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Abstract

The motion-planning problem, involving the computation of a collision-free path for a moving
entity amidst obstacles, is a central problem in fields like Robotics and Game Design. In this
paper we study the problem of planning high-quality paths. A high-quality path should have
some desirable properties: it should be short and avoid long detours, and at the same time it
should stay at a safe distance from the obstacles, namely it should have clearance. We suggest
a quality measure for paths, which balances between the above criteria of minimizing the path
length while maximizing its clearance. We analyze the properties of optimal paths according
to our measure, and devise an approximation algorithm to compute near-optimal paths amidst
polygonal obstacles in the plane.

We also apply our quality measure to corridors. Instead of planning a one-dimensional
motion path for a moving entity, it often more convenient to let it move in a corridor, where the
exact motion path is determined by a local planner. We show that planning an optimal corridor
is equivalent to planning an optimal path with bounded clearance.

1 Introduction

1.1 Optimal Paths

The task of planning a collision-free path for a moving entity that avoids obstacles plays an im-
portant role in Robotics, as well as in Game Design. The problem is often solved by constructing
a graph that discretizes the environment, and extracting a collision-free path from this graph.
The nodes of such a graph may be the cells of a uniform grid (see, e.g., [19]), or — according to
Probabilistic Roadmap (Prm) paradigm (see [6] and [1, Chapter 7]) — free configurations that are
randomly chosen, attempting to capture the connectivity of the free configuration space.

In many applications, computing some collision-free path will not do, and we are required to
obtain a high-quality path. The quality of a path can be determined according to several properties.
Usually, a preferable path is short and avoids unnecessary detours. At the same time, the path
is often required to have some clearance from the obstacles, in order to allow the moving entity
more room to safely maneuver, or to gain increased visibility. Song et al. [20] present a method for
extracting paths from a Prm according to these criteria. Additional path properties of interest are
path smoothness, or more generally — the amount of curvature a path has.

∗This work has been supported in part by the IST Programme of the EU as Shared-cost RTD (FET Open)
Projects under Contract No IST-2001-39250 (MOVIE — Motion Planning in Virtual Environments) and IST-006413
(ACS - Algorithms for Complex Shapes), and by the Hermann Minkowski–Minerva Center for Geometry at Tel-Aviv
University.
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Paths extracted from a Prm are usually piecewise linear, thus containing sharp turns, and may
also contain self-loops. To be of practical use, such paths needs to be postprocessed. Here lies a
major drawback of the above approaches: they may select a path which is optimal according to
some quality measure within the graph, yet other paths may exist in the graph that may prove better
after they are postprocessed. Trying all paths and only select the best one after postprocessing
would be prohibitively expensive.

In this paper we consider the problem of characterizing and computing high-quality motion
paths. As we have already mentioned, this is a bi-criteria optimization problem, as we strive for
minimizing the path length while maximizing its clearance for the given obstacles. These two
requirements often contradict. Given start and goal configurations and a set of obstacles in the
plane, the shortest collision-free path is contained in the visibility graph of the obstacles; see,
e.g., [10]. However, such a path is incident to obstacle boundaries and therefore has zero clearance.
Conversely, if one is only concerned with clearance, allowing as long paths as needed, then such
paths are easily found by retracting the path to the Voronoi diagram of the given obstacles [15]. It
is also possible to consider interpolates of these two structures, named visibility–Voronoi diagrams,
as suggested in [21]. Indeed, a good corridor makes a good trade-off between length and clearance.

We introduce a measure for the quality of paths, which combines the two properties mentioned
above – path length and path clearance, and present a method to plan paths amidst polygonal
obstacles in the plane that are (nearly) optimal with respect to this measure. In addition, we show
that such optimal paths are always smooth.

Planning optimal paths with respect to our quality measure is a computationally difficult task.
However, we show how to devise optimal paths in some special cases, and devise an approximation
algorithm that computes near-optimal paths amidst polygonal obstacles.

1.2 Optimal Corridors

Computing a fixed path in response to a motion-planning query is inadequate for many applications,
as such a path lacks flexibility to avoid local hazards (such as small obstacles, other moving entities,
etc.) that are encountered during the motion. Moving along a fixed path also leads to predictable,
and possibly unrealistic motions, which are not suitable for some applications, such as computer
games. One approach for tackling these problems is a potential-field planner, in which the moving
entity is attracted to its goal configuration, and repelled by obstacles, or other moving entities
(see, e.g., [7]). However, this approach is prone to get stuck in local minima of the potential field.
Altough there are methods that help in resolving such situations (see, e.g., [8]), they may still not
yield valid motions at all.

We would therefore like to indicate the global direction of movement for the moving entity,
while leaving enough flexibility for some local planner to avoid local hazards. An ideal solution
for this is to use corridors, which have recently been introduced in the field of Game Design [16].
Corridors are defined as a union of balls whose center points lie along a backbone path. The radius
of the balls is determined by the clearance (i.e., the distance to the nearest obstacle) along the
backbone path. The more restricted task of locally planning the motion around the backbone path
can be successfully performed by applying potential-field methods. At the same time, in order to
guarantee that the local planner operates on a restricted environment, the radii of the balls are
upper bounded by some predetermined value.1 As a result, rather than moving along a fixed path,

1The fact that the radii of the balls are bounded is also a major difference between a corridor and the medial axis

transform of the free workspace.
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the moving entity moves within a corridor around the backbone path. This gives a strict global
direction of movement, yet provides the local flexibility we look for.

Planning within corridors has many applications. It has been used to plan motions for coherent
groups of entities, where the backbone path provides the global motion of the group [4]. The inter-
actions between entities of the group are locally controlled by a social potential-field method [18].
Corridors have also been used to plan the motion of a camera that follows a moving character (a
guide) [13]. If the guide moves along the backbone path, the corridor gives the flexibility for the
camera to swerve if necessary. Another advantage of corridors is that they allow for non-holonomic
and kinodynamic planning, if the motion of a single entity (or multiple entities) is planned using a
potential field method within the corridor [5]. This is very difficult to achieve and incorporate into
a fixed path. A common property of the applications of corridors is that the moving entity is small
compared to the scale of the environment. In many fields (open field robotic navigation, games,
etc.) this is indeed the case.

We show that planning an optimal corridor is equivalent to computing an optimal path with
bounded clearance. We are therefore able to generalize our analysis to corridors and plan near-
optimal corridors amidst polygonal obstacles.

1.3 Paper Outline

The rest of this paper is organized as follows. In Section 2 we formally define paths and introduce
the quality measure. We also present some elementary properties of general optimal paths with
respect to this measure. Section 3 focuses on the specific case of optimal paths amidst polygonal
obstacles in the plane and discusses their properties. In Section 4 we present an approximation
algorithm to compute near-optimal paths. In Section 5 we generalize out result to the case of
corridors. We also take the curvature of the path into account and augment the quality measure
accordingly. We give some concluding remarks and future-work directions in Section 6.

2 Measuring Paths

A path γ(t) of an entity moving in a d-dimensional workspace is defined as a continuous function
γ : [0, L] −→ R

d, parameterized by the length L of the path. In typical motion-planning applications
we are given a set of obstacles O that the moving entity should avoid. If there exists some t ∈ [0, L]
such that the interior of the moving entity intersects some obstacle when positioned at γ(t), we say
that γ is an invalid path. For the time being, let us assume that the moving entity is a point, thus
it is sufficient to require that γ is disjoint from the interior of any of the obstacles. In the next
sections we explain how this assumption can be alleviated. In the rest of this paper we consider
only valid, namely collision-free, paths.

For any point p, we define the clearance as a function c : R
d −→ R, where c(p) is the distance

between p and the nearest point on any of the obstacles. That is, c(p) = minq∈O ‖p − q‖.

2.1 The Weighted Length Measure

As we have already indicated, a good path must be short — namely it should avoid unnecessarily
long detours — and it should have as much clearance as possible. Informally speaking, the path
should go through narrow passages only if they allow considerable shortcuts.
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To combine the two desired properties of the path as discussed above, for any δ > 0 we define
the weighted length L∗

δ(γ) of a path γ to be:

L∗
δ(γ) =

∫

γ

(

1

c(γ(t))

)δ

dt . (1)

We wish to minimize the weighted length by either shortening the path or by extending the
path’s clearance. Given a start position s ∈ R

d and a goal position g ∈ R
d, a path γ satisfying

γ(0) = s and γ(L) = g is optimal for a desired value of δ if for any other valid path γ′ connecting
the two endpoints we have L∗

δ(γ) ≤ L∗
δ(γ

′).

