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Abstract

We present an exact implementation of an efficient
algorithm that computes Minkowski sums of convex
polyhedra in R

3. Our implementation is complete
in the sense that it does not assume general
position. Namely, it can handle degenerate input,
and it produces exact results. We also present
applications of the Minkowski-sum computation to
answer collision and proximity queries about the
relative placement of two convex polyhedra in R

3.
The algorithms use a dual representation of convex
polyhedra, and their implementation is mainly
based on the Arrangement package of Cgal, the
Computational Geometry Algorithm Library. We
compare our Minkowski-sum construction with
the only three other methods that produce exact
results we are aware of. One is a simple approach
that computes the convex hull of the pairwise sums
of vertices of two convex polyhedra. The second is
based on Nef polyhedra embedded on the sphere,
and the third is an output sensitive approach
based on linear programming. Our method is
significantly faster. The results of experimentation
with a broad family of convex polyhedra are
reported. The relevant programs, source code,
data sets, and documentation are available at
http://www.cs.tau.ac.il/~efif/CD, and a short
movie [16] that describes some of the concepts
portrayed in this paper can be downloaded from
http://www.cs.tau.ac.il/~efif/CD/Mink3d.avi.

1 Introduction

Let P and Q be two closed convex polyhedra in
R

d. The Minkowski sum of P and Q is the convex
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polyhedron M = P ⊕ Q = {p + q | p ∈ P, q ∈
Q}. A polyhedron P translated by a vector t is
denoted by P t. Collision Detection is a procedure
that determines whether P and Q overlap. The
Separation Distance π(P, Q) and the Penetration

Depth δ(P, Q) defined as

π(P, Q) = min{‖t‖ |P t ∩ Q 6= ∅, t ∈ R
d} ,

δ(P, Q) = inf{‖t‖ |P t ∩ Q = ∅, t ∈ R
d}

are the minimum distances by which P has to be
translated so that P and Q intersect or become
interior disjoint respectively. The problems above
can also be posed given a normalized direction d,
in which case the minimum distance sought is in
direction d. The Directional Penetration Depth, for
example, is defined as

πd(P, Q) = inf{a |P
~da ∩ Q = ∅} .

We present an exact, complete, and robust im-
plementation of efficient algorithms to compute the
Minkowski sum of two convex polyhedra, detect
collision, and compute the Euclidean separation
distance between, and the directional penetration-
depth of, two convex polyhedra in R

3. The algo-
rithms use a dual representation of convex polyhe-
dra, polytopes for short, named Cubical Gaussian

Map. They are implemented on top of the Cgal li-
brary [1], and are mainly based on the Arrangement
package of the library [17], although other parts,
such as the Polyhedral-Surface package produced
by L. Kettner [28], are used as well. The results
obtained by this implementation are exact as long
as the underlying number type supports the arith-
metic operations +, −, ∗, and / in unlimited preci-
sion over the rationals,1 such as the rational number
type Gmpq provided by Gmp — Gnu’s Multi Preci-
sion library [2]. The implementation is complete
and robust, as it handles all degenerate cases, and
guarantees exact results. We also report on the per-
formance of our methods compared to other.

Minkowski sums are closely related to proxim-
ity queries. For example, the minimum separation

1Commonly referred to as a field number type.



distance between two polytopes P and Q is the same
as the minimum distance between the origin and the
boundary of the Minkowski sum of P and the re-
flection of Q through the origin [12]. Computing
Minkowski sums, collision detection and proximity
computation comprise fundamental tasks in compu-
tational geometry [26, 32, 35]. These operations are
ubiquitous in robotics, solid modeling, design au-
tomation, manufacturing, assembly planning, vir-
tual prototyping, and many more domains; see, e.g.,
[10, 27, 29]. The wide spectrum of ideas expressed
in the massive amount of literature published about
the subject during the last three decades has in-
spired the development of quite a few useful so-
lutions. For a full list of packages and overview
about the subject see [32]. However, only recent
advances in the implementation of computational-
geometry algorithms and data structures made our
exact, complete, and efficient implementation pos-
sible.

Various methods to compute the Minkowski
sum of two polyhedra in R

3 have been proposed.
The goal is typically to compute the boundary of
the sum and provide some representation of it. The
combinatorial complexity of the Minkowski sum of
two polyhedra of m and n features respectively can
be as high as Θ(m3n3). One common approach to
compute it, is to decompose each polyhedron into
convex pieces, compute pairwise Minkowski sums
of pieces of the two, and finally the union of the
pairwise sums. Computing the exact Minkowski
sum of non-convex polyhedra is naturally expen-
sive. Therefore, researchers have focused on com-
puting an approximation that satisfies some crite-
ria, such as the algorithm presented by Varadhan
and Manocha [36]. They guarantee a two-sides
Hausdorff distance bound on the approximation,
and ensure that it has the same number of con-
nected components as the exact Minkowski sum.
Computing the Minkowski sum of two convex poly-
hedra remains a key operation, and this is what we
focus on. The combinatorial complexity of the sum
can be as high as Θ(mn) when both polyhedra are
convex.

