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Abstract

We study the performance in practice of various
point-location algorithms implemented in CGAL,
including a newly devised Landmarks algorithm.
Among the other algorithms studied are: a naive
approach, a “walk along a line” strategy and a
trapezoidal-decomposition based search structure.
The current implementation addresses general ar-
rangements of arbitrary planar curves, including
arrangements of non-linear segments (e.g., conic
arcs) and allows for degenerate input (for exam-
ple, more than two curves intersecting in a sin-
gle point, or overlapping curves). All calculations
use exact number types and thus result in the
correct point location. In our Landmarks algo-
rithm (a.k.a. Jump & Walk), special points, “land-
marks”, are chosen in a preprocessing stage, their
place in the arrangement is found, and they are in-
serted into a data-structure that enables efficient
nearest-neighbor search. Given a query point, the
nearest landmark is located and then the algo-
rithm “walks” from the landmark to the query
point. We report on extensive experiments with
arrangements composed of line segments or conic
arcs. The results indicate that the Landmarks ap-
proach is the most efficient when the overall cost
of a query is taken into account, combining both
preprocessing and query time. The simplicity of
the algorithm enables an almost straightforward
implementation and rather easy maintenance. The
generic programming implementation allows versa-
tility both in the selected type of landmarks, and in
the choice of the nearest-neighbor search structure.
The end result is a highly effective point-location
algorithm for most practical purposes.
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1 Introduction

Given a set C of n planar curves, the arrangement
A(C) is the subdivision of the plane induced by
the curves in C into maximal connected cells. The
cells can be 0-dimensional (vertices), 1-dimensional
(edges) or 2-dimensional (faces). The planar map
of A(C) is the embedding of the arrangement as
a planar graph, such that each arrangement ver-
tex corresponds to a planar point, and each edge
corresponds to a planar subcurve of one of the
curves in C. Arrangements and planar maps are
ubiquitous in computational geometry, and have
numerous applications (see, e.g., [5, 18].) Fig-
ure 1 shows two arrangements of different types of
curves, one induced by line segments and the other
by conic arcs.! The planar point-location problem
is one of the most fundamental problems applied
to arrangements: Preprocess an arrangement into
a data structure, so that given any query point g,
the cell of the arrangement containing ¢ can be
efficiently retrieved.

In case the arrangement remains unmodified
once it is constructed, it may be useful to invest
considerable amount of time in preprocessing in
order to achieve real-time performance of point-
location queries. On the other hand, if the arrange-
ment is dynamic, and new curves are inserted to
it (or removed from it), an auxiliary point-location
data-structure that can be efficiently updated must
be employed, perhaps at the expense of the query
answering speed.

A naive approach to point location might be
traversing over all the edges and vertices in the
arrangement, and finding the geometric entity that
is exactly on, or directly above, the query point.
The time it takes to perform the query using this
approach is proportional to the number of edges n,
both in the average and worst-case scenarios.

A more economical approach [25] is to draw a
vertical line through every vertex of the arrange-
ment to obtain vertical slabs in which point lo-
cation is almost one-dimensional. Then, two bi-
nary searches suffice to answer a query: one on
x-coordinates for the slab containing ¢, and one on

TA conic curve is an algebraic planar curve of degree 2.

A conic arc is a bounded segment of a conic curve.



Figure 1: Random arrangements of line segments (a) and of conic arcs (b).

edges that cross the slab. Query time is O(logn),
but the space may be quadratic. In order to re-
duce the space to linear storage space, Sarnack and
Tarjan [26] used Persistent Search Trees. Edahiro
et al. [15] used these ideas and developed a point-
location algorithm that is based on a grid. The
plane is divided into cells of equal size called buck-
ets using horizontal and vertical partition lines. In
each bucket the local point location is performed
using the slabs algorithm described above.