The parameter δ determines how much weight is given to the clearance in the measure. That
is, if δ is small, the length is more important than the clearance, and if δ is large, the clearance
is more important than the length. Indeed, if δ = 0, the weighted length equals the length of the
path, and the optimal path is the shortest path found in the visibility graph of the obstacles O.
This graph can be computed in O(n log n + k) time [10], where n is the total complexity of the
obstacles, and k the number of edges in the visibility graph. For δ −→ ∞, the optimal path is the
path with the largest minimal clearance in the Voronoi diagram of the obstacles O. It can be found
in O(n log n) time by retraction, namely by constructing a minimum spanning tree in the Voronoi
diagram [15].

Our weighting scheme can be directly applied to optimizing the quality of paths extracted from
Prms that contain cycles, as suggested in [12, 14]. However, instead of weighting each edge in the
Prm by its Euclidean length and extracting the shortest path from the graph, we can consider
some preferred δ value, and give each edge e the weight of L∗

δ(e), with respect to the clearance
function along the edge. We can thus extract the optimal path the Prm contains with respect to
δ. However, for polygonal obstacles in the plane we can devise a complete scheme for calculating
an optimal path, as we show in the next section.

2.2 Properties of Optimal Paths

Observation 1 The clearance function c(γ(t)) is a continuous function along any path γ. More-
over, for any p1, p2 ∈ R

d we have |c(p2) − c(p1)| ≤ ‖p2 − p1‖, hence the clearance function also
satisfies the Lipschitz condition with a constant that equals 1.

Lemma 2 Given a set of obstacles and 0 < δ < ∞, the optimal path connecting any given start
position s to any goal position g is smooth.

r

p∗

Proof: Let γ(t) be the optimal path connecting s and g. Assume
that γ contains a sharp turn (a C1-discontinuity). Let us approximate
the sharp turn using a circular arc of radius r that smoothly connects
to the original path. As illustrated in the figure on the right, as r
approaches 0 the approximation is tighter. Let `1 be the length of
the original path segment we approximate and let `2 be the length of
the circular arc. It is easy to show that there exists r̂ > 0 and some
constants A1 > A2 > 0 such that for each 0 < r < r̂ we have `1 ≥ A1r

and `2 = A2r. If the maximal clearance c∗ along the original path segment is attained at some
point p∗, then as the distance of any point p along the circular arc from p∗ is bounded by Kr, where
K is some constant, and as the clearance function is 1-Lipschitz, we have that c∗− c(p) < Kr. Let
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(x, 0)

α1

α2

p1 = (x1, y1)

p2 = (x2, y2)

y = 0

c1

c2

Figure 1: Refraction of the optimal path in case of a discontinuity in the clearance function.

L∗
1 be the weighted length of the original path segment and let L∗

2 be the weighted length of the
circular arc. We therefore know that L∗

1 ≥ ( 1
c∗

)δ · l1 and L∗
2 ≤ ( 1

c∗−Kr )
δ · l2, so we can write:

L∗
1

L∗
2

≥ ( 1
c∗

)δ · l1
( 1
c∗−Kr)

δ · l2
≥

(

c∗ −Kr
c∗

)δ

· A1

A2
.

As A1 > A2, we can choose 0 < r < min
{

c∗

K

(

1− δ

√

A2

A1

)

, r̂
}

such that the entire expression above

is greater than 1. We thus have L∗
1 > L∗

2, and we managed to decrease the weighted length of
the original path by introducing a circular shortcut, in contradiction to the optimality of γ. We
conclude that γ(t) must be a smooth function. 2

At several places in this paper we apply infinitesimal analysis, where we assume that the clear-
ance function is not continuous. Assume that we have some hyperplane H in R

d that separates
two regions, such that in one region the clearance is c1 and in the second it is c2. Minimizing the
weighted length between two endpoints that are separated by H is equivalent to applying Fermat’s
principle, stating that the actual path between two points taken by a beam of light is the one which
is traversed in the least time. The optimal path thus crosses the separating hyperplane once, such
that the angles α1 and α2 it forms with the normal to H obey Snell’s Law of refraction,2 with c1

δ

and c2
δ playing the role of the “speed of light” in the respective regions. We next bring the proof

for the two-dimensional case:

Lemma 3 (Snell’s Law of Refraction) Consider the example depicted in Figure 1, where we
have two regions separated by the line y = 0, such that if our path is given by γ(t) = (x(t), y(t)),
then c(γ(t)) = c1 for y(t) ≥ 0 and c(γ(t)) = c2 for y(t) < 0. The angles α1 and α2 that the optimal
path between p1 = (x1, y1) and p2 = (x2, y2), where y1 > 0 and y2 < 0, forms with a vertical line
perpendicular to y = 0 satisfy:

c2
δ sinα1 = c1

δ sinα2 . (2)

Proof: It is clear that while the clearance of the path remains constant when moving inside either
one of the regions, the optimal path in each region is a line segment. Thus, we have to find a cross
point (x, 0) minimizing the weighted length, as defined by Equation (1), which is in our case given
by the following function of x:

L∗
δ(x) =

1

c1δ

√

(x− x1)2 + y2
1 +

1

c2δ

√

(x2 − x)2 + y2
2 .

2See also Mitchell and Papadimitriou [11], who used this observation in a similar setting of the problem.
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We therefore take the derivative of the weighted length function and obtain:

L∗′

δ (x) =
1

c1δ
· 2(x− x1)

2
√

(x− x1)2 + y2
1

− 1

c2δ
· 2(x2 − x)
2
√

(x2 − x)2 + y2
2

.

To find the minimal weighted length we need an x value such that L∗′

δ (x) = 0, thus we get:

1

c1δ
· x− x1
√

(x− x1)2 + y2
1

=
1

c2δ
· x2 − x
√

(x2 − x)2 + y2
2

c2
δ ·

x−x1

y1
√

(

x−x1

y1

)2
+ 1

= c1
δ ·

x2−x
y2

√

(

x2−x
y2

)2
+ 1

.

As tanα1 = x−x1

y1
and tanα2 = x2−x

y2
, and as for any angle ϕ we can write tanϕ√

tan2 ϕ+1
= tanϕ·cosϕ =

sinϕ, we obtain that c2
δ sinα1 = c1

δ sinα2. 2

3 Optimal Paths amidst Polygonal Obstacles in the Plane

In this section we consider planar environments cluttered with polygonal obstacles. From now
on, we assume that δ = 1, which gives a natural trade-off between length and clearance in two-
dimensional environments, and for which we can analytically express the the structure of an optimal
path. The choice of δ = 1 will become more natural when we introduce corridors in Section 5 and
focus on planning optimal backbone paths for corridors. To simplify the notation, we refer to L∗

1(·)
simply as L∗(·). As we show in this section, an optimal path amidst polygonal obstacles comprises
a number of segments, determined by the identity of the nearest obstacle feature. We begin by
identifying the various types of optimal path segments.

We mention that the analysis for arbitrary values of δ is performed using calculus of varia-
tions [2]. In Appendix A we give more details on the techniques we use in the general case.

3.1 A Single Point Obstacle

Let us assume that there is only a single point obstacle p in our environment. Without loss of
generality, we assume p is located at the origin. We show how to compute an optimal path between
two endpoints s, g ∈ R

2. Note that the clearance c(γ(t)) along such a path simply equals ‖γ(t)‖.
We first approximate the optimal path by a polyline: for some small ∆r > 0, if we look at the

circles of radii ∆r, 2∆r, 3∆r, . . . that are centered at the origin. Each pair of neighboring circles
define an annulus. Since ∆r is small we assume that the distance from p of all points in the
kth annulus is constant and equals k∆r. Consider the scenario depicted in Figure 2(a), where γ
enters one of the annuli at some point A, where ‖A‖ = r1, and leaves this annulus at B, where
‖B‖ = r2 = r1 + ∆r. The angles that the path forms with pA and pB are α1 and β1, respectively.
When entering the annulus we have c1 = r1 and c2 = r2, so applying Equation (2) for δ = 1 we can
express the refracted angle α2, using:

sinα2 =
r2

r1
sinα1 .
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A

B

α1

α2

β1

p = (0, 0)

C

p0 = (x0, 0)

α2

α3

α1

α0

x
=

0

∆y2

∆y3

∆y1

(a) (b)

Figure 2: An optimal path in case of (a) a single point obstacle, and (b) a single line segment
obstacle.