Convex decomposition is not always possible,
as in the presence of non-convex curved objects.
In these cases other techniques must be applied,
such as approximations using polynomial/rational
curves in 2D [30]. Seong at al. [34] proposed an
algorithm to compute Minkowski sums of a subclass
of objects; that is, surfaces generated by slope-
monotone closed curves. Flato and Halperin [7]
presented algorithms for robust construction of
planar Minkowski sums based on Cgal. While the
citations in this paragraph refer to computations

of Minkowski sums of non-convex polyhedra, and
we concentrate on the convex cases, the latter is
of particular interest, as our method makes heavy
use of the same software components, in particular
the Cgal Arrangement package [17], which went
through a few phases of improvements since its
usage in [7] and recently was redesigned and re-
implemented [38].

A particular accomplishment of the kinetic

framework in two dimensions introduced by Guibas
et al. [24] was the definition of the convolution

operation in two dimensions, a superset of the
Minkowski sum operation, and its exploitation in
a variety of algorithmic problems. Basch et al. ex-
tended its predecessor concepts and presented an al-
gorithm to compute the convolution in three dimen-
sions [8]. An output-sensitive algorithm for com-
puting Minkowski sums of polytopes was introduced
in [25]. Gritzmann and Sturmfels [22] obtained a
polynomial time algorithm in the input and output
sizes for computing Minkowski sums of k polytopes
in R

d for a fixed dimension d, and Fukuda [18] pro-
vided an output sensitive polynomial algorithm for
variables d and k. Ghosh [19] presented a unified al-
gorithm for computing 2D and 3D Minkowski sums
of both convex and non-convex polyhedra based
on a slope diagram representation. Computing the
Minkowski sum amounts to computing the slope di-
agrams of the two objects, merging them, and ex-
tracting the boundary of the Minkowski sum from
the merged diagram. Bekker and Roerdink [9] pro-
vided a few variations on the same idea. The slope
diagram of a 3D convex polyhedron can be rep-
resented as a 2D object, essentially reducing the
problem to a lower dimension. We follow the same
approach.

A simple method to compute the Minkowski
sum of two polytopes is to compute the convex hull
of the pairwise sum of the vertices of the two poly-
topes. While there are many implementations of
various algorithms to compute Minkowski sums and
answer proximity queries, we are unaware of the
existence of complete implementations of methods
to compute exact Minkowski sums other than (i)
the näıve method above, (ii) a method based on
Nef polyhedra embedded on the sphere [21], and
(iii) an implementation of Fukuda’s algorithm by
Weibel [37]. Our method exhibits much better per-
formance than the other methods in all cases, as
demonstrated by the experiments listed in Table 4.
Our method well handles degenerate cases that re-
quire special treatment when alternative represen-
tations are used. For example, the case of two par-
allel facets facing the same direction, one from each
polytope, does not bear any burden on our method,



and neither does the extreme case of two polytopes
with identical sets of normals.

In some cases it is sufficient to build only
portions of the boundary of the Minkowski sum
of two given polytopes to answer collision and
proximity queries efficiently. This requires locating
the corresponding features that contribute to the
sought portion of the boundary. The Cubical

Gaussian Map, a dual representation of polytopes
in 3D used in our implementations, consists of six
planar maps that correspond to the six faces of the
unit cube — the parallel-axis cube circumscribing
the unit sphere. We use the Cgal Arrangement
package to maintain these data structures, and
harness the ability to answer point-location queries
efficiently that comes along, to locate corresponding
features of two given polytopes.

The rest of this paper is organized as follows.
The Cubical Gaussian Map dual representation of
polytopes in R

3 is described in Section 2 along with
some of its properties. In Section 3 we show how
3D Minkowski sums can be computed efficiently,
when the input polytopes are represented by cu-
bical Gaussian maps. Section 4 presents an exact
implementation of an efficient collision-detection al-
gorithm under translation based on the dual repre-
sentation, and provides suggestions for future di-
rections. In Section 5 we examine the complexity
of Minkowski sums, as a preparation for the fol-
lowing section, dedicated to experimental results.
In this last section we highlight the performance of
our method on various benchmarks. The software
access-information along with some further design
details are provided in the Appendix.

