
Precise Global Collision Detection in Multi-Axis NC-Machining

Oleg Ilushina∗, Gershon Elberb†, Dan Halperinc‡, Ron Weinc§, Myung-Soo Kimd¶

aDepartment of Applied Mathematics, Technion

bDepartment of Computer Science, Technion

cSchool of Computer Science, Tel Aviv University

dSchool of Computer Science and Engineering, Seoul National University, South Korea

Abstract

We introduce a new approach to the problem of col-
lision detection in multi-axis NC-machining. Due to
the directional nature (tool axis) of multi-axis NC-
machining, space subdivision techniques are adopted
from ray-tracing algorithms and are extended to suit
the peculiarities of the problem in hand. We exploit
the axial symmetry inherent in the tool’s rotational
motion to derive a highly precise polygon/surface-tool
intersection algorithms that, combined with the proper
data structure, also yields efficient computation times.
Other advantages of the proposed method are the sep-
aration of the entire computation into a preprocessing
stage that is executed only once, allowing more than
one toolpath to be efficiently verified thereafter, and the
introduced ability to test for collisions against arbitrary
shaped tools such as flat-end or ball-end, or even test
for interference with the tool holder or other parts of
the NC-machine.

Keywords: NC-machining, 5-axis machining, colli-
sion detection and verification, space subdivision, ray
tracing, lower envelopes.

1. Introduction

In recent years, evermore complex surfaces have been
evolving in various engineering processes and designs,
driving the demand for more efficient and accurate
machining of such surfaces [23]. 5-axis machining of-
fers many advantages over traditional 3-axis machining,
such as faster machining times, better tool accessibility
and improved surface finish. Yet, there are still diffi-
cult geometric problems to solve in order to take full
advantage of 5-axis machining. One of the most critical
problems in machining sculptured surfaces is collision
detection and avoidance.

∗olegi@tx.technion.ac.il
†gershon@cs.technion.ac.il
‡danha@tau.ac.il
§wein@tau.ac.il
¶mskim@cse.snu.ac.kr

Research in the area of 5-axis machining has been
mostly focused on generating proper cutter toolpaths,
optimizing tool orientation (for maximal material re-
moval rates and minimal scallop heights), and solving
local interference problems (gouging). Verma [25] offers
an image-space approach to simulating multi-axis NC
milling machines that uses a dexel-buffer structure for
the workpiece and tool representations, and simulates
material removal by boolean subtraction between the
two. In this representation a dexel is the basic volume
element represented by a rectangular box prolongated
along the positive z direction. Müller et al. [22] extend
the idea of dexel volumes to multi-dexel volumes. In
this approach more than one dexel model is used for
representation of a solid, with each model having a dif-
ferent dexel direction. In this manner the difficulty of
unequal sampling densities dependent on the slope of
the machined surface relative to the direction of the
dexels is overcome. In [9], Elber and Cohen derive the
boundaries of accessible (gouge-free) regions of a free-
form surface with respect to some given check surface
by projecting the check surface onto the given surface
along a given orientation field. Elber [8] introduced
a toolpath optimization method, in which he classi-
fies the surface into convex, concave and saddle-like
regions. As a result, applying a flat-end cutting tool
to convex regions and a ball-end tool for other regions
yields better material removal rates and smaller scal-
lop heights. At the same time this method guarantees
gouge-free milling. Yet another approach to tool orien-
tation optimization was suggested by Lee et al. in [20],
where they search the configuration space for optimal
tilt and yaw angles of the tool in order to minimize
cusp heights in the resulting surface.