Another approach aiming at worst-case query
time O(logn) was proposed by Kirkpatrick [19],
using a data structure of size O(n). Mulmuley [23]
and Seidel [27] proposed an alternative method
that uses the vertical decomposition of the arrange-
ment into pseudo-trapezoidal cells, and constructs
a search Directed Acyclic Graph (DAG) over these
simple cells. We refer to the latter algorithm,
which is based on Randomized Incremental Con-
struction, as the RIC algorithm.

Point location in Delaunay triangulations was
extensively studied: Early works on point loca-
tion in triangulations can be found in [21] and [22].
Devillers et al. [12] proposed a Walk along a line
algorithm, which does not require the generation of
additional data structures, and offers O(y/n) query
time on the average (O(n) in the worst case). The
walk may begin at an arbitrary vertex of the tri-
angulation, and advance towards the query point.
Due to the simplicity of the structures (triangles),
the walk consists of low-cost operations. Devillers
later proposed a walk strategy based on a Delaunay
hierarchy [10], which uses a hierarchy of triangles,
and performs a hierarchical search from the highest
level in the hierarchy to the lowest. At each level of
the hierarchical search, a walk is performed to find
the triangle in the next lower level, until the trian-
gle in the lowest level is found. Other algorithms
that were developed only for Delaunay triangula-
tions, often referred to as Jump & Walk algorithms,
were proposed by Devroye et al. [13, 14].

Arya et al. [6] devised point location algo-
rithms aiming at good average (rather than worst-
case) query time. The efficiency of these algo-
rithms is measured with respect to the entropy of
the arrangement.

The algorithms presented in this paper are
part of the arrangement package in CGAL, the
Computational Geometry Algorithms Library [1].
CaAL is the product of a collaborative effort of
several sites in Europe and Israel, aiming to pro-
vide a generic and robust, yet efficient, imple-
mentation of widely used geometric data struc-
tures and algorithms. It is a software library writ-
ten in C+4++ according to the generic program-
ming paradigm. Robustness of the algorithms is
achieved by both handling all degenerate cases,
and by using exact number types. CCGAL’s arrange-
ment package was the first generic software imple-
mentation, designed for constructing arrangements
of arbitrary planar curves and supporting opera-
tions and queries on such arrangements [16, 17].
The arrangement class-template is parameterized
by a traits class that encapsulates the geometry
of the family of curves it handles. Robustness is
guaranteed, as long as the traits classes use exact
number types for the computations they perform.
Among the number-type libraries that are used are
GwmPp- Gnu’s multi-precision library [4], for rational
numbers, and CORE [2] and LEDA [3] for algebraic
numbers.

Point location constitutes a significant part of
the arrangement package, as it is a basic query
applied to arrangements during their construc-
tion. Various point-location algorithms (also re-
ferred to as point-location strategies) have been
implemented as part of the CGAL’s arrangement
package: The Naive strategy traverses all vertices
and edges, and locates the nearest edge or ver-
tex that is situated exactly on, or immediately
above, the query point. The Walk algorithm traces
(in reverse order) a vertical ray r emanating from



the query point to infinity; it traverses the zone?

of r in the arrangement. This vertical walk is
simpler than a walk along an arbitrary direction
(that will be explained in details below, as part of
the Landmarks algorithm), as it requires simpler
predicates (“above/below” comparisons). Simple
predicates are desirable in exact computing espe-
cially with non-linear curves. Both the Naive and
the Walk strategies maintain no data structures,
beyond the basic representation of the arrange-
ment, and do not require any preprocessing stage.
Another point-location strategy implemented in
CaAL for line-segments arrangement is a triangu-
lation algorithm, which consists of a preprocess-
ing stage where the arrangement is refined using
a Constrained Delaunay Triangulation. In the tri-
angulation, point location is implemented using a
triangulation hierarchy [10]. The algorithm uses
the triangulation package of CGAL [9]. The RIC
point-location algorithm described above was also
implemented in CGAL [16].