2 The Cubical Gaussian Map

The Gaussian Map G of a compact convex poly-
hedron P in Euclidean three-dimensional space R

3

is a set-valued function from P to the unit sphere
S

2, which assigns to each point p the set of outward
unit normals to support planes to P at p. Thus,
the whole of a facet f of P is mapped under G to
a single point — the outward unit normal to f . An
edge e of P is mapped to a (geodesic) segment G(e)
on S

2, whose length is easily seen to be the exterior
dihedral angle at e. A vertex v of P is mapped by
G to a spherical polygon G(v), whose sides are the
images under G of edges incident to v, and whose
angles are the angles supplementary to the planar
angles of the facets incident to v; that is, G(e1)
and G(e2) meet at angle π − α whenever e1 and e2

meet at angle α. In other words, G(v) is exactly the
“spherical polar” of the link of v in P . (The link of
a vertex is the intersection of an infinitesimal sphere

centered at v with P , rescaled, so that the radius is
1.) The above implies that G(P ) is combinatorially
dual to P , and metrically it is the unit sphere S

2.

xd = 1

u

ûd

o

Figure 1: Central projec-
tion

An alternative and
practical definition fol-
lows. A direction in R

3

can be represented by
a point u ∈ S

2. Let
P be a polytope in R

3,
and let V denote the
set of its boundary ver-
tices. For a direction
u, we define the extremal point in direction u to be
λV (u) = argmaxp∈V 〈u, p〉, where 〈·, ·〉 denotes the
inner product. The decomposition of S

2 into maxi-
mal connected regions, so that the extremal point is
the same for all directions within any region forms
the Gaussian map of P . For some u ∈ S

2 the inter-
section point of the ray ~ou emanating from the ori-
gin with one of the hyperplanes listed below is a cen-

tral projection of u denoted as ûd. The relevant hy-
perplanes are xd = 1, d = 1, 2, 3, if u lies in the posi-
tive respective hemisphere, and xd = −1, d = 1, 2, 3
otherwise.

Similarly, the Cubical Gaussian Map (Cgm) C
of a polytope P in R

3 is a set-valued function from
P to the six faces of the unit cube whose edges are
parallel to the major axes and are of length two. A
facet f of P is mapped under C to a central pro-
jection of the outward unit normal to f onto one
of the cube faces. Observe that, a single edge e of
P is mapped to a chain of at most three connected
segments that lie in three adjacent cube-faces re-
spectively, and a vertex v of P is mapped to at
most five abutting convex dual faces that lie in five
adjacent cube-faces respectively. The decomposi-
tion of the unit-cube faces into maximal connected
regions, so that the extremal point is the same for
all directions within any region forms the Cgm of
P . Likewise, the inverse Cgm, denoted by C−1,
maps the six faces of the unit cube to the polytope
boundary. Each planar face f is extended with the
coordinates of its dual vertex v = C−1(f) among
the other attributes (detailed below), resulting with
a unique representation. Figure 2 shows the Cgm

of a tetrahedron.

While using the Cgm increases the overhead of
some operations sixfold, and introduces degenera-
cies that are not present in the case of alternative
representations, it simplifies the construction and
manipulation of the representation, as the partition
of each cube face is a planar map of segments, a
well known concept that has been intensively ex-
perimented with in recent years. We use the Cgal
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Figure 2: (a) A tetrahedron, (b) the Cgm of the tetrahedron, and (c) the Cgm unfolded. Thick lines indicate
real edges.

Arrangement 22 data structure to maintain the pla-
nar maps. The construction of the six planar maps
from the polytope features and their incident re-
lations amounts to the insertion of segments that
are pairwise disjoint in their interiors into the pla-
nar maps, an operation that can be carried out ef-
ficiently, especially when one or both endpoints are
known, and we take advantage of it. The construc-
tion of the Minkowski sum, described in the next
section, amounts to the computation of the over-
lay of six pairs of planar maps, an operation well
supported by the data structure as well.

A related dual representation had been consid-
ered and discarded before the Cgm representation
was chosen. It uses only two planar maps that par-
tition two parallel planes respectively instead of six,
but each planar map partitions the entire plane.3 In
this representation facets that are near orthogonal
to the parallel planes are mapped to points that
are far away from the origin. The exact representa-
tion of such points requires coordinates with large
bit-lengths, which increases significantly the time
it takes to perform exact arithmetic operations on
them. Moreover, facets exactly orthogonal to the
parallel planes are mapped to points at infinity, and
require special handling all together.

Features that are not in general position, such
as two parallel facets facing the same direction, one
from each polytope, or worse yet, two identical poly-
topes, typically require special treatment. Still, the
handling of many of these problematic cases falls
under the “generic” case, and becomes transpar-
ent to the Cgm layer. Consider for example the

2Cgal prescribes the suffix 2 (resp. 3) for all data struc-
tures of planar objects (resp. 3D objects) as a convention.