By applying the Law of Sines on the triangle 4pAB, we get:

r2

sin(π − α2)
=

r1

sin β1
,

sin β1 =
r1

r2
sin(π − α2) =

r1

r2
sinα2 = sinα1 .

As the two angles are less than π
2 , we have that β1 = α1. Taking ∆r −→ 0, we obtain a smooth

curve γ, such that the angle that ∇γ(t) forms with
−−−→
pγ(t) is a constant ψ. It is possible to show that

a curve that has this property must be a segment of a logarithmic spiral (also named an equiangular
spiral)3 whose polar equation is given by r(t) = aebθ(t), where a is a constant and b = cotψ. See,
e.g., [3] for a proof of this latter fact.

The two parameters a and b of the logarithmic spiral that supports the optimal path between two
given endpoints can be therefore computed by substituting the polar coordinates of the endpoints
into the equation r = aebθ:

Proposition 4 Given a single point obstacle located at the origin, a start position s = rse
iθs and

a goal position g = rge
iθg (in polar coordinates), the optimal path connecting s and g is a spiral

arc supported by a logarithmic spiral r = a∗eb
∗θ. Since both s and g lie on this spiral, we have

(assuming θs 6= θg, otherwise the optimal path is simply a line segment):

a∗ = rg
θs

θs−θg · rs−
θg

θs−θg , (3)

b∗ =
1

θg − θs
· ln rg

rs
. (4)

Proposition 5 Given a single point obstacle located at the origin, a start position s = rse
iθs and

a goal position g = rge
iθg (in polar coordinates), the weighted length of the optimal path σ between

3http://www-groups.dcs.st-and.ac.uk/∼history/Curves/Equiangular.html

7



s and g is given by:

L∗(σ) =

∫ θ2

θ1

1

r(θ)

√

r2(θ) +

(

dr

dθ

)2

(θ) dθ =

∫ θ2

θ1

1

a∗eb
∗θ

√

1 + b∗2aeb
∗θ dθ =

=

∫ θ2

θ1

√

1 + b∗2 dθ =
√

1 + b∗2(θ2 − θ1) =

=
√

(θ2 − θ1)2 + (ln r2 − ln r1)2 . (5)

3.2 A Single Line Segment Obstacle

Let us now consider an environment that consists of a single line segment obstacle, which is arbi-
trarily long. Without loss of generality, let us assume that the segment is supported by the vertical
line x = 0, such that the clearance of a point along the path γ(t) = (x(t), y(t)) simply equals
c(γ(t)) = |x(t)|. To analyze the optimal path γ between two points s and g (see Figure 2(b)),
we begin by approximating this path by a polyline. Assume that γ(t) passes through a point
p0 = (x0, 0) and forms an angle α0 with the line y = 0 perpendicular to the obstacle. For some
small ∆x > 0 we can define the lines x = x0, x = x0 + ∆x, x = x0 + 2∆x, . . ., where each pair of
neighboring lines define a vertical slab. Since ∆x is small we assume that the distance of all points
in the slab from the obstacle is constant and equals x0 + k∆x. We can now use Equation (2) with
δ = 1 and write:

sinα1 =
x0 + ∆x

x0
sinα0 ,

sinα2 =
x0 + 2∆x

x0 + ∆x
sinα1 =

x0 + 2∆x

x0
sinα0 ,

...
...

sinαk =
x0 + k∆x

x0
sinα0 .

If we examine the kth slab we can write x = x0 + k∆x, so we have:

∆yk = ∆x tanαk = ∆x · sinαk
√

1− sin2 αk
= ∆x · x sinα0

√

x2
0 − x2 sin2 α0

. (6)

Letting ∆x tend to zero we obtain a smooth curve. We can use Equation (6) to express the
derivative of the curve and we obtain:

y′(x) = lim
∆x−→0

∆yk
∆x

=
x sinα0

√

x2
0 − x2 sin2 α0

,

y(x) = − 1

sinα0

√

x2
0 − x2 sin2 α0 +K . (7)

As the point (x0, 0) lies on the curve we can express the constant K:

K = 0 +
1

sinα0

√

x2
0 − x2

0 sin2 α0 =

√

1− sin2 α0

sinα0
x0 = x0 cotα0
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Observe that y(x) is defined only for x < x0

sinα0
. When x = x0

sinα0
the path is reflected from the

vertical wall and starts approaching the obstacle. Indeed, by squaring and re-arranging Equation (7)
we obtain:

x2 + (y − x0 cotα0)
2 =

(

x0

sinα0

)2

,

thus we conclude that γ is a circular arc, whose supporting circle is centered at (0, x0 cotα0) and
its radius is x0

sinα0
.

Proposition 6 Given a start position s = (xs, ys) and a goal position g = (xg, yg) in the vicinity
of a line segment obstacle supported by x = 0, the optimal path between these two endpoints is a
circular arc supported by the a circle of radius r∗ that is centered at (0, y∗), where (we assume that
ys 6= yg, otherwise the optimal path is simply the line segment sg):

y∗ =
ys + yg

2
+

x2
g − x2

s

2(yg − ys)
, (8)

r∗ =

√

1

2
(x2
s + x2

g) +
1

4
(yg − ys)2 +

(x2
g − x2

s)
2

4(yg − ys)2
. (9)

Proposition 7 Given a line segment obstacle supported by the line x = 0, a start position s =
r∗eiθ1 and a goal position g = r∗eiθ1 in polar coordinates relative to the center (0, y∗) of the circle
supporting the optimal path σ between s and g, the weighted length of the circular arc σ is given by
(note that r(θ) = r∗):

L∗(σ) =

∫ θ2

θ1

1

r∗ cos θ

√

r2(θ) +

(

dr

dθ

)2

(θ) dθ =

∫ θ2

θ1

1

cos θ
dθ =

= ln
1 + sin θ

cos θ

∣

∣

∣

∣

θ2

θ1

= wmax

(

ln tan
θ2

2
− ln tan

θ1

2

)

. (10)

(The last transition is due to the half-angle formula tan ϕ
2 = 1+sinϕ

cosϕ .)

3.3 Polygonal Obstacles

For the general case of multiple polygonal obstacles, we first construct V, the Voronoi diagram
of the obstacle polygons. V consists of Voronoi arcs that are equidistant to two different polygon
features. A Voronoi arc may be induced by two polygon vertices, by two polygon edges, or by a
polygon vertex and a polygon edge that are adjacent on the same polygon, in which case it is a
line segment, or by a polygon vertex and a polygon edge of different polygons, in which case it is
a parabolic arc. See, e.g. [9] for more details.

The Voronoi arcs partition the plane into two-dimensional Voronoi cells, where all points in a
cell share the same closest polygon feature. The closest polygon feature is either a polygon vertex,
or a polygon edge. See Figure 3 for an illustration.

Given two points s′ and g′ that belong to the same Voronoi cell ζ, we know that:

• If ζ is a Voronoi cell of a polygon vertex, the optimal path between s′ and g′ is a spiral arc σ
that connects them as in Proposition 4, provided that σ does not intersect any Voronoi arc
of V. The weighted length of σ can be computed according to Proposition 5.
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ζ1

ζ2

Figure 3: The Voronoi diagram of four polygonal obstacles. Voronoi arcs separating between
Voronoi cells of features of different polygons are drawn solid, and those separating cells of features
of the same polygon are dashed. The region denoted ζ1 is a Voronoi cell of a polygon vertex, and
ζ2 is a Voronoi cell of a polygon edge.

• If ζ is a Voronoi cell of a polygon edge, the optimal path between s′ and g′ is a circular arc σ
that connects them as in Proposition 6, provided that σ does not intersect any Voronoi arc
of V. The weighted length of σ can be computed according to Proposition 7.

In addition, the Voronoi arcs of V are also locally optimal, namely they can serve as optimal paths.
Given s′ and g′ on the same Voronoi arc, the optimal path that connects them is simply the piece of
the Voronoi arc between s′ and g′. In case of a Voronoi arc that is induced by two polygon vertices
or by two polygon edges, this is easy to prove: the Voronoi arcs are straight-line segments and the
clearance function is locally maximal on the Voronoi arcs. The case of a Voronoi arc induced by a
polygon vertex and a polygon edge that are adjacent on the same polygon reduces to the case in
Proposition 4 where θs′ = θg′ , or, equivalently, to the case in Proposition 6 where ys′ = yg′ . Hence,
these arcs are locally optimal as well.