The motivation behind the development of the
new, Landmarks, algorithm, was to address both
issues of preprocessing complexity and query time,
something that none of the existing strategies do
well. The Naive and the Walk algorithms have,
in general, bad query time, which precludes their
use in large arrangements. The RIC algorithm
answers queries very fast, but it uses relatively
large amount of memory and requires a complex
preprocessing stage. In the case of dynamic ar-
rangements, where curves are constantly being in-
serted to or removed from, this is a major draw-
back. Moreover, in real-life applications the curves
are typically inserted to the arrangement in non-
random order. This reduces the performance of the
RIC algorithm, as it relies on random order of in-
sertion, unless special procedures are followed [11].

In the Landmarks algorithm, special points,
which we call “landmarks”, are chosen in a pre-
processing stage, their place in the arrangement
is found, and they are inserted into a hierarchi-
cal data-structure enabling fast nearest-neighbor
search. Given a query point, the nearest landmark
is located, and a “walk” strategy is applied, start-
ing at the landmark and advancing towards the
query point. This walk part differs from other walk
algorithms that were tailored for triangulations
(especially Delaunay triangulations), as it is geared
towards general arrangements that may contain
faces of arbitrary topology, with unbounded com-
plexity, and a variety of degeneracies. It also differs
from the Walk algorithm implemented in CGAL as
the walk direction is arbitrary, rather than vertical.
Tests that were carried out using the Landmarks

2The zone of a curve is the collection of all the cells in

the arrangement that the curve intersects.

algorithm, reported in Section 3 indicate that the
Landmarks algorithm has relatively short prepro-
cessing stage, and it answers queries fast.

The rest of this paper is organized as follows:
Section 2 describes the Landmarks algorithm in
details.  Section 3 presents a thorough point-
location benchmark conducted on arrangements
of varying size and density, composed of either
line segments or conic arcs, with an emphasis on
studying the behavior of the Landmarks algorithm.
Concluding remarks are given in Section 4.

2 Point Location with Landmarks

The basic idea behind the Landmarks algorithm is
to choose and locate points (landmarks) within the
arrangement, and store them in a data structure
that supports nearest-neighbor search. During
query time, the landmark closest to the query
point is found using the nearest-neighbor search
and a short “walk along a line” is performed from
the landmark towards the query point. The key
motivation behind the Landmarks algorithm is to
reduce the number of costly algebraic predicates
involved in the Walk or the RIC algorithms at
the expense of increased number of the relatively
inexpensive coordinate comparisons (in nearest-
neighbor search.)

The algorithm relies on three independent
components, each of which can be optimized or
replaced by a different component (of the same
functionality):

1. Choosing the landmarks that faithfully repre-
sent the arrangement, and locating them in
the arrangement.

2. Constructing a data structure that sup-
ports nearest-neighbor search (such as a kd-
trees [8]), and using this structure to find the
nearest landmark given a query point.

3. Applying a “walk along a line” procedure,
moving from the landmark towards the query
point.

The following sections elaborate on these com-
ponents.

2.1 Choosing the Landmarks. When choos-
ing the landmarks we aim to minimize the expected
length of the “walk” inside the arrangement to-
wards a query point. The search for a good set of
landmarks has two aspects:

1. Choosing the number of landmarks.

2. Choosing the distribution of the landmarks
throughout the arrangement.



It is clear that as the number of landmarks
grows, the walk stage becomes faster. How-
ever, this results in longer preprocessing time, and
larger memory usage. Indeed, in certain cases the
nearest-neighbor search consumes a significant por-
tion of the overall query time (when “overshooting”
with the number of landmarks - see Section 3.3 be-
low).

What constitutes a good set of landmarks de-
pends on the specific structure of the arrangement
at hand. In order to assess the quality of the
landmarks, we defined a metric representing the
complexity of the walk stage: The arrangement
distance (AD) between two points is the number
of faces crossed by the straight line segment that
connects these points. If two points reside in the
same face of the arrangement, the arrangement dis-
tance is defined to be zero. The arrangement dis-
tance may differ substantially from the Euclidean
distance, as two points, which are spatially close,
can be separated in an arrangement by many small
faces.