3Each planar map that corresponds to one of the six
unit-cube faces in the Cgm representation also partitions
the entire plane, but only the [−1,−1] × [1, 1] square is
relevant. The unbounded face, which comprises all the rest,
is irrelevant.

case of two neighboring facets in one polytope that
have parallel neighboring facets in the other. This
translates to overlapping segments, one from each
Cgm of the two polytopes,4 that appear during the
Minkowski sum computation. The algorithm that
computes it is oblivious to this condition, as the un-
derlying Arrangement 2 data structure is perfectly
capable of handling overlapping segments. How-
ever, as mentioned above, other degeneracies do
emerge, and are handled successfully. One example
is a facet f mapped to a point that lies on an edge
of the unit cube, or even worse, coincides with one
of the eight corners of the cube. Figure 8(a,b,c) de-
picts an extreme degenerate case of an octahedron
oriented in such a way that its eight facet-normals
are mapped to the eight vertices of the unit cube
respectively.

The dual representation is extended further, in
order to handle all these degeneracies and perform
all the necessary operations as efficiently as possi-
ble. Each planar map is initialized with four edges
and four vertices that define the unit square — the
parallel-axis square circumscribing the unit circle.
During construction, some of these edges or por-
tions of them along with some of these vertices may
turn into real elements of the Cgm. The introduc-
tion of these artificial elements not only expedites
the traversals below, but is also necessary for han-
dling degenerate cases, such as an empty cube face
that appears in the representation of the tetrahe-
dron and depicted in Figure 2(c). The global data
consists of the six planar maps and 24 references to
the vertices that coincide with the unit-cube cor-
ners.

The exact mapping from a facet normal in the
3D coordinate-system to a pair that consists of a
planar map and a planar point in the 2D coordinate-

4Other conditions translate to overlapping segments as
well.
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Figure 3: The data structure. Large numbers indicate
plane ids. Small numbers indicate corner ids. X and
Y axes in different 2D coordinate systems are rendered
in different colors.

system is defined precisely through the indexing
and ordering system, illustrated in Figure 3. Now
before your eyes cross permanently, we advise you
to keep reading the next few lines, as they reveal
the meaning of some of the enigmatic numbers that
appear in the figure. The six planar maps are given
unique ids from 0 through 5. Ids 0, 1, and 2 are
associated with planes contained in negative half
spaces, and ids 3, 4, and 5 are associated with planes
contained in positive half spaces. The major axes in
the 2D Cartesian coordinate-system of each planar
map are determined by the 3D coordinate-system.
The four corner vertices of each planar map are also
given unique ids from 0 through 3 in lexicographic
order in their respective 2D coordinate-system, see
Table 1 columns titled Underlying Plane and 2D

Axes.

A doubly-connected edge list (Dcel) data struc-
ture is used by the Arrangement 2 data structure
to maintain the incidence relations on its features.
Each topological edge of the subdivision is repre-
sented by two halfedges with opposite orientation,
and each halfedge is associated with the face to its
left. Each feature type of the Arrangement 2 data
structure is extended to hold additional attributes.
Some of the attributes are introduced only in or-
der to expedite the computation of certain oper-
ations, but most of them are necessary to handle
degenerate cases such as a planar vertex lying on
the unit-square boundary. Each planar-map vertex
v is extended with (i) the coefficients of the plane
containing the polygonal facet C−1(v), (ii) the lo-
cation of the vertex — an enumeration indicating
whether the vertex coincides with a cube corner, or

lies on a cube edge, or contained in a cube face,
(iii) a boolean flag indicating whether it is non-
artificial (there exists a facet that maps to it), and
(iv) a pointer to a vertex of a planar map associated
with an adjacent cube-face that represents the same
central projection for vertices that coincide with a
cube corner or lie on a cube edge. Each planar-map
halfedge e is extended with a boolean flag indicating
whether it is non-artificial (there exists a polytope
edge that maps to it). Each planar-map face f is
extended with the polytope vertex that maps to it
v = C−1(f).

Each vertex that coin-
cides with a unit-cube corner
or lies on a unit-cube edge
contains a pointer to a ver-
tex of a planar map associ-
ated with an adjacent cube
face that represents the same
central projection. Vertices

that lie on a unit-cube edge (but do not coincide
with unit-cube corners) come in pairs. Two vertices
that form such a pair lie on the unit-square bound-
ary of planar maps associated with adjacent cube
faces, and they point to each other. Vertices that
coincide with unit-cube corners come in triplets and
form cyclic chains ordered clockwise around the re-
spective vertices. The specific connections are listed
in Table 1. As a convention, edges incident to
a vertex are ordered clockwise around the vertex,
and edges that form the boundary of a face are
ordered counterclockwise. The Polyhedron 3 and
Arrangement 2 data structures for example, both
use a Dcel data structure that follows the conven-
tion above. We provide a fast clockwise traversal of
the faces incident to any given vertex v. Clockwise
traversals around internal vertices are immediately
available by the Dcel. Clockwise traversals around
boundary vertices are enabled by the cyclic chains
above. This traversal is used to calculate the nor-
mal to the (primary) polytope-facet f = C−1(v)
and to render the facet. Fortunately, rendering sys-
tems are capable of handling a sequence of vertices
that define a polygon in clockwise order as well, an
order opposite to the conventional ordering above.