The case of a parabolic Voronoi arc induced by a polygon vertex and a polygon edge of different
polygons is less trivial. To prove local optimality, we show that it is not possible to shortcut a piece
of the arc between two points on the parabolic arc by choosing a shorter route that is closer to one
of the polygons, as such a route always has a greater weighted length.

p2p1

v

e

σ

τ

a

Consider a parabolic Voronoi arc a induced by a polygon vertex
v and an edge e of another polygon, and let p1 and p2 be two points
on a. Assume that it is possible to shortcut the portion of a defined
by p1 and p2 by penetrating the Voronoi cell of e. In this case, the
shortcut is a circular arc σ centered at some point on e; this arc
clearly penetrates the Voronoi cell of the vertex v, as can be seen
in the illustration to the right. On the other hand, if we try to
create a shortcut contained in the Voronoi cell of v, we end up with
a spiral arc τ centered at v. As p1 and p2 are equidistant from v,
τ is a circular arc, whose curvature is greater than that of the parabolic edge, hence it penetrates

10



the Voronoi cell of e. Either way, we reach a contradiction, and we conclude that the parabolic arc
is locally optimal.

Corollary 8 The optimal path between two points s′ and g′ on a Voronoi arc a of any kind is the
piece of a between s′ and g′.

The weighted length of these paths is computed as follows:

Vertex–vertex arc: Without loss of generality, let the two polygon vertices inducing the Voronoi
arc a be the points (0, yv) and (0,−yv). Then, the Voronoi arc a is supported by the line
y = 0, and the clearance for any point (x, 0) along a equals

√

x2 + yv2. The weighted length
of the optimal path σ between to points (x1, 0) and (x2, 0) on a equals:

L∗(σ) =

∫ x2

x1

1
√

x2 + yv2
dx = ln

(

x+
√

x2 + yv2
)∣

∣

∣

x2

x1

= ln
x2 +

√

x2
2 + yv2

x1 +
√

x2
1 + yv2

. (11)

Edge–edge arc: Without loss of generality, let the two polygon edges inducing the Voronoi arc
a intersect the line y = 0 at the origin with angles α and −α. Then, the Voronoi arc a is
supported by the line y = 0, and the clearance for any point (x, 0) along a equals x sinα. The
weighted length of the optimal path σ between to points (x1, 0) and (x2, 0) on a equals:

L∗(σ) =

∫ x2

x1

1

x sinα
dx =

lnx

sinα

∣

∣

∣

∣

x2

x1

=
1

sinα
· ln x2

x1
. (12)

Same polygon vertex–edge arc: Without loss of generality, let the polygon vertex and the poly-
gon edge inducing the Voronoi arc a be the origin and the line x = 0, respectively. Then, the
Voronoi arc a is supported by the line y = 0, and the clearance for any point (x, 0) along a
equals x. The weighted length of the optimal path σ between to points (x1, 0) and (x2, 0) on
a equals:

L∗(σ) =

∫ x2

x1

1

x
dx = lnx|x2

x1
= ln

x2

x1
. (13)

Different polygon vertex–edge arc: Without loss of generality, let the polygon vertex and the
polygon edge inducing the Voronoi arc a be the point (0, yv) and the line y = −yv, respectively.

Then, the Voronoi arc a is supported by the parabola y(x) = x2

4yv
, and the clearance for any

point (x, y(x)) along a equals y(x) + yv. The weighted length of the optimal path σ between
to points (x1, 0) and (x2, 0) on a equals:

L∗(σ) =

∫ x2

x1

√

1 + (dy
dx

)2(x)

y(x) + yv
dx =

∫ x2

x1

√

1 + x2

4yv
2

x2

4yv
+ yv

dx =

∫ x2

x1

2
√

x2 + 4yv2
dx =

= 2 ln
(

x+
√

x2 + 4yv2
)
∣

∣

∣

x2

x1

= 2 ln
x2 +

√

x2
2 + 4yv2

x1 +
√

x1
2 + 4yv2

. (14)

We conclude that an optimal path γ∗ between a start position s and a goal position g amidst
polygonal obstacles in the plane consists of segments of different types: spiral arcs in Voronoi cells
of a polygon vertex, circular arcs in Voronoi cells of a polygon edge and pieces of Voronoi arcs on
the Voronoi diagram itself. We refer to them as maximal path segments. We have already seen how
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we can compute the weighted length of each of these maximal segments. In addition, according to
Lemma 2 we know that these segments are smoothly connected.

We next show that the number of maximal segments an optimal path consists of is linear in the
complexity of the obstacles. That is, if k is the number of maximal segments of the optimal path,
and n is the total number of polygon vertices, then k < O(n).

Lemma 9 An optimal path γ∗ consists of O(n) maximal segments at most.

Proof: We have already seen that the arcs of the Voronoi diagram are locally optimal paths.
Hence, if there are two points on an arc of V belonging to γ∗, these points are connected by a piece
of the diagram arc. For each arc a in V, one of the following holds: (i) the optimal path γ∗ does
not intersect a at all, or (ii) γ∗ crosses a exactly once, or (iii) γ∗ contains one continuous piece of
a. At the same time, the endpoints of spiral segments and circular segments must coincide with V
(or with s or g), as they are the transition points between two segments of different type.

As the complexity of V is linear in the total number of polygon vertices n, the complexity of
γ∗, namely the number of maximal segments it contains, is O(n) as well.4 2

So far we covered the case of a point moving amidst polygonal obstacles in the plane. If this is
not the case, we can still view the moving entity as a point if we consider the configuration-space
obstacles. If the robot is polygonal and can only translate, but not rotate, the configuration-space
obstacles are the Minkowski sums of the original obstacles with the robot rotated by π, and are
also straight-edge polygon in this case.

In case of a disc robot of radius ρ moving amidst polygonal obstacles, we should dilate each
obstacle by ρ, namely compute the Minkowski sum of each polygon with the disc, and obtain a set
of polygonal configuration-space obstacles, whose boundaries comprise line segments and circular
arcs. The analysis we performed in this section also applies for the case of moving amidst such
dilated polygons. Note that in the general case the arcs of the Voronoi diagram of a set of line
segments and circular arcs consists of line segments (equidistant from a pair of line segments),
parabolic arcs (equidistant from a line segment and a circular arc) and hyperbolic arcs (equidistant
from a pair of circular arcs). However, as all circular arcs of the dilated obstacles have the same
radius in our case, the hyperbolic arcs degenerate into line segments, hence all Voronoi edges are
locally optimal. The Voronoi edges subdivide the plane into cells that can either be associated with
a closest dilated polygon edge (a line segment), or with a dilated polygon vertex (a circular arc). It
is possible to express the optimal path between two points in a cell ζ of the latter type in a closed
analytic form, using calculus of variations; see Appendix A.3 for the details.

If we have a robot of an arbitrary shape that is able to translate an rotate, namely has three de-
grees of motion freedom, it is convenient to reduce the dimensionality of the problem by considering
a bounding disc of the robot, and planning a path for this disc, as described above.

Having characterized various segments of an optimal path amidst polygonal obstacles, we would
like to construct such paths. We know that an optimal path contains portions of the Voronoi
diagram, but it cannot be totally in overlap with the Voronoi diagram: A path retracted to a Voronoi
diagram may pass through Voronoi vertices, hence it may contain sharp turns, in contradiction to
Lemma 2. One may try and rectify this problem by introducing a shortcut curves between each
pair of Voronoi edges that are incident to a common Voronoi vertex. Figures 4(a) and 4(b) shows

4
Ron: Is there a known upper bound Mn for the complexity of the Voronoi diagram? If there is, we can say that

k ≤ 2Mn.
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Figure 4: Adding shortcut curves in the Voronoi diagram of point obstacles. (a) The spiral arc
connecting q1 and q2 (dashed) crosses the Voronoi edge v1v2; the optimal backbone path between
q1 and q2 therefore comprises two spiral arcs that shortcut v1 and v2 (solid arrows) and portions
of Voronoi edges. (b) Shortcutting two adjacent Voronoi vertices v1 and v2 by a single spiral arc.
(c) Shortcutting two Voronoi vertices by a cross-cell curve obtained from the smooth concatenation
of two spiral arcs. Both arcs have a common tangent y = αx + b, which crosses the Voronoi edge
v1v2 at q′.

how we introduce shortcut curves in the Voronoi diagram of point obstacles; these simple shortcut
curves pass through a single Voronoi cell of a polygon vertex, hence they are arcs of logarithmic
spiral. At the same time, a shortcut curve may cross a Voronoi edge, thus it may comprise two
spiral arcs that are smoothly joined together (see Figure 4(c)).