While some algorithms were developed to avoid
global collision between the tool and the machined
part, in 5-axis machining [30,21] these methods do not
allow for a general form of a tool. They assume a cylin-
drical approximation for it. The first method [30] uti-
lizes convex hulls in order to quickly find the feasible
set of tool orientations, and in the case of a collision, a
correction vector is calculated in the direction opposite

2

to the surface normal vector, at the interfering point.
In [21], collision detection is integrated into the tool-
path generation stage. Once collision is detected, the
collision vector is derived from the center of the colli-
sion curve – the curve of intersection of the machined
part and the cylindrical approximation of the tool, in
the direction perpendicular to the tool axis. This is
used later to calculate the correction vector. [19] and [5]
allow more general representation of tool geometry for
the purpose of collision detection in 5-axis machining.
They use a point-cloud representation for the work-
piece, a Constructive Solid Geometry (CSG) represen-
tation for the tool and an efficient bounding volumes
hierarchy, thereby reducing the interference problem to
simple point inclusion queries. However, this represen-
tation tends to lose efficiency and requires a substantial
amount of memory as the number of sampled points
increases, which is the case when one requires a good
approximation for the machined part. Moreover, these
methods do not handle interference between the tool
and other parts of the NC-machine, such as clamping
devices, the rotating table and the spindle. [6] offers a
toolpath verification method based on the sweep plane
algorithm. Parallel slices of the workpiece, the refer-
ence part and the tool geometry are computed, with
constant intervals. The resulting geometry of the part
being machined is obtained by performing the intersec-
tion between these slices. This method allows general
tool geometry and supports collision detection between
the workpiece and the tool, tool holder and fixtures.
The precision of such an approach, however, depends
on the distance between the slices and the behavior of
the surface.

In this work we develop an efficient and precise algo-
rithm for global collision detection and avoidance in a
5-axis machining context. We take into consideration
not only the cutting tool and the machined part, but
also other parts of the NC-machine, such as clamping
devices and the rotating table. In addition, we impose
no restrictions on the shape of the tool. We take ad-
vantage, for the first time to the best of our knowledge,
of the inherent axis-symmetry of the problem of multi-
axis NC-machining.

The paper is organized as follows. In Section 2, we
define the problem of collision detection in multi-axis
machining and introduce our approach. Section 3 gives
some background on lower envelopes and ray tracing –
tools that we utilize in our algorithm. Section 3.1 elab-
orates on the description of the lower envelope con-
struction algorithm. In Section 3.2, we examine com-
puter graphics rendering techniques that we adapt to-
ward efficient extraction of a set of potentially inter-
secting polygons. In Section 4, we describe the data
structure used in our algorithm. Section 5 presents a
fast tool-polygon interference testing algorithm. Sec-
tion 6 presents some experimental results of our algo-
rithm. The extension to free-form surfaces intersection

calculations is introduced in Section 7, and finally, in
Section 8, we give concluding remarks and outline di-
rections for future extensions of this work.

2. Algorithm Overview

The general NC-machining collision detection prob-
lem can be stated as follows:

Given a workpiece, a tool and the tool po-
sition and orientation, detect and possibly
correct any interference, if exists, between
the tool and the workpiece or other parts
of the NC-machine, such as the chuck and
spindle, the rotating table, clamping de-
vices, etc.

In the first part of this work, we assume that the
workpiece and the parts of the NC-machine that are to
be checked for collision are given in a polygonal repre-
sentation. As for the tool, arbitrary polyline represen-
tation is allowed, as will be shown.

At the preprocessing stage, a data structure will be
constructed, which we will refer to as the Line-Distance
Query (LDQ) data structure. For a given polygonal
model, the following operations should be efficiently
performed using the LDQ data structure, at runtime:

1. Given a cutter position and tool orientation (a
ray), find the set of polygons that are close to the
tool by computing, for example, their inclusion
or intersection with a bounding cylinder around
the tool. Alternatively, use a set of concentric
cylinders and cones that will closely approximate
the tool, the spindle and other rotating parts.

2. Given local small changes in the geometry of the
workpiece (due to the nature of the machining
process), tool position or tool orientation, propa-
gate these changes into the LDQ data structure.

Once the preprocessing stage has been completed
and the LDQ data structure has been constructed, we
initiate the query, for the given cutting position and
tool orientation, and collect the set of polygons that
are close to the tool axis with respect to some approxi-
mation of the tool mentioned above (such as bounding
cones and cylinders). These polygons may originate
from the workpiece as well as from the parts of the NC-
machine and serve as potential candidates for a precise
interference test with the cutting tool.