The data structure also sup-
ports a fast traversal over the
planar-map halfedges that form
each one of the four unit-square
edges. This traversal is used dur-
ing construction to quickly locate
a vertex that coincides with a cube
corner or lies on a cube edge. It is also used to up-
date the cyclic chains of pointers mentioned above;
see Section 3.



Underlying
2D Axes

Corner

Plane 0 (0,0) 1 (0,1) 2 (1,0) 3 (1,1)
Id Eq X Y PM Cr PM Cr PM Cr PM Cr

0 x = −1 Z Y 1 0 2 2 5 0 4 2
1 y = −1 X Z 2 0 0 2 3 0 5 2
2 z = −1 Y X 0 0 1 2 4 0 3 2
3 x = 1 Y Z 2 1 1 3 4 1 5 3
4 y = 1 Z X 0 1 2 3 5 1 3 3
5 z = 1 X Y 1 1 0 3 3 1 4 3

Table 1: The coordinate systems, and the cyclic chains of corner vertices. PM stands for Planar Map, and
Cr stands for Corner.

We maintain a flag that indicates whether a
planar vertex coincides with a cube corner, a cube
edge, or a cube face. At first glance this looks re-
dundant. After all, this information could be de-
rived by comparing the x and y coordinates to −1
and +1. However, it has a good reason as explained
next. Using exact number-types often leads to rep-
resentations of the geometric objects with large bit-
lengths. Even though we use various techniques to
prevent the length from growing exponentially [17],
we cannot avoid the length from growing at all.
Even the computation of a single intersection re-
quires a few multiplications and additions. Cached
information computed once and stored at the fea-
tures of the planar map avoids unnecessary process-
ing of potentially-long representations.

3 Exact Minkowski Sums

The overlay of two planar subdivisions S1 and S2

is a planar subdivision S such that there is a face
f in S if and only if there are faces f1 and f2 in
S1 and S2 respectively such that f is a maximal
connected subset of f1 ∩ f2. The overlay of the
Gaussian maps of two polytopes P and Q identifies
all the pairs of features of P and Q respectively that
have common supporting planes, as they occupy the
same space on the unit sphere, thus, identifying
all the pairwise features that contribute to the
boundary of the Minkowski sum of P and Q. A
facet of the Minkowski sum is either a facet f
of Q translated by a vertex of P supported by a
plane parallel to f , or vice versa, or it is a facet
parallel to two parallel planes supporting an edge
of P and an edge of Q respectively. A vertex of
the Minkowski sum is the sum of two vertices of
P and Q respectively supported by parallel planes.
A similar argument holds for the cubical Gaussian
map with the unit cube replacing the unit sphere.
More precisely, a single map that subdivides the
unit sphere is replaced by six planar maps, and the
computation of a single overlay is replaced by the

computation of six overlays of corresponding pairs
of planar maps. Recall that each (primal) vertex is
associated with a planar-map face, and is the sum
of two vertices associated with the two overlapping
faces of the two Cgm’s of the two input polytopes
respectively.

Each planar map in a Cgm is a convex sub-
division. Finke and Hinrichs [15] describe how to
compute the overlay of such special subdivisions
optimally in linear time. However, a preliminary
investigation shows that a large constant governs
the linear complexity, which renders this choice
less attractive. Instead, we resort to a sweep-line
based algorithm that exhibits good practical perfor-
mance. In particular we use the overlay operation
supported by the Arrangement 2 package. It re-
quires the provision of a complementary component
that is responsible for updating the attributes of the
Dcel features of the resulting six planar maps.

The overlay operates on two instances of
Arrangement 2. In the description below v1, e1,
and f1 denote a vertex, a halfedge, and a face of the
first operand respectively, and v2, e2, and f2 denote
the same feature types of the second operand re-
spectively. When the overlay operation progresses,
new vertices, halfedges, and faces of the resulting
planar map are created based on features of the two
operands. There are ten cases described below that
must be handled. When a new feature is created its
attributes are updated. The updates performed in
all cases except for case (1) are simple and require
constant time. We omit their details due to lack of
space.

1. A new vertex v is induced by coinciding vertices
v1 and v2.
The location of the vertex v is set to be the
same as the location of the vertex v1 (the
locations of v2 and v1 must be identical). The
induced vertex is not artificial if (i) at least
one of the vertices v1 or v2 is not artificial, or



(ii) the vertex lies on a cube edge or coincides
with a cube corner, and both vertices v1 and
v2 have non-artificial incident halfedges that do
not overlap.