We should also continue and examine the possibility of shortcutting k > 2 Voronoi vertices
by considering sequences of (k + 1) contiguous Voronoi edges. This operation is not trivial, and
requires solving a system of low-degree polynomial equations with 2(c + 1) unknowns, where c is
the number of crossings between the shortcut curve and the Voronoi diagram. In some scenarios
it may be possible to construct shortcuts to Θ(n) Voronoi vertices by considering sequences of
Θ(n) contiguous Voronoi edges, thus the process of smoothing the path retracted from the Voronoi
diagram may blow up exponentially. We therefore devise an approximation algorithm that computes
paths that are arbitrarily close to the optimal path between a pair of given endpoints.

4 An ε-Approximation Algorithm for Optimal Paths

We devise an approximation algorithm to compute a near-optimal path between two endpoints s
and g based on the structure of the Voronoi diagram V and the planar partition it induces. Given
ε > 0, we subdivide the Voronoi arcs of V into small intervals of length c(I)ε: as ε is small, we
consider the clearance of an interval I to be constant and denote it c(I). Notice that the intervals
are shorter in regions where the clearance is smaller, and that each interval has weighted length ε.

Hence, if Λ is the total weighted length of the Voronoi arcs of V, then there are Λ
ε

intervals in
total. However, the Voronoi arcs induced by a two features of the same polygon have zero clearance
in one of their endpoints, which would make the intervals arbitrarily small as c(I) approaches zero.
At the same time, Λ, the total weighted length of V, becomes infinity.

Fortunately, we can prove that the minimal clearance of an optimal path γ∗ between a start
position s and a goal position g is never smaller than the minimum of the clearances attained at
s, g, and the Voronoi arcs of V induced by features of different polygons. As a consequence, we
only need to subdivide the portions of the Voronoi diagram that have clearance greater than the
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minimum value, disregarding portions that are induced by features of the same obstacles and lie
too close to this obstacle.

Lemma 10 The minimal clearance of an optimal path γ∗ between start position s and goal position
g is greater than (or equal to) the minimum of the clearances attained at s, g, and the Voronoi arcs
of V induced by features of different polygons.

Proof: First we observe that for each of the spiral segments and circular segments of the optimal
path γ∗ (recall that such segments correspond to pieces of the path that are contained within a
Voronoi cell of a polygon vertex or a polygon edge, respectively) the minimal clearance is attained
at one of its endpoints. This means that local clearance minima along γ∗ can be attained at s, g,
a point where it crosses an arc of V, and where γ∗ consists of a piece of a Voronoi arc.

p

ve

However, a local clearance minimum of γ∗ cannot be attained at a
Voronoi edge separating two Voronoi cells of features of the same polygon.
Consider the scenario depicted to the right, and suppose that the optimal
path γ∗ goes through point p on a Voronoi arc separating a Voronoi cell
of a polygon vertex v and a Voronoi cell of a polygon edge e incident to
this vertex. We assume, without loss of generality, that e is supported by
some horizontal line. If p is a local minimum of γ∗ in terms of clearance,
the path should not go closer to the polygon than the dotted curve in the vicinity of p. As we know
that γ∗ is smooth, it has a well-defined slope at p. This slope should be strictly negative, otherwise
the circular segment of γ∗ on the left-hand side of p goes below the dotted line. However, this
means that the spiral segment of γ∗ on the right-hand side of p will go below the dotted circular
arc, whose slope at p is exactly zero. Thus, p cannot be a local clearance minimum of γ∗.

We conclude that local clearance minima can only be attained at Voronoi arcs induced by fea-
tures of different polygons, at s, and at g. The clearance obtained along γ∗ is therefore never
smaller than the minimum of the clearances attained at s, g, and the Voronoi arcs of V induced by
features of different polygons. 2

Let us now define a graph D whose set of nodes equals the set of intervals I plus s and g. Each
interval is incident to two of the cells defined by the Voronoi diagram, and we connect I1, I2 ∈ I
by an edge only if they are incident to a common cell. This edge is a spiral arc in a Voronoi cell
of one of the polygon vertices, a circular arc in a Voronoi cell of one of the polygon edges, and a
straight-line segment or a parabolic arc on a Voronoi arc (depending on the type). In addition, an
edge of D should not cross any of the arcs of V. Using a brute-force algorithm that checks each

candidate edge versus the O(n) diagram arcs, D can be constructed in O
(

Λ2

ε2
n
)

time, where Λ is

the total weighted length of the Voronoi diagram V, ignoring pieces of the diagram having clearance
less than the minimal clearance attained at s, g, and the Voronoi arcs of V induced by features of
different polygons.

Next, we can connect s and g to the graph and use Dijkstra’s algorithm to compute a near-

optimal path connecting s and g in Õ
(

Λ2

ε2

)

time. Let γ∗ be the optimal path between s and g,

which comprises k = O(n) maximal segments γ1, . . . , γk (a path segment may be a spiral arc, a
circular arc or a piece of a Voronoi arc). We next show that each such segment is approximated by
an edge in the graph D we have constructed.

Lemma 11 For each maximal segment γi of the optimal path γ∗, there exists an edge γ̃i in D such
that L∗(γ̃i) < L∗(γi) + 2ε.
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s

g

Figure 5: Optimal paths between two locations s and g for different δ values. The thick dashed
curve traces the optimal path for δ = 1

8 , and the thick dash-dotted curve is the optimal path for
δ = 1. Note that as we increase the value of δ, the optimal path becomes more similar to the one
obtained from the Voronoi diagram of the obstacles (dotted).

Proof: Let us denote the endpoints of the path segment γi by q1 and q2, and let I1 and I2 be the
intervals that contain these endpoints, respectively.

Edge γ̃i connects the intervals I1 and I2 in D, which is the optimal path connecting two endpoints
q̃1 ∈ I1 and q̃2 ∈ I2. In particular, the weighted length of this edge is less than the weighted length
of the path comprising the segment q̃1q1 on a Voronoi arc, the segment γi of the optimal path γ∗,
and the segment q2q̃2 on a Voronoi arc. As qj and q̃j (for j = 1, 2) lie on the same interval Ij, and
the length of Ij is c(Ij)ε, we therefore obtain:

L∗(γ̃i) < L∗(q̃1q1) + L∗(γi) + L∗(q2q̃2)

≤ 1

c(I1)
· ‖q̃1 − q1‖+ L∗(γi) +

1

c(I2)
· ‖q2 − q̃2‖ ≤ L∗(γi) + 2ε .

The weighted length of the approximated segment γ̃i contained in D can therefore be at most
L∗(γi) + 2ε. 2

As two consecutive segments γi and γj of the optimal path both have an endpoint in a common
interval, we know that the edges from D approximating γi and γj are connected in a common
vertex of D. Hence, the series of edges approximating each of the optimal path segments form a
continuous path γ̃. This path is near-optimal:

Corollary 12 Given a set of polygonal obstacles having n vertices in total, and given ε > 0, it is
possible for each two endpoints s and g with c(s), c(g) > 0, to construct a graph D and compute a

near-optimal path γ̃ connecting s and g in Õ
(

Λ2

ε2

)

time, such that L∗(γ̃) < L∗(γ∗) +O(n)ε.

Alternatively, we can choose the length of the intervals to be c(I) ε
n
. In this case, a near-optimal

path γ̃ can be found in Õ
(

Λ2

ε2
n2

)

time, such that L∗(γ̃) < L∗(γ∗) +O(1)ε.
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To give an illustration how optimal paths for varying δ values look like, we implemented a
brute-force algorithm that performs an A∗-search on a dense grid. Figure 5 shows the optimal
paths between a pair of points for different δ values.