Given this potentially interfering set, we derive pla-
nar hyperbolic segments that originate from the radial
projection of the triangles’ points around the tool’s axis
onto a plane, for each triangle in the set. These hyper-
bolic segments are then tested for intersections with
the tool’s profile and all other rotating parts such as
the chucks and spindle. Such intersections will iden-
tify the collision between the rotating parts of the NC-
machine and the workpiece or other stationary parts

3

such as a fixture or the base table. Alternatively, we
calculate the lower envelope of the radial projection of
all the polygons in the set with respect to the tool’s
axis, where the projection is onto a plane through this
axis. The lower envelope is a planar contour, which
is then checked for intersection with the tool. We dis-
cuss the advantages of each of these two possibilities in
Section 5.

Notice that even though the surfaces as well as the
tool profile are represented using linear functions (poly-
gons and polylines), the radial projection gives rise to
hyperbolic arcs as well (see Section 5 for details). Our
precise machinery can efficiently cope with second or-
der curves; see more details below.

Among the advantages of the presented method are:

• The preprocessing stage needs to be performed
only once and is independent of the toolpath (sev-
eral toolpaths could be verified without the need
to rebuild the LDQ data structure).

• A collision test is independent of the initial ori-
entation of the model. This dependency is a sig-
nificant drawback of many contemporary voxel-
based alternatives, which favor major axes.

• The proposed approach is precise to within ma-
chine arithmetic precision.

• No restrictions are imposed on the shape of the
tool and collision tests for all the rotating parts
of the NC-machine are supported.

Devising an efficient LDQ data structure is of great
importance in this approach and has a significant im-
pact on the algorithm. Among the possible choices one
can consider are an Oriented Bounding Box (OBB) hi-
erarchy or k-DOP, used in [19,5].

3. Background

In this section we briefly discuss two tools that will
serve us in our algorithm. In Section 3.1, the notion of
a lower envelope is presented and in Section 3.2 opti-
mization methods in computer graphics ray tracing are
considered.

3.1. Lower Envelopes
Lower envelopes are ubiquitous in computational

geometry and will be used here to speed up collision-
detection queries for complex tools.

Definition

Given a collection C = {C1, . . . , Cn} of
bounded planar x-monotone curves, which
can be viewed as univariate functions Ci(x)
defined on an interval, the lower envelope of
C, denoted L(C), is the point-wise minimum

of these functions, L(C)(x) = minCi(x),
taken over all functions defined at x.

Let us assume that our curves are well-behaved — that
is, two curves intersect at k points at most, where k is a
constant, or else they are considered to be overlapping.
We can then compute the planar arrangement [15]A(C)
of the curves in C, namely the planar subdivision in-
duced by C, whose complexity is O(n2), and examine
the unbounded face of this arrangement. However, we
could also compute the lower envelope directly. The
complexity of the lower envelope is O(λk+2(n)), where
λs(n) is the maximum length of a Davenport–Schinzel
sequence [24] of n elements with order s. For small
values of s, λs(n)

n is an extremely slowly growing func-
tion of n and the complexity of the lower envelope is
“almost” linear. For example, if C contains just line
segments, then k = 1 and λ3(n) = O(nα(n)), where
α(n) is the inverse of Ackermann’s function. In our
case, we deal with line segments and special hyperbolic
segments, such that each pair of curves may intersect
at most twice, so the complexity of the lower envelope
is λ4(n) = O(n2α(n)) (see [24] for more details). This
suggests that we can do much better than the O(n2)
algorithm.

To do so, we use a divide-and-conquer approach [4,
17]. Namely, we divide C into two subsets of equal size,
compute the lower envelope of each half recursively and
finally merge the two envelopes. This algorithm clearly
runs in O(λk+2(n) log n) time. (A slightly faster but
more involved algorithm, which is also more difficult to
implement, is proposed by Hershberger [18].)

Next we describe the data structure we use to repre-
sent L(C) and how it is constructed.