The landmarks may be chosen with respect to
the (0,1 or 2-dimensional) cells of the arrangement.
One can use the vertices of the arrangement as
landmarks, points along the edges (e.g., the edges
midpoints), or interior points in the faces. In order
to choose representative points inside the faces, it
may be useful to preprocess the arrangement faces,
which are possibly non-convex, for example using
vertical decomposition or triangulation.® Such pre-
processing will result in simple faces (pseudo trape-
zoids and triangles respectively) for which interior
points can be easily determined. Landmarks may
also be chosen independently of the arrangement
geometry. One option is to spread the landmarks
randomly inside a rectangle bounding the arrange-
ment. Another is to use a uniform grid, or to
use other structured point sets, such as Halton
sequences or Hammersley points [20, 24]. Each
choice has its advantages and disadvantages and
improved performance may be achieved using com-
binations of different types of landmark choices.

In the current implementation the landmark
type is given as a template parameter, called gen-
erator, to the Landmarks algorithm, and can be
easily replaced. This generator is responsible for
creating the sets of landmark points and updating
them if necessary. The following types of land-
mark generators were implemented: LM(vert) —
all the arrangement vertices are used as landmarks,
LM (mide)— midpoints of all the arrangement edges
are chosen, LM(rand)— random points are selected,
LM(grid) — the landmarks are chosen on a uniform

3Triangulation is relevant only in case of arrangements

of line segments.

grid, and LM (halton) — Halton sequence points are
used. In the LM(rand), LM(grid) and LM (halton)
the number of landmarks is given as a parameter
to the generator, and is set to be the number of
vertices by default. The benefit of using vertices
or edge’s midpoints as landmarks, is that their lo-
cation in the arrangement is known, and they rep-
resent the arrangement well (dense areas contain
more vertices). The drawback is that walking from
a vertex requires a preparatory step in which we ex-
amine all incident faces around the vertex to decide
on the startup face. Walking from the midpoints of
the edges also requires a small preparatory step to
choose between the two faces incident to the edge.

For random landmarks, we use uniform sam-
ples inside the arrangement bounding-rectangle.
After choosing the points, we have to locate
them in the arrangement. To this end, we use
the newly implemented batched point location in
CaAL, which uses the sweep algorithm for con-
structing the arrangement, while adding the land-
mark points as special events in the sweep. When
reaching such a special event during the sweep,
we search the y-structure to find the edge that is
just above the point. Similar preprocessing is con-
ducted on the uniform grid, when the grid points
are used as landmarks, and also on the Halton
points. When random points, grid points or Halton
points are used, it is in most cases clear in which
face a landmark is located (as opposed to the case
of vertices or edge midpoints). Thus, a prepara-
tory step is scarcely required at the beginning of
the walk stage.

2.2 Nearest Neighbor Search Structure.
Following the choice and location of the land-
marks, we have to store them in a data structure
that supports nearest-neighbor queries. The search
structure should allow for fast preprocessing and
query. A search structure that supports approxi-
mate nearest-neighbor search can also be suitable,
since the landmarks are used as starting points for
the walk, and the final accurate result of the point
location is computed in the walk stage.

Exact results can be obtained by constructing
a Voronoi diagram of the landmarks. However,
locating the query point in the Voronoi diagram
is again a point-location problem. Thus, using
Voronoi diagrams as our search structure takes
us back to the problem we are trying to solve.
Instead, we look for a simple data structure that
will answer nearest-neighbor queries quickly, even
if only approximately.

The nearest-neighbor search structure is a
template parameter to the Landmarks algorithm.
This modularity enables us to test several nearest-
neighbor structures. One implementation uses
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Figure 2: The query algorithm diagram.

the CGAL’s spatial searching package, which is
based on kd-trees. The input points provided
to this structure (landmarks, query points) are
approximations of the original points (rounded
to double), which leads to extremely fast search.
Again, we emphasize that the end result is always
exact.