2. A new vertex is induced by a vertex v1 that lies
on an edge e2.

3. A new vertex is induced by a vertex v2 that lies
on an edge e1.

4. A new vertex is induced by a vertex v1 that is
contained in a face f2.

5. A new vertex is induced by a vertex v2 that is
contained in a face f1.

6. A new vertex is induced by the intersection of
two edges e1 and e2.

7. A new edge is induced by the overlap of two
edges e1 and e2.

8. A new edge is induced by the an edge e1 that
is contained in a face f2.

9. A new edge is induced by the an edge e2 that
is contained in a face f1.

10. A new face is induced by the overlap of two
faces f1 and f2.

After the six map overlays are computed, some
maintenance operations must be performed to ob-
tain a valid Cgm representation. As mentioned
above, the global data consists of the six planar
maps and 24 references to vertices that coincide
with the unit-cube corners. For each planar map
we traverse its vertices, obtain the four vertices that
coincide with the unit-cube corners, and initialize
the global data. We also update the cyclic chains
of pointers to vertices that represent identical cen-
tral projections. To this end, we exploit the fast
traversal over the halfedges that coincide with the
unit-cube edges mentioned in Section 2.

The complexity of a single overlay operation is
O(k log n), where n is the total number of vertices
in the input planar maps, and k is the number of
vertices in the resulting planar map. The total
number of vertices in all the six planar maps in
a Cgm that represents a polytope P is of the
same order as the number of facets in the primary
polytope P . Thus, the complexity of the entire
overlay operation is O(F log(F1 + F2)), where F1

and F2 are the number of facets in the input
polytopes respectively, and F is the number of
facets in the Minkowski sum.

4 Exact Collision Detection

Computing the separation distance between two
polytopes with m and n features respectively can
be done in O(log m log n) time, after an investment
of at most linear time in preprocessing [13]. Many
practical algorithms that exploit spatial and tempo-
ral coherence between successive queries have been
developed, some of which became classic, such as
the GJK algorithm [20] and its improvement [11],
and the LC algorithm [31] and its optimized varia-
tions [14, 23, 33]. Several general-purpose software
libraries that offer practical solutions are available
today, such as the SOLID library [4] based on the
improved GJK algorithm, the SWIFT library [5]
based on an advanced version of the LC algorithm,
the QuickCD library [3], and more. For an exten-
sive review of methods and libraries see the recent
survey [32].

Given two polytopes P and Q, detecting col-
lision between them and computing their relative
placement can be conveniently done in the config-
uration space, where their Minkowski sum M =
P ⊕ (−Q) resides. These problems can be solved in
many ways, and not all require the explicit repre-
sentation of the Minkowski sum M . However, hav-
ing it available is attractive, especially when the
polytopes are restricted to translations only, as the
combinatorial structure of the Minkowski sum M
is invariant to translations of P or Q. The algo-
rithms described below are based on the following
well known observations:

Pu ∩ Qw 6= ∅ ⇔ w − u ∈ M = P ⊕ (−Q) ,

δ(Pu, Qw) = min{‖t‖ | (w − u + t) ∈ M, t ∈ R
3} ,

πd(P
u, Qw) = inf{α | (w − u + ~dα) /∈ M} .

Given two polytopes P and Q in the Cgm

representation, we reflect Q through the origin to
obtain −Q, compute the Minkowski sum M , and
retain it in the Cgm representation. Then, each
time P or Q or both translate by two vectors u
and w in R

3 respectively, we apply a procedure
that determines whether the query point s = w−u
is inside, on the boundary of, or outside M . In
addition to an enumeration of one of the three
conditions above, the procedure returns a witness of
the respective relative placement in form of a pair
that consists of a vertex v = C(f) — a mapping of
a facet f of M embedded in a unit cube face, and
the planar map P containing v. This information is
used as a hint in consecutive invocations. The facet
f is the one stabbed by the ray r emanating from
an internal point c ∈ M , and going through s. The
internal point could be the average of all vertices



of M computed once and retained along M , or just
the midpoint of two vertices that have supporting
planes with opposite normals easily extracted from
the Cgm. Once f is obtained, determining whether
Pu and Qw collide is trivial, according to the first
formula (of the three) above.

Figure 4: Simulation of motion.

The procedure applies a local walk on the
cube faces. It starts with some vertex vs, and
then performs a loop moving from the current
vertex to a neighboring vertex, until it reaches the
final vertex, perhaps jumping from a planar map
associated with one cube-face to a different one
associated with an adjacent cube-face. The first
time the procedure is invoked, vs is chosen to be
a vertex that lies on the central projection of the
normal directed in the same direction as the ray
r. In consecutive calls, vs is chosen to be the final
vertex of the previous call exploiting spatial and
temporal coherence. Figure 4 is a snapshot of a
simulation program that detects collision between
a static obstacle and a moving robot, and draws
the obstacle and the trail of the robot. The
Minkowski sum is recomputed only when the robot
is rotated, which occurs every other frame. The
program is able to identify the case where the robot
grazes the obstacle, but does not penetrate it. The
computation takes just a fraction of a second on a
Pentium PC clocked at 1.7 GHz. Similar procedures
that compute the directional penetration-depth and
minimum distance are available as well.