3.1.1. Constructing the Minimization Diagram
A natural representation of the lower envelope L(C)

is by a minimization diagram. By this we mean that,
given a collection C, we can subdivide the x-axis into
maximal intervals, such that the identity of the curve(s)
contributing to the lower envelope, above each point in
the interval, is the same. Note that the curves are not
assumed to be in a general position (i.e., it is possible
that more than two curves in C intersect at a common
point, two (or more) arcs may overlap1, etc.), so this
diagram must be carefully defined and constructed.

The minimization diagram M(C) consists of mini-
mization vertices and minimization edges (vertices and
edges for short). All the components are stored in a
doubly-linked list, where the vertices are sorted by their
increasing x-value, and each edge is stored between its

1Allowing overlaps should not be misconstrued as allowing an
arbitrary number of intersection points between a pair of curves.
The constant upper bound on the number of intersections is
needed in order to guarantee a good bound on the complexity of
the envelope and hence on the running time of the algorithm to
compute it. Partial overlap between curves does not affect these
bounds.

4

Figure 1. The minimization diagram representing the lower envelope of a set of line segments. Vertices are
represented as lightly shaded circles and the list of segments associated with each minimization edge is shown in
the rounded rectangles between the vertices. Note the overlap between c2 and c3 and the representation of the
vertical segment c7.

two end-vertices. Each vertex v is associated with a
point p(v), and each edge e stores a set C(e) of the
curves that constitute the lower envelope between the
two end-vertices of the edge (it is also possible that
C(e) = ∅). See Figure 1 for an illustration.

To construct the minimization diagram of a collec-
tion C we use the following procedure:

1. Remove all vertical segments from C (we will con-
sider these segments only after we are done with
the rest). We denote the resulting set by Ĉ.

2. If |Ĉ| ≤ 1, the construction of the lower envelope
is trivial. In any other case:

• Partition the set into two subsets C1, C2 of
equal sizes.

• Execute step 2 recursively on each of the
subsets to compute M(C1) and M(C2).

• Merge the two minimization diagrams by si-
multaneous traversal on the two lists of ver-
tices (see [27] for more details).

3. Sort the vertical segments by their increasing x-
values and merge them with the diagram M(Ĉ).

The complexity of step 1 is obviously linear and of
step 3, O(n log n), while for step 2 the running time
obeys T (n) = 2T (n

2) + O(λk+2(n)). Consequently, the
entire process takes O(λk+2(n) log n) time.

3.1.2. The Lower Envelope Traits
We developed a CGAL [1] package that computes

the lower envelope of a given set of curves, represented
as a minimization diagram, using the algorithm given
in the previous section. As CGAL employs the generic
programming approach (see [7] for more details), the
geometry involved in the algorithm is entirely separated
from its topological constructions.

This set of geometric predicates and constructions
is a subset of the geometric requirements needed by
CGAL’s arrangement package [11,12,16], and should
be provided by a so-called traits class. Such a traits
class is used as a parameter for the arrangement tem-
plate to instantiate arrangements of curves of a specific
type, and can similarly be used to instantiate the lower-
envelope template.

Although the line segments and hyperbolic arcs we
have to deal with are a special case of conic arcs
(see [26] for more details), it is possible to simplify the
geometric predicates and constructions involved in the
implementation of the traits class if we use the special
structure of the hyperbolas we obtain in our case.

We are interested in segments of the upper portion
of canonical hyperbolas of the form:

αx2 − y2 + βx + γ = 0 , (1)

which are defined by the x-coordinates x1 and x2 of the
segment’s endpoints. The endpoints of the hyperbolic
arc are given by (xi, yi), where:

yi = C(xi) =
√

αx2
i + βxi + γ . (2)

Thus, the 5-tuple 〈α, β, γ, x1, x2〉 completely character-
izes the canonical hyperbolic arc.