5 Planning Near-Optimal Corridors

A corridor C = 〈γ(t), w(t), wmax〉 in a d-dimensional workspace (typically d = 2 or d = 3) is defined
as the union of a set of d-dimensional balls whose center points lie along the backbone path of the
corridor, which is given by the continuous function γ : [0, L] −→ R

d. The radii of the balls along the
backbone path are given by the function w : [0, L] −→ (0, wmax]. Both γ and w are parameterized
by the length of the backbone path. In the following, we will refer to w(t) as the width of the
corridor at point t. The width is positive at any point along the corridor, and does not exceed
wmax, a prescribed desired width of the corridor.

Given a corridor C = 〈γ(t), w(t), wmax〉 of length L in R
d, the interior of the corridor is thus

defined by
⋃

t∈[0,L]B (γ(t);w(t)), where B(p; r) is an open d-dimensional ball with radius r that is
centered at p. The interior of the corridor should be disjoint from the interior of a given set O of
obstacles, otherwise it is an invalid corridor. In what follows we consider only valid corridors.

Note that if we examine the intersection of the corridor C = 〈γ(t), w(t), wmax〉 with a normal
(d − 1)-dimensional hyperplane through γ(t), whose normal is tangent to γ at γ(t), the volume
of the cut is proportional to wd−1(t), allowing the entities moving along the corridor less space to
maneuver. Thus, we wish to penalize corridor portions whose width is less than wmax. We do that
by defining the weighted length L∗(C) of a corridor C = 〈γ(t), w(t), wmax〉 to be:

L∗(C) =

∫

γ

(

wmax

w(t)

)d−1

dt . (15)

We wish to minimize the weighted length by either shortening the backbone path or by extending
the corridor’s width (up to wmax). Given a start position s ∈ R

d and a goal position g ∈ R
d, a

corridor C = 〈γ(t), w(t), wmax〉 satisfying γ(0) = s and γ(L) = g is optimal if for any other valid
corridor C ′ connecting the two endpoints we have L∗(C) ≤ L∗(C ′).

It is straightforward to observe that if for some portion of the backbone path γ of a corridor C,
we have w(t) < min{c(γ(t)), wmax} for t ∈ [t0, t0 + τ ] (τ > 0), we can improve the quality of the
corridor by letting w(t) ←− min{c(γ(t)), wmax} for each t ∈ [t0, t0 + τ ]. Given a set of obstacles
and a wmax value, we can associate the bounded clearance measure ĉ(p) with each point p ∈ R

d,
where ĉ(p) = min{c(p), wmax}. Using the observation above, it is clear that the width function of
an optimal corridor C = 〈γ(t), w(t), wmax〉 is simply given by w(t) = ĉ(γ(t)). We conclude that
in order to plan an optimal corridor amidst a set of obstacles O we have to compute an optimal
backbone path amidst the obstacles with respect to the clearance measure ĉ(·) bounded by the
preferred corridor width wmax. Note that the bounded clearance function is also continuous and
satisfies the Lipschitz condition, hence Lemma 2 holds also for the case of corridors, namely the
backbone path γ of an optimal corridor must be smooth.
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5.1 Characterizing Optimal Corridors

p
s

s′

s∗

wmax

g
g∗

g′

Let us begin by considering an environment with a single point obstacle.
We already know that if we are given two endpoints whose clearance is less
than wmax, then the optimal corridor connecting them is characterized
by a backbone path supported by a logarithmic spiral. Let us analyze the
case where the clearance of the two endpoints exceeds wmax, namely the
two endpoints of our path lie outside the closure of the disc B(p;wmax).
There are two possible scenarios: (i) The straight line segment sg does
not intersect B(p;wmax); in this case, this segment is the backbone of the optimal corridor. (ii) sg
intersects B(p;wmax). In this latter case the optimal backbone path is a bit more involved. Consider
some backbone path γ connecting s and g. It is clear that the intersection of γ with B(p;wmax)
comprises a single component (otherwise we have a segment of the backbone path lying outside
B(p;wmax), which we can shortcut be traversing the circular arc that connects its endpoints), so
we denote the point where the path enters the disc by s′ and the point where it leaves the disc by g′

(see the illustration on the right). As s′ and g′ lie on the disc boundary, their polar representation
is s′ = wmaxe

iθs′ and g′ = wmaxe
iθg′ , so we use Equations (3) and (4) and obtain that a∗ = wmax

and b∗ = 0. The optimal path between s′ and g′ therefore lies on the degenerate spiral r = wmax,
namely the circle that forms the boundary of B(p;wmax). We conclude that the optimal backbone
path between s and g must contain a circular arc on the boundary of B(p;wmax). As according to
Lemma 2 this path must be smooth, it should consist of two line segments ss∗ and g∗g that are
tangent to the disc and a circular arc that connects the two tangency points s∗ and g∗ (see the
dashed path in the figure above). Note that as there are two possible tangents emanating from
each endpoint, we should consider the four possible paths and select the shortest one. Similarly, in
case one endpoint (say g) is located inside B(p;wmax) and the other outside this disc, the optimal
backbone path consists of a tangent emanating from s to B(p;wmax), and an arc of a logarithmic
spiral that smoothly connects this tangent to g.5

Using similar arguments it is not difficult to show that if we have a single polygonal obstacle
P , we should examine whether the line segment sg intersects the dilated obstacle P ⊕ B(wmax).
If it does, the optimal corridor consists of two tangents emanating from s and g to the circular
arcs of the dilated polygon, with the tangency point connected by a portion of the dilated polygon
boundary.

Let us now examine the more general scenarios of an environment cluttered with polygonal
obstacles O = {P1, . . . , Pm}. We consider the dilated obstacles Pi⊕B(wmax). In case the polygons
are well separated — that is, for each i 6= j the dilated obstacles Pi⊕B(wmax) and Pj⊕B(wmax)) are
disjoint in their interiors (implying that the distance between the two obstacles is at least 2wmax),
we can follow the same arguments used above for a single obstacle and conclude that the optimal
backbone path between two points s and g with c(s), c(g) > wmax is contained in the visibility graph
of the dilated obstacles and of s and g.

The visibility graph of the set of dilated obstacles can be constructed in O(n log n + E) time,
where n is the total complexity of the obstacles and E is the number of visibility edges in the
graph [17]. Given a path-planning query, namely two endpoints s and g, we first check if the
straight line segment sg is free. If it is, it should serve as the backbone of the corridor connecting
s and g. Otherwise, we treat s and g as graph vertices and add all free tangents from s and from g

to the discs as graph edges. We then perform Dijkstra’s algorithm from s to find the shortest path

5An exception to this rule occurs when s, g and p are collinear. The optimal backbone path in this special case
is the straight line segment sg.
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Figure 6: The bounded Voronoi diagram of four polygons enclosed in a rectangular room. The
boundary of M, the union of the dilated obstacles, is drawn in solid lines and the Voronoi edges
are dotted.

to g in the resulting graph. Note that all edges in the graph represent line segments or circular arcs
that have clearance of at least wmax, so their weighted length is proportional to their Euclidean
length.

Proposition 13 Given a set O of polygonal obstacles in the plane that are well-separated with
respect to wmax, and two endpoints s and g with clearance at least wmax, it is possible to compute
the optimal corridor connecting s and g in O(E log n) time using the visibility graph of the dilated
obstacles, where n is the total number of obstacle vertices E is the number of visibility edges in this
graph.

In case the endpoints s and g have arbitrary clearance, and the dilated obstacles are not necessar-
ily pairwise disjoint in their interiors, let us consider
M =

⋃m
i=1 (Pi ⊕B(wmax)). The boundary of M comprises whole circles and circular arcs, such

that a common endpoint of two arcs is a reflex vertex. We now construct V, the Voronoi dia-
gram of the original obstacles, and compute the intersection V ∩M, namely the portions of the
Voronoi edges contained within the union of the dilated obstacles; see Figure 6 for an illustration.
The Voronoi edges, together with the arcs that form the boundary of M, constitute the bounded
Voronoi diagram of the obstacle set O = {P1, . . . , Pm}, which we denote V̂(O).

Note that V̂(O) partitions the plane into two-dimensional cells of two types: bounded Voronoi
regions of the obstacle features, and regions where the clearance is greater than wmax. We know
that if we have two endpoints s′ and g′ in a cell ζ whose clearance is greater than wmax, the
optimal backbone path between these endpoints is straight line segment, provided that s′g′ does
not intersect any feature of V̂(O). The weighted length of this segment simply equals the Euclidean
distance ‖g′ − s′‖. On the other hand, if ζ is a bounded Voronoi cell, then the optimal backbone
path between s′ and g′ is either a spiral arc or a circular arc, provided that this arc does not
intersect V̂(O) (see the discussion in Section 3.3). In addition, the edges of the bounded Voronoi
diagram are locally optimal.