Another implementation uses the ANN pack-
age [7], which supports data structures and al-
gorithms for both exact and approximate near-
est neighbor searching. The library implements a
number of different data structures, based on kd-
trees and box-decomposition trees, and employs a
couple of different search strategies. Few tests that
were made using this package show similar results
to those using CGAL’s kd-tree.

In the special case of LM(grid), no search
structure is needed, and the closest landmark can
be found in O(1) time.

2.3 Walking from the Landmark to the
Query Point. The “walk” algorithm developed
as part of this work is geared towards general ar-
rangements, which may contain faces of arbitrary
topology and of unbounded (not necessarily con-
stant) complexity. This is different from previous
Walk algorithms that were tailored for triangula-
tions, especially the Delaunay triangulation.

The “walk” stage is summarized in the dia-
gram in Figure 2. First, the startup face must be
determined. As explained in the previous section,
certain types of landmarks (vertices, edges) are not
associated with a single startup face. A virtual line
segment s is then drawn from the landmark (whose

location in the arrangement is known) to the query
point ¢q. Based on the direction of s, the startup
face f out of the faces incident to the landmark is
associated with the landmark.

Then, a test whether the query point ¢ lies
inside f is applied. This operation requires a pass
over all the edges on the face boundary. This pass
is quick, since we only count the number of f’s
edges above gq. We first check if the point is in the
edge’s x-range. If it is, we check the location of ¢
with respect to the edge, and count the edge only if
the point is below it. If the number of edges above
q is odd, then ¢ is found to be inside f, and the
query is terminated.

Otherwise, we continue our walk along the
virtual segment s toward ¢. In order to walk along
s, we need to find the first edge e on f’s boundary
that intersects s. Since the arrangement’s data-
structure holds for each edge the information of
both faces incident to this edge, all we need is to
cross to the face on the other side of e.

Figure 3 shows two examples of walking from
a vertex type landmark towards the query point.

As explained above, crossing to the next face
requires finding the edge e on the boundary of f
that intersects s. Actually, there is no need to find
the exact intersection point between e and s, as
this may be an expensive operation. Instead, it
is sufficient to perform a simpler operation. The
idea is to consider the z-range that contains both
the curves s and e, and compare the vertical order
of these curves on the left and right boundaries of
this range. If the vertical order changes, it implies
that the curves intersect; see, e.g., Figure 4(a). In
case several edges on f’s boundary intersects s, we
cross using the first edge that was found, and mark
this edge as used. This edge will not be crossed
again during this walk, which assures that the walk
process ends.

Care should be exercised when dealing with
special cases, such as when s and e share a common
endpoint, as shown in Figure 4(b). In this case we
need to compare the curves slightly to the right of
this endpoint (the endpoint of e is the landmark ¢).
Another case that is relevant to non-linear curves,
shown in Figure 4(c), is when e and s intersect an
even number of times (two in this case), and thus
no crossing is needed.

3 Experimental Results

3.1 The Benchmark. In this section we de-
scribe the benchmark we used to study the behav-
ior of various point-location algorithms and specif-
ically the newly proposed Landmarks algorithm.

The benchmark was conducted using four



(b)

Figure 3: Walking from a landmark located on a vertex v to a query point ¢: no crossing is needed (a),

multiple crossings are required during the walk (b).

z-range

Figure 4: Walk algorithms, crossing to the next face. In all cases the vertical order of the curves is
compared on the left and right boundaries of the marked z-range. (a) s and e swap their y-order,
therefore we should use e to cross to the next face. (b) s and e share a common left endpoint, but e
is above s immediately to the right of this point. (¢) The y-order does not change, as s and e have an

even number (two) of intersections.

types of arrangements: denotes as random seg-
ments, random conics, robotics, and Norway. Each
arrangement in the first type was constructed by
line segments that were generated by connecting
pairs of points whose coordinates x, y are each cho-
sen uniformly at random in the range [0,1000].
We generated arrangements of various sizes, up
to arrangements consisting of more than 1,350,000
edges.