We can see that the traits class for this family of
curves can be easily implemented using elementary al-
gebra, for example:

• Given two x-monotone arcs C = 〈α, β, γ, x1, x2〉
and C ′ = 〈α′, β′, γ′, x′1, x

′
2〉 and their intersection

point p, we can conclude which curve is above the
other immediately to the right of p if we compare
the two slopes or the first-order derivatives of the
two curves. Thus, we have to compare 2αx(p)+β

C(x(p))

and 2α′x(p)+β′

C′(x(p)) .

5

• Given two x-monotone arcs C = 〈α, β, γ, x1, x2〉
and C ′ = 〈α′, β′, γ′, x′1, x

′
2〉, we can compute all

their intersection points by solving the quadratic
equation:

αx2 + βx + γ = α′x2 + β′x + γ′ . (3)

Also notice that no overlaps may occur between
C and C ′, unless, of course, the underlying hy-
perbolas of the two hyperbolic arcs are the same.

Recall that we need to support line segments as well.
This is quite simple as we can write the equation of the
underlying line y = ax + b of the segment2 as:

a2x2 − y2 + 2abx + b2 = 0 . (4)

Thus we can represent the line segment by the hyper-
bolic arc 〈a2, 2ab, b2, x1, x2〉.

3.2. The Ray Tracing Connection
A very common task in computer graphics is ren-

dering of three-dimensional scenes. Ray tracing is one
of the most popular rendering techniques in use that
can produce high-quality realistic images; see for ex-
ample [14]. Ray tracing simulates camera photography
by shooting rays through each pixel in the image into
the scene and then tracing these rays recursively as
they intersect and interact with the geometry, in re-
flection and refraction directions. Ray-object intersec-
tion calculation is considered the most expensive oper-
ation in ray-tracing. While theoretically each ray can
intersect any polygon in the scene, in practice rays typi-
cally intersect only a small fraction of the geometry. So
optimizations are generally required. Among the ray-
tracing optimization schemes, Uniform Space Subdivi-
sion (Uniform Grid) and Octrees are most frequently
used; see Figure 2. These two techniques subdivide
the object space into cells or voxels, and in each voxel
register the information about the geometry that inter-
sects it. These optimizations significantly speed up the
ray-tracing process by traversing rays through the sub-
division and performing intersection calculations only
with the geometry inside the voxels along the ray path.
Uniform subdivision, as its name implies, subdivides
the object space uniformly in each of the x, y, and z
directions and is the easiest to compute. Linear traver-
sal algorithms for uniform subdivision are the three-
dimensional version of the 2D line rasterization algo-
rithm (DDA, see [13]) and are typically called 3D-DDA.
The Octree scheme is an adaptive scheme that exploits
the scene’s geometry, recursively subdividing the vox-
els that contain the significant scene complexity, thus
resulting, in general, in fewer voxels than in Uniform
subdivision. Therefore, this method requires less mem-
ory and fewer traversal steps. The Octree approach,
however, requires slightly more complex preprocessing
and traversal algorithms.
2In case of a vertical segment we use a different representation,
but we omit the details here.

4. The LDQ Data Structures

In the process of NC-machining of a sculptured sur-
face, potential interference between the cutting tool
and the machined surface needs to be checked at least
at each cutter location along the toolpath. That is, for
each tool position and orientation we need to perform
an intersection test between the tool and the machined
part. If we consider the tool to be a cylinder of radius
R, the task will be to identify all the polygons of the
machined surface that interfere with the cylinder. A
key observation is the similarity of this tool interfer-
ence problem to the task in ray tracing of finding the
polygons that intersect the ray. Our NC-machining ap-
plication differs in the fact that now, instead of a simple
ray, we have to consider a ray of a finite thickness, i.e.,
a cylindrical one. Thus, optimization techniques for
ray-tracing algorithms could be applied to the problem
in hand with minor alterations.