We intend to develop a complete integrated
framework that answers proximity queries about
the relative placement of polytopes that undergo
rigid motions including rotation using the cubical
Gaussian-map in the follow-up project. Some of
the methods we foresee compute only those por-
tions of the Minkowski sum that are absolutely nec-
essary, making our approach even more competi-
tive. Briefly, instead of computing the Minkowski

sum of P and −Q, we walk simultaneously on the
two respective Cgm’s, producing one feature of the
Minkowski sum at each step of the walk. Such a
strategy could be adapted to the case of rotation
by rotating the trajectory of the walk, keeping the
Cgm of −Q intact, instead of rotating the Cgm

itself.

5 Minkowski Sum Complexity

The number of facets of the Minkowski sum of
two polytopes in R

3 with m and n facets respec-
tively is bounded from above by Θ(mn). Before
reporting on our experiments, we give an exam-
ple of a Minkowski sum with complexity Ω(mn).
The example depicted in Figure 6 gives rise to a

number as high as (m+1)(n+1)
2 when mn is odd,

and (m+1)(n+1)+1
2 when mn is even. The exam-

ple consists of two identical squashed dioctago-
nal pyramids, each containing n faces (n = 17
in Figure 6), but one is rotated about the Z
axis approximately5 90◦ compared to the other.

Figure 5: m = n = 9

This is perhaps best seen
when the spherical Gaussian
map is examined, see Fig-
ure 5. The pyramid must be
squashed to ensure that the
spherical edges that are the
mappings of the pyramid-
base edges are sufficiently
long. (A similar configu-
ration, where the polytopes
are non-squashed is depicted in Figure 8(d,e,f,g,h,i).
A careful counting reveals that the number of ver-
tices in the dual representation excluding the artifi-

cial vertices reaches (m+1)(n+1)
2 = 162, which is the

number of facets of the Minkowski sum. We are
still investigating the problem of bounding the ex-

act maximum complexity of the Minkowski sum of
two polytopes. Our preliminary results imply that
the coefficient of the mn component is higher than
in the example illustrated here.

Not every pair of polytopes yields a Minkowski
sum proportional to mn. As a matter of fact, it
can be as low as n in the extremely-degenerate case
of two identical polytopes variant under scaling.
Even if no degeneracies exist, the complexity can
be proportional to only m + n, as in the case of
two geodesic spheres6 level l = 2 slightly rotated

5The results of all rotations are approximate, as we have
not yet dealt with exact rotation. One of our immediate
future goals is the handling of exact rotations.

6An icosahedron, every triangle of which is divided into
(l + 1)2 triangles, whose vertices are elevated to the circum-
scribing sphere.



(a) (b) (c)

Figure 6: (a) The Minkowski sum of two approximately orthogonal squashed dioctagonal pyramids, (b) the
Cgm, and (c) the Cgm unfolded, where red lines are graphs of edges that originate from one polytope and
blue lines are graphs of edges that originate from the other.

(a) (b) (c)

Figure 7: (a) The Minkowski sum of two geodesic spheres level 2 slightly rotated with respect to each other,
(b) the Cgm of the Minkowski sum, and (c) the Cgm unfolded.

with respect to each other, depicted in Figure 7.
Naturally, an algorithm that accounts for all pairs
of vertices, one from each polytope, is rendered
inferior compared to an output sensitive algorithm
such as ours in such cases, as we demonstrate in the
next section.

6 Experimental Results

We have created a large database of convex poly-
hedra in polygonal representation stored in an
extended Vrml format [6]. In particular, each
model is provided in a representation that con-
sists of the array of boundary vertices and the
set of boundary polygons, where each polygon
is described by an array of indices into the ver-
tex array. (Identical to the IndexedFaceSet rep-
resentation.) Constructing the Cgm of a model
given in this representation is done indirectly.
First, the Cgal Polyhedron 3 data structure that
represents the model is constructed [28]. This
data structure consists of vertices, edges, and
facets and incidence relations on them. Then,
the Cgm is constructed using the accessible
incidence relations provided by Polyhedron 3.
Once the construction of the Cgm is com-
plete, the intermediate representation is discarded.

Planar map V HE F

0, (x = −1) 12 32 6
1, (y = −1) 36 104 18
2, (z = −1) 12 32 6
3, (x = 1) 12 32 6
4, (y = 1) 21 72 17
5, (z = 1) 12 32 6
Total 105 304 59

Table 2: The number of features
of the six planar maps of the Cgm

of the dioctagonal pyramid object.

Table 2 shows
the number
of vertices,
halfedges, and
faces of the six
planar maps
that comprise
the Cgm of
our squashed
dioctagonal
pyramid. The
number of faces
of each planar
map include the unbounded face. Table 3 shows
the number of features in the primal and dual
representations of a small subset of our polytopes
collection. The number of planar features is the
total number of features of the six planar maps.