The second type of arrangements, random con-
ics, are composed of 20% random line segments,
40% circles and 40% canonical ellipses. The circles
centers were chosen uniformly at random in the
range [0, 1000] x [0, 1000] and their radii were cho-
sen uniformly at random in the range [0, 250]. The
ellipses were chosen in a similar manner, with their
axes lengths chosen independently in the range
[0, 250].

The third type, robotics, is a line-segment
arrangement that was constructed by computing
the Minkowski sum? of a star-shaped robot and
a set of obstacles. This arrangement consists of
25,533 edges. The last type, Norway, is also a
line-segment arrangement, that was constructed by
computing the Minkowski sum of the border of

TThe Minkowski sum of sets A and B is the set {a+b|a €
A, be B}

Norway and a polygon. The resulting arrangement
consist of 42,786 edges.

For each arrangement we selected 1000 ran-
dom query points to be located in the arrange-
ment. For the comparison between the various al-
gorithms, we measured the preprocessing time, the
average query time, and the memory usage of the
algorithms. All algorithms were run on the same
set of arrangements and same sets of query points.

Several point-location algorithms were stud-
ied. We tested the different variants of the Land-
marks algorithm: LM(vert), LM(rand), LM(grid),
LM(halton) and LM(mide). The number of land-
marks used in the LM(vert), LM(rand), LM(grid),
LM(halton) is equal to the number of vertices of
the arrangement. The number of landmarks used
in the LM(mide) is equal to the number of edges of
the arrangement. All Landmarks algorithms, be-
sides LM(grid), use CGAL’s kd-tree as their nearest
neighbor search structure.

We also used the benchmark to study the
Naive algorithm, the Walk (from infinity) algo-
rithm, the RIC algorithm, and the Triangulation
algorithm (only for line segments). The LM (mide)
was also not implemented on conic-arc arrange-
ments, since finding the midpoint of a conic arc
connecting two vertices of the arrangement, which



may have been constructed by intersection of two
conic curves, is not a trivial operation, and the
middle point may possibly be of high algebraic de-
gree.

As stated above, all calculations use exact
number types, and result in the exact point lo-
cation. The benchmark was conducted on a sin-
gle 2.4GHz PC with 1GB of RAM, running under
LiNUX.

3.2 Results. Table 1 shows the average query
time associated with point location in arrange-
ments of varying types and sizes using the dif-
ferent point-location algorithms. The number of
edges mentioned in these tables is the number
of undirected edges of the arrangement. In the
CGAL implementation each edge is represented by
two halfedges with opposite orientations.

Table 2 shows the preprocessing time for the
same arrangements and same algorithms as in Ta-
ble 1. The actual preprocessing consist of two
parts: Construction of the arrangement (com-
mon to all algorithms), and construction of auxil-
iary data structures needed for the point location,
which are algorithm specific. As mentioned above,
the Naive and the Walk strategies do not require
any specific preprocessing stage besides construct-
ing the arrangement, and therefore do not appear
in the table.

Table 3 shows the memory usage of the point-
location strategies of the random line-segment ar-
rangements from Tables 1 and 2.

The information presented in these tables
shows that, unsurprisingly, the Naive and the Walk
strategies, although they do not require any pre-
processing stage and any memory besides the ba-
sic arrangement representation, result with the
longest query time in most cases, especially in case
of large arrangements.

The Triangulation algorithm has the worst
preprocessing time, which is mainly due to the time
for subdividing the faces of the arrangement using
Constrained Delaunay Triangulation (CDT); this
implies that resorting to CDT is probably not the
way to go for point location in arrangements of
segments. The query time of this algorithm is quite
fast, since it uses the Dalaunay hierarchy, although
it is not as fast as the RIC or the Landmarks
algorithm.

The RIC algorithm results with fast query
time, but it consumes the largest amount of mem-
ory, and its preprocessing stage is very slow.