Trying to generalize the construction of the visibility graph, it is possible to add visibility edges
to the bounded Voronoi diagram, namely to consider every free bitangent of two circular arcs, every
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Figure 7: (a) A near-optimal backbone path (dashed) amidst polygonal obstacles, overlayed on top
of the bounded Voronoi diagram of the obstacles. Boundary edges are drawn in light solid lines,
Voronoi chains between polygons are dotted, and Voronoi edges that separate cells of adjacent
polygon features are drawn in a light dashed line. The bounded Voronoi diagram was computed
using the software described in [21]. The backbone path was computed using an A∗ algorithm on a
fine grid discretizing the environment. (b) Zooming in on a portion of the path; note the shortcuts
the path takes.

free line segment from a reflex vertex tangent to a circular arc and every free line segment between
two reflex vertices. The resulting construct is the visibility–Voronoi diagram of the obstacles for
clearance wmax; see [21] for more details. However, a path extracted from such a graph may pass
through Voronoi vertices and reflex vertices, thus it may contain sharp turns. As explained in
Section 3.3, adding shortcut curves to the diagram is not feasible in many cases.

We therefore generalize the approximation algorithm presented in Section 4, to the case of
planning optimal backbone paths for corridors. Instead of considering small intervals of the Voronoi
diagram, we subdivide the bounded Voronoi diagram into intervals of length c(I)

wmax
ε. In this case,

we connect two intervals I1 and I2 by a line segment if they are both incident to a cell where the
clearance is greater than wmax, and a circular arc or a line segment on the boundary of a dilated
obstacle. In each case, it is easy to verify that Lemma 11 holds also for path segments of these
types.

Corollary 14 Given a set of polygonal obstacles O having n vertices in total, where dmin is the
minimal distance between a pair of polygons in P (namely minP,Q∈O dist(P,Q)). Let Λ be the total

weighted length of the bounded Voronoi diagram V̂(O) with respect to a given wmax value, ignoring
portions of the diagram having clearance less than dmin. Given ε > 0, we can construct a graph D
over the intervals of V̂(P) in O

(

Λ
2

ε2
n
)

time, such that for each two endpoints s and g it is possible

use D and compute a near-optimal backbone of a corridor C connecting s and g. L∗(C) is at most
O(n)ε more than the weighted length of the optimal corridor connecting s and g.

5.2 Accounting for the Corridor Curvature

In some applications having a winding backbone path decreases the quality of the corridor. In the
group-motion application [4], for example, when the entities move along a straight line, they can
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all move at the maximal possible speed. Assume that the backbone path is a circular arc and the
corridor width is w, such that it is bounded by two concentric circular arcs. The entities moving
along the outer arc in this case have to take a longer route, so even if we let them move at maximal
speed, the other entities have to move at a lower speed and the time it takes the group to traverse
such a path increases.

5.2.1 Augmenting the Weighted-Length Measure

`i

αi

wi

C

ri = 1

κi

Assume that the backbone path γ is smooth and let κ(t) be the cur-
vature of γ at time t. We can subdivide the path into infinitesimally
small segments, such that the length of the ith path segment is `i
(with

∑

i `i = L), the width of each segment, denoted wi, is assumed
constant and the curvature is also assumed constant and denoted by
κi — see the figure on the right for an illustration. Hence, each path
segment can be considered as a circular arc whose radius is ri = 1

κi

and defined by the angle αi = `i
ri

. The length of the outer boundary
of the corridor along the ith path segment is given by αi(ri+wi), and we can thus bound the length
of each of the corridor boundary-curves by:

∑

i

αi(ri + wi) =
∑

i

`i

ri
(ri + wi) =

∑

i

`i +
∑

i

wi

ri
`i = L+

∑

i

wiκi`i .

We therefore wish to augment the weighted length function by adding penalty for the extra length
induced by the curvature of the backbone path, which equals

∑

iwiκi`i. However, as we can make
our path segments infinitesimally small, and as γ is parameterized by its length, we can simply
redefine our weighted length function for C = 〈γ(t), w(t), wmax〉 to be:

L∗
µ(C) =

∫

γ

(

wmax

w(t)

)d−1

dt+ µ

∫

γ

w(t)κ(t)dt , (16)

where µ > 0 is the weight we give to the curvature measure. Typically, µ ≤ 1 as we do not wish to
give more weight to the curvature than to the length and to the clearance of the backbone path.

θ

∇γ(t̂+)

θ

p = γ(t̂)
∇γ(t̂−)

r

We also wish to account for backbone paths that contain sharp
turns, and are only piecewise C2-continuous, thus the curvature of γ
is not defined at a finite number of points. Let p = γ(t̂) be such a
point, and let θ be the angle between ∇γ(t̂−) and ∇γ(t̂+). Let us
replace the sharp turn with a circular arc a of a small radius r. The
arc is defined by the angle θ (see the illustration to the right), so its
length is θr (θ is of course measured in radians). If r is small enough,
we can assume that the corridor has a fixed width wp = w(t̂) over
the circular arc, so we have:

lim
r→0

∫

a

w(t)κ(t)dt = lim
r→0

∫

a

wp

r
dt = lim

r→0
θr · wp

r
= θwp .

We can thus abuse the curvature-integral notation, as appears in Equation (16), and account
for sharp turns by adding the discrete weight as explained above. We note however that backbone
paths of optimal corridors with respect to the augmented weighed-length measure, as defined in
Equation (16), should be smooth and cannot contain sharp turns. To see why, we can follow the
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proof of Lemma 2, and assume that we have an optimal backbone path γ∗ that contains a sharp
turn, defined by the angle θ. In the original proof we show that it is always possible to shortcut the
sharp turn by a circular arc that decreases the weighted length of the path. While the original path
makes a sharp turn of θ radians, the shortcut also makes the same turn, but “spreads” it over the
entire arc, which contains points with less clearance. The curvature penalty we give the circular
shortcut is thus smaller than the penalty of the original path, so our circular shortcut decreases
the augmented weighted length of the path. We conclude that a sharp turn is not possible in an
optimal corridor also when we take the curvature into account.

5.2.2 Moving Amidst Well-Separated Obstacles

We are given a set P of obstacles (point obstacles or polygonal obstacles) in the plane, and preferred
width wmax, such that the obstacles of P are well-separated with respect to wmax. Given two query
points s, g ∈ R

2 whose clearance value is at least wmax, we would like to compute the backbone
path connecting s and g that induces an optimal corridor with respect to the augmented measure
L∗
µ.

In Section 5.1 we showed that such an optimal path is contained in the visibility graph of the
dilated obstacles for the special case where µ = 0. We next show that the same holds also for any
µ > 0.

Recall that a path extracted from the visibility graph of the dilated obstacles consists of line
segments and circular arcs of radius wmax. Path segments of the former type do not contribute to
the curvature measure of the backbone path, where a circular arc supported by an angle α has a
constant curvature of 1

wmax
. The contribution of such an arc to the curvature component of the

weighted length of the path is therefore µαwmax. If we try to shortcut the circular arc by a curve
that lies closer to the obstacle, the curvature component of such a shortcut will be at least µαwmax,
as we make an overall turn of α radians, and the weighted length of this curve will necessarily be
larger than that of the original circular arc (which we know to be locally optimal in case of µ = 0).
We conclude that we cannot shortcut the circular arcs.

α2

α′

2

α′

1

α1

C ′

C

At the same time, it is not recommended to take wider turns.
Consider the example depicted to the right, where the corridor C ′

has a longer backbone path than the corridor C extracted from
the visibility graph of the dilated polygons. As both corridors are
of maximal width, it is clear that its width integral is also greater.
However, the curvature integral of each the corridors is proportional
the sum of the angles defining the circular arcs, so it is obvious
that the curvature integral of C ′ is greater than of C, as α′

1 +α′
2 >

α1 + α2. It is therefore clear that L∗
µ(C) < L∗

µ(C
′) for each µ > 0.

6 Conclusions and Future Work

In this paper we have laid a solid theoretical foundation for measuring the quality of corridors.
Having introduced a measure for the quality of motion paths and studying the structure of optimal
paths amidst polygonal obstacles in the plane, we show how a backbone path for an optimal corridor
must look like. We have also devised an approximation algorithm for computing near-optimal paths
and corridors amidst obstacles.