As mentioned above, the Minkowski sum of
two polytopes is the convex hull of the pairwise
sum of the vertices of the two polytopes. We
have implemented this straightforward method us-
ing the Cgal convex hull 3 function, which uses the
Polyhedron 3 data structure to represent the re-
sulting polytope, and used it to verify the correct-
ness of our method. We compared the time it took
to compute exact Minkowski sums using these two



methods, a third method implemented by Hachen-
berger based on Nef polyhedra embedded on the
sphere [21], and a fourth method implemented by
Weibel [37], based on an output sensitive algorithm
designed by Fukuda [18].

The Nef-based method is not specialized for
Minkowski sums. It can compute the overlay of two
arbitrary Nef polyhedra embedded on the sphere,
which can have open and closed boundaries, facets
with holes, and lower dimensional features. The
overlay is computed by two separate hemisphere-
sweeps.

Fukuda’s algorithm relies on linear program-
ming. Its complexity is O(δLP (3, δ)V ), where δ =
δ1+δ2 is the sum of the maximal degrees of vertices,
δ1 and δ2, in the two input polytopes respectively, V
is the number of vertices of the resulting Minkowski
sum, and LP (d, m) is the time required to solve a
linear programming in d variables and m inequali-
ties. Note, that Fukuda’s algorithm is more general,
as it can be used to compute the Minkowski sum of
polytopes in an arbitrary dimension d, and as far
as we know, it has not been optimized specifically
for d = 3.

The results listed in Table 4, produced by
experiments conducted on a Pentium PC clocked
at 1.7 GHz, show that our method is much more
efficient in all cases, and more than three hundred
times faster than the convex-hull method in one
case. The last column of the table indicates the
ratio F1F2

F
, where F1 and F2 are the number of

facets of the input polytopes respectively, and F
is the number of facets of the Minkowski sum.
As this ratio increases, the relative performance
of the output-sensitive algorithms compared to the
convex-hull method, increases as expected.
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A Software Components,

Libraries and Packages

We have developed the Cubical gaussian map 3

data structure, which can be used to construct
and maintain cubical Gaussian-maps, and compute
Minkowski sums of pairs of polytopes represented
by the Cubical gaussian map 3 data structure.7

We have developed two interactive 3D applications;
a player of 3D objects stored in an extended Vrml

format, and an interactive application that detects
collisions and answers proximity queries for poly-
topes that undergo translation and rotation. The
format was extended with two geometry nodes:
the ExactPolyhedron node represents models us-
ing the Cgal Polyhedron 3 data structure, and
the CubicalGaussianMap node represents models
using the Cubical gaussian map 3 data structure.
Inability to provide exact coordinates impairs the
entire process. To this end, the format was further
extended with a node called ExactCoordinate that
represents exact coordinates. It has a field mem-
ber called ratPoint that specifies triple rational-
coordinates, where each coordinates is specified by
two integers, the numerator and the denominator
of a coordinate in R

3. Both applications are linked
with (i) Cgal, (ii) a library that provides the ex-
act rational number-type, and (iii) internal libraries
that construct and maintain 3D scene-graphs, writ-
ten in C++, and built on top of OpenGL. We ex-
perimented with two different exact number types:
one provided by Leda 4.4.1, namely leda rat, and
one by Gmp 4.1.2, namely Gmpq. The former does
not normalize the rational numbers automatically.
Therefore, we had to initiate normalization opera-
tions to contain their bit-length growth. We chose
to do it right after the central projections of the
facet-normals are calculated, and before the chains
of segments, which are the mapping of facet-edges,
are inserted into the planar maps. Our experience
shows that indiscriminate normalization consider-
ably slows down the planar-map construction, and
the choice of number type may have a drastic im-
pact on the performance of the code overall. The in-
ternal code was divided into three libraries; (i) SGAL
— The main 3D scene-graph library, (ii) SCGAL —
Extensions that depend on Cgal, and (iii) SGLUT

— Miscellaneous windowing and main-event loop
utilities that depend on the glut library.

The 3D programs, source code, data sets,
and documentation can be downloaded from
http://www.cs.tau.ac.il/~efif/CD/3d.

7We intend to introduce a package by the same name,
Cubical gaussian map 3, to a prospective future-release of
Cgal.

Unfortunately, compiling and executing the
programs require an unpublished fairly recent
version of Cgal. Thus, until the upcoming public
release of Cgal (version 3.2) becomes available, the
programs are useful only for those who have access
to the internal release. Precompiled executables,
compiled with g++ 3.3.2 on Linux Debian, are
available as well.

B Additional Models

See next page.
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Figure 8: (a) An octahedron, (d) a dioctagonal pyramid, (g) the Minkowski sum of two approximately
orthogonal dioctagonal pyramids, (j) the Minkowski sum of a Pentagonal Hexecontahedron and a Truncated
Icosidodecahedron, (b,e,h,k) the Cgm of the respective polytope, and (c,f,i,l) the Cgm unfolded.