All the Landmarks algorithms have rather fast
preprocessing time and fast query time. The
LM(vert) has by far the fastest preprocessing time,

since the location of the landmarks is known, and
there is no need to locate them in the preprocessing
stage. The LM(grid) has the fastest query time
for large-size arrangements induced by both line-
segments and conic-arcs. The size of the memory
used by LM(vert) algorithm is the smallest of all
algorithms.

The other two variants of landmarks that were
examined but are not reported in the tables are
(i) the LM(halton), which has similar results to
that of the LM(rand), and (ii) the LM(mide) which
yields similar results to those of the LM(vert),
although since it uses more landmarks, it has a
little longer query and preprocess, which makes it
less efficient for these types of arrangement.

Figure 5 presents the combined cost of a query
(amortizing also the preprocessing time over all
queries) on the last random-segments arrangement
shown in the tables, which consists of more than
1,350,000 edges. The x-axis indicates the num-
ber of queries m. The y-axis indicates the average
amortized cost-per-query, cost(m), which is calcu-
lated in the following manner:

preprocessing time
cost(m) =

(3.1)

We can see that when m is small, the cost
is a function of the preprocessing time of the
algorithm.  Clearly, when m — oo, cost(m)
becomes the query time. For the Naive and the
Walk algorithms that do not require preprocessing,
cost(m) = query time = constant. Looking at the
lower envelope of these graphs we can see that for
m < 100 the Walk algorithm is the most efficient.
For 100 < m < 100,000 the LM(vert) algorithm
is the most efficient, and for m > 100,000 the
LM(grid) algorithm gives the best performance.
As we can see, for each number of queries, there
exists a Landmarks algorithm, which is better than
the RIC algorithm.

+-average query time
m

3.3 Analysis. As mentioned in Sections 2
and 3, there are various parameters that effect the
performance of the Landmarks algorithm, such as
the number of landmarks, their distribution over
the arrangement, and the structure used for the
nearest-neighbor search. We checked the effect of
varying the number of landmarks on the perfor-
mance of the algorithm, using several random ar-
rangements.

Table 4 shows typical results, obtained for the
last random-segments arrangement of our bench-
mark. The landmarks used for these tests were
random points sampled uniformly in the bound-
ing rectangle of the arrangement. As expected,
increasing the number of random landmarks in-



Arrang. | #Edges | Naive | Walk | RIC | Triang. LM LM LM
Type (vert) | (rand) | (grid)
2112 2.2 0.8 0.06 0.86 0.16 0.13 0.13
random 37046 36.7 3.6 0.09 1.17 0.20 0.16 0.15
segments 235446 2414 9.7 | 0.12 1.96 0.38 0.35 0.18
955866 | 1636.1 15.0 0.23 1.83 1.27 1.45 0.18
1366364 | 2443.6 18.0 0.27 2.10 1.80 2.06 0.19
random 1001 1.4 0.2 | 0.05 N/A 0.31 0.08 0.07
conics 3418 5.6 0.5 0.07 N/A 0.32 0.07 0.06
13743 21.7 1.1 0.09 N/A 0.38 0.07 0.07
robotics 25533 37.6 1.3 0.08 0.39 0.12 0.11 0.07
Norway 42786 65.7 0.9 0.10 0.52 0.15 0.15 0.08
Table 1: Average time (in milliseconds) for one point-location query.
Arrang. | #Edges Construct. RIC Triang. LM LM LM
Type Arrangement (vert) | (rand) | (grid)
2112 0.07 0.5 11.2 0.01 0.12 0.13
random 37046 1.26 29.7 360.2 0.05 2.97 2.95
segments 235446 8.90 115.0 3360.1 0.33 24.23 22.25
955866 60.51 616.5 21172.2 2.25 141.88 | 100.79
1366364 97.67 || 1302.3 | 33949.1 3.37 212.79 | 148.61
random 1001 8.24 2.20 N/A 0.01 0.17 0.22
conics 3418 29.22 6.09 N/A 0.03 0.61 0.80
13743 127.04 28.26 N/A 0.13 2.72 3.57
robotics 25533 2.63 8.29 34.67 0.06 1.69 0.35
Norway 42786 5.28 20.06 70.33 0.10 3.23 2.37