We are also investigating methods to speed up our approximation algorithm, as well as design
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simple practical methods to compute high-quality corridors.

References

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston,
MA, 2005.

[2] I. M. Gelfand and S. V. Fomin. Calculus of Variations. Dover Publ., 2000.

[3] A. Gray. Modern Differential Geometry of Curves and Surfaces with Mathematica, chapter
Logarithmic Spirals, pages 40–42. CRC Press, Boca Raton, FL, 2nd edition, 1997.

[4] A. Kamphuis and M. H. Overmars. Motion planning for coherent groups of entities. In Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), pages 3815–3822, 2004.

[5] A. Kamphuis, J. Pettre, M. H. Overmars, and J.-P. Laumond. Path finding for the animation of
walking characters. In Proc. Eurographics/ACM SIGGRAPH Sympos. Computer Animation,
pages 8–9, 2005.
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A Using Calculus of Variations for Computing Optimal Paths

We can solve the problem of computing an optimal path in a vicinity of a single obstacle using tools
available from the theory of calculus of variations, a field in mathematics that deals with functionals,
namely functions of functions, aiming to minimize intergrals of such functionals. Recall that we
wish to minimize the weighted length of a path γ, which is the unkown function in this case. The
weighted length is given by:

L∗
δ(γ) =

∫

γ

(

1

c(γ(t))

)δ

dt =

∫ L

0

|γ′(t)|
cδ(γ(t))

dt . (17)

In other words, L∗
δ(γ) =

∫ L

0 F (t, γ, γ′) dt, where the functional F is defined as |γ′(t)|
cδ(γ(t))

. We know that

the path must be smooth, hence it has two continuous derivatives. A function γ that minimizes
the integral of F must therefore satisfy the Euler–Lagrange Equation:

d

dt

∂F

∂γ′
=
∂F

∂γ
. (18)

For a solid theoretical background, the reader is referred to one of the numerous textbooks on
calculus of variations, for example [2].

We already know that the optimal path comprises maximal segments, where each path segment
lies inside a Voronoi cell. We next show how we use the Euler–Lagrange Equation to express the
optimal path in a vicinity of a single obstacle.

A.1 Moving near a Point Obstacle

Let us imagine we are located in a Voronoi cell of a point obstacle (or a polygon vertex for that
matter), which — without loss of generality — is located at the origin. We express our path using
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polar representation, so the clerance of each point along the path from s = rse
iθs to g = rge

iθg is
simply its distance from the origin. We therefore we seek for r = r(θ) minimizing:

L∗
δ(γ) =

∫ θg

θs

1

rδ(θ)

√

r2(θ) +

(

dr

dθ

)2

(θ) dθ . (19)

If we denote r′ = dr
dθ

we obtain that our functional is of the form F (θ, r, r′) = 1
rδ

√

r2 + (r′)2. We
can therefore derive this functional and obtain the following:

∂F

∂r
= − δ

rδ+1

√

r2 + (r′)2 +
2r

2rδ
√

r2 + (r′)2
=

(1− δ)r2 − δ(r′)2
rδ+1

√

r2 + (r′)2
,

∂F

∂r′
=

r′

rδ
√

r2 + (r′)2
,

d

dx

∂F

∂r′
=

r′′rδ
√

r2 + (r′)2 − r′
(

δrδ−1r′
√

r2 + (r′)2 + rδ(2rr′+2r′r′′)

2
√
r2+(r′)2

)

r2δ (r2 + (r′)2)
=

=
(r′′rδ − δ(r′)2rδ−1)(r2 + (r′)2)− r′rδ(rr′ + r′r′′)

r2δ (r2 + (r′)2)
3

2

.

Applying the Euler–Largrange Equation on the above, we obtain that r(θ) is the solution of the
following regular differential equation:

r′′(θ)r(θ)− (r′)2(θ) = (1− δ)
(

r(θ) + (r′)2(θ)
)

. (20)

Note that in the special case of δ = 1, the equation above reduces to the form r′′(θ)r(θ) =
(r′)2(θ). Indeed, the logarithmic spiral r(θ) = aebθ satisfy this equation for constant and a and b,
that depend on the path endpoints s and g.

The solution of Equation (20) in the general case of δ 6= 1 is given by:

r(θ) = a cos
1

δ−1 ((δ − 1)θ + ϕ) , (21)

for constants a and ϕ. These constants can be computed by applying the constraint that the
endpoints s = rse

iθs and g = rge
iθg both satisfy Equation (21). We also note that in the special

case of δ = 2 we obtain the equation of the limaçon r(θ) = a cos(θ + ϕ),6 which is a circle passing
through the origin.

A.2 Moving near a Line Obstacle

In case our path segment is in a Voronoi cell of a polygon edge, we can assume — without loss of
generality — that this edge is supported by the line y = 0. In this case, if we express our path using
Cartesian coordinates, the clerance of each point along the path from s = (xs, ys) to g = (xg, yg) is
given by its y-coordinate. We therefore we seek for y = y(x) minimizing:

L∗
δ(γ) =

∫ xg

xs

1

yδ(x)

√

1 +

(

dy

dx

)2

(x) dx . (22)

6See, e.g., http://mathworld.wolfram.com/Limacon.html .
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If we denote y′ = dy
dx

we obtain that our functional is of the form F (x, y, y′) = 1
yδ

√

1 + (y′)2.
Deriving this functional we obtain:

∂F

∂y
= − δ

yδ+1

√

1 + (y′)2 ,

∂F

∂y′
=

y′

yδ
√

1 + (y′)2
,

d

dx

∂F

∂y′
=

y′′yδ
√

1 + (y′)2 − y′
(

δyδ−1y′
√

1 + (y′)2 + yδy′y′′√
1+(y′)2

)

y2δ (1 + (y′)2)
=

=
y′′yδ − δ(y′)2yδ−1(1 + (y′)2)

y2δ (1 + (y′)2)
3

2

.

Applying the Euler–Largrange Equation on the above, we obtain that y(x) is the solution of the
following regular differential equation:

y′′(x)y(x) + δ(y′)2(x) + δ = 0 . (23)

It is not difficult to verify that the equation of a circular arc whose center (x0, 0) lies on the line
obstacle, namely y(x) =

√

R2 − (x− x0)2, satisfies the Equation (23) above for the special case of
δ = 1.

A.3 Moving near a Circular Obstacle

Using similar methods, it is also possible to compute the optimal path in the vicinity of a circular
obstacle of a given radius ρ. As mentioned in Section 3.3, this problem is not only interesting in
its own right, but also importamt for computing optimal paths for a disc robot of radius ρ, where
we consider a path for a point robot amidst dilated obstacles.

As we did in Section A.1, we seek for a polar representation of the path. To simplify our
analysis, we focus on the case of δ = 1; the analysis for other δ values is quite similar. Assuming
the circular obstacle is centered at the origin, we have:

L∗
δ(γ) =

∫ θg

θs

1

r(θ)− ρ
√

r2(θ) + (r′)2(θ) dθ . (24)

We now derive F (θ, r, r′) = 1
r−ρ

√

r2 + (r′)2 and obtain:

∂F

∂r
= − 1

(r − ρ)2
√

r2 + (r′)2 +
2r

2(r − ρ)
√

r2 + (r′)2
= − (r′)2 + ρr

(r − ρ)2
√

r2 + (r′)2
,

∂F

∂r′
=

r′

(r − ρ)
√

r2 + (r′)2
,

d

dx

∂F

∂r′
=

(r′′(r − ρ)− (r′)2)(r2 + (r′)2)− (r′)2(r − ρ)(r + r′′)

(r − ρ)2 (r2 + (r′)2)
3

2

.

Applying the Euler–Largrange Equation on the above, we obtain that r(θ) is the solution of the
following regular differential equation:

(

r′′(θ)r(θ)− (r′)2(θ)
)

(r(θ)− ρ) = ρ
(

r(θ) + (r′)2(θ)
)

. (25)
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A solution to Equation (25) is given by (a and b are constants, determined by the endpoints of the
curve):

r(θ) = aebθ +
b2 + 1

b2

(

1 +
ρ

4ab2
e−bθ

)

· ρ . (26)

We note that for ρ = 0, namely a point obstacle, we obtain the well-known logarithmic spiral
r(θ) = aebθ.
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