrix in (A.19) has been proved to be
very efficient. Equivalently, one can split the linear system into two independent linear
systems of size 2(N − 1) and matrices I2(N−1) − M̄T M̄ and I2(N−1) − M̄M̄T , [10],
each of them being solved by the CG algorithm.

The convergence analysis of the CG algorithm (see for example [13], chap.8, pp.
249 sqq.) yields that the norm of the error is reduced by a factor ε after k iterations.
Here k is selected such that

k ≥ 1

2

√
κ2(I − M̄M̄T ) ln(2/ε), (A.21)

where κ2(I − M̄M̄T ) is the condition number of I − M̄M̄T .
The eigenvalues of I − M̄M̄T are

0 < λ1 ≤ λ2 ≤ ... ≤ λ2(N−1) ≤ 1, (A.22)
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Fig. A.1. Curve Log2(N) 7→ σmax(M̄).

where λk = 1 − σ2
k and σk is the kth singular value of M̄ . Therefore,

κ2(I − M̄M̄T ) ≤ 1

1 − σ2
max(M̄)

. (A.23)

A full analytic estimate of σmax(M̄) seems to be difficult to derive. Thus, we limit
ourselves to the numerical study of the relation between Log2(N) and σmax(M̄). In
Fig.1 we display the graph of Log2(N) 7→ σmax(M̄). Here N is the size of the problem
and it ranges 2 to 2600. This value encompasses the number of grid points, which
is usually picked for two-dimensional problems. As can be observed on Fig.1, one
can infer a monotonic increase in the behaviour of σmax(M̄) as a function of N ,
with a very slow growth for large N . The existence of a bound uniform in N ,
though very plausible, is not completely apparent. Anyway, we observe numerically
that σmax(N) ≤ 0.7 for N ≤ 2600. For a given tolerance error ε, the lower bound
for the number of iterations k is independent in practice of the grid size, namely,
k ≥ 0.7 ln(2/ε), at least for N ≤ 2600, (see (A.21)). Since each iteration of the
CG algorithm is O(N2), we have that Step 4 in Algorithm 2 is in practice O(N2).
In Tables 5.6, 5.7 we report on the number of iterations of the CG algorithm for
the system (3.59) for the two specific examples. It indicates a very slow increasing
behaviour of the number of iterations of the CG algorithm, corroborating Fig. 1.
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