Table 2: Preprocessing time (in seconds).

creases the preprocessing time of the algorithm.
However, the query time decreases only until a cer-
tain minimum around 100,000 landmarks, and it is
much larger for 1,000,000 landmarks. The last col-
umn in the table shows the percentage of queries,
where the chosen startup landmark was in the same
face as the query point. As expected, this number
increases with the number of landmarks.

An in-depth analysis of the duration of the
Landmarks algorithm reveals that the major time-
consuming operations vary with the size of the
arrangement (and consequently, the number of
landmarks used), and with the Landmarks type
used. Figure 6 shows the duration percentages of
the various steps of the query operation, in the
LM(vert) and LM(grid) algorithms. As can be seen
in the LM(vert) diagram, the nearest-neighbor
search part increases when more landmarks are
present, and becomes the most time-consuming
part in large arrangements. In the LM(grid)
algorithm, this step is negligible.

A significant step that is common to all Land-
marks algorithms, checking whether the query
point is in the current face, also consumes a sig-
nificant part of the query time. This part is the
major step of the LM(grid) algorithm.

Additional operation shown in the LM/(vert)
diagram is finding the startup face in a specified di-
rection. This step is relevant only in the LM(vert)
and the LM(mide) algorithms. The last opera-
tion, crossing to the next face, is relatively short
in LM(vert), as in most cases (more than 90%)
the query point is found to be inside the startup
face. This step is a little longer in LM(grid) than in
LM(vert), since only about 70% of the query points
are found to be in the same face as the landmark
point.

4 Conclusions

We propose a new Landmarks algorithm for ex-
act point location in general planar arrangements,
and have integrated an implementation of our al-
gorithm into CGAL. We use generic programming,
which allows for the adjustment and extension
for any type of planar arrangements. We tested
the performance of the algorithm on arrangements
constructed of different types of curves, i.e., line
segments and conic arcs, and compared it with
other point-location algorithms.

The main observation of our experiments is
that the Landmarks algorithm is the best strat-
egy considering the cost per query, which takes



Arrang. | #Edges | Arrangement RIC | Triang. LM LM LM
Type Size (vert) | (rand) | (grid)
2112 0.8 1.3 0.3 0.2 0.5 0.5
random 37046 9.5 21.5 7.7 2.6 8.1 6.8
segments 235446 57.3 || 136.5 46.4 17.0 51.9 44.4
955866 231.3 || 555.0 206.1 55.8 208.5 178.1
1366364 333.8 || 793.2 268.9 86.8 307.0 258.9

Table 3: Memory usage (in MBytes) by the point location data structure.

Number of | Preprocessing Query % Queries
Landmarks Time [sec] Time [msec] | with AD=0
100 61.7 4.93 3.4
1000 59.0 1.60 7.6
10000 60.8 0.58 19.2
100000 74.3 0.48 42.3
1000000 207.2 3.02 71.9

Table 4: LM(rand) algorithm performance for a fixed arrangement and a varying number of random

landmarks.
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Figure 6: The average breakdown of the time required by the main steps of the Landmarks algorithms
in a single point-location query, for arrangements of varying size.



into account both (amortized) preprocessing time
and query time. Moreover, the memory space re-
quired by the algorithm is smaller compared to
other algorithms that use auxiliary data structure
for point location. The algorithm is easy to imple-
ment, maintain, and adjust for different needs us-
ing different kinds of landmarks and search struc-
tures.

It remains open to study the optimal number
of landmarks required for arrangements of different
sizes. This number should balance well between
the time it takes to find the nearest landmark using
the nearest-neighbor search structure, and the time
it takes to walk from the landmark to the query
point.
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