Due to the fact that the surface that undergoes ma-
chining changes in time, the Octree representation is
not our first choice for the data structure, since it will
be difficult to update. Hence, a Uniform Grid will bet-
ter suit our purpose. Nevertheless, as we aim to exploit
the advantages offered by the Octree representation, in-
stead of having a simple Uniform Grid, we use a hier-
archy of uniform grids for the LDQ, doubling the grid’s
resolution on each successive level; see Figure 3. If, for
example, the initial resolution is 2 by 2 by 2, and the
depth of the hierarchy is 4, then on the lowest level we
will be employing a grid with a resolution of 16 by 16
by 16. This representation is identical to a fully ex-
panded Octree, with the convenience of being able to
use a simple 3D-DDA traversal algorithm at each level.
We call this specific data structure a HiGrid, short for
a Hierarchical Grid. The following is a key observation:

An intersection test of a polygon with a
cylindrical ray of radius R is equivalent to
the intersection of a simple ray with the 3D-
offset of the polygon by radius R.

Hence, in the initialization stage, we place a reference
to a polygon in a voxel if the polygon intersects the
box that is the offset of the voxel by R; see Figure 4.
Toward this end, we utilize the fast box-triangle overlap
testing algorithm by Möller [3], which is based on the
Separating Axis Theorem for two polyhedra. Then,
in real time, we traverse the HiGrid using a simple
ray, collecting all the polygons inside the voxels visited
by the ray. The result will be a set of polygons that
potentially interfere with the tool. When traversing
the HiGrid, we step down to the lower level and con-
tinue the traversal of the grid with finer resolution if
the number of polygons in the current voxel is greater
than some predefined constant. To support changes in
the geometry and polygon removal, all instances of ev-
ery polygon in all the voxels in the HiGrid are linked

6

(a) Uniform Grid (b) Octree

Figure 2. Ray tracing space subdivision schemes. Ray-object intersections are applied only to the objects contained
in the voxels along the ray (grey voxels).

Level 0 Level 1 Level 2

Figure 3. Hierarchical Grid levels. Ray traversal at each voxel continues to the lower levels of the grid hierarchy
with finer resolution, reducing, thereby, the number of polygons accumulated along the ray.

in a linear list. Hence, the HiGrid is an efficient data
structure that supports fast queries of Potentially In-
terfering Polygons (PIP), given the tool position and
orientation and a radius R of the bounding cylinder.

5. Collision Detection

In this work, we assume that the tool is given as
a polyline representing a tool’s profile to which we

P

R

R

Figure 4. Voxel offset by the tool radius R. Here a
reference to the polygon P will be placed in the original
voxel since it intersects the offset box.

z

y

Figure 5. The tool’s silhouette: a polyline representing
the tool’s profile.

will refer as the tool’s silhouette, and which lies in the
first quadrant of the yz-plane; see Figure 5. A similar
treatment will apply to a tool whose profile contains
quadratic or higher order curves, which will require
slightly more intricate calculations.

We denote the canonical orientation of the tool as

7

z

x

y

d

A (ax, ay, az)

B (bx, by, bz)

Figure 6. Segment rotated around the z-axis.

an orientation with the cutter position set at the origin
and oriented along the positive z-direction. Let M be
the inverse transformation that brings the tool from
its current machining position back to the canonical
orientation. To test for PIP–tool interference, we first
apply M to each triangle in the PIP set. We proceed
by radially projecting the mapped triangles around the
z-axis onto the yz-plane. This radial projection is the
trace that the triangle etches on the yz-plane (more
precisely, on the half-plane y > 0) when rotated around
the z-axis.

Consider the line segment AB, A = (ax, ay, az), B =
(bx, by, bz), rotated around the z-axis (see Figure 6).
The trace of AB in the yz-plane is given by the explicit
quadratic equation that is derived by looking at the
distance between a point on the segment and the z-
axis:

d2(z) =
{

1
(bz − az)

[
(bz − z)ax + (z − az)bx

]}2

+{
1

(bz − az)
[
(bz − z)ay + (z − az)by

]}2

,

(5)

where z changes continuously between az and bz.
Now consider a segment ST of the tool’s silhouette,

S = (0, sy, sz), T = (0, ty, tz). The squared distance
from point P ∈ ST and the z-axis for a prescribed
value of z is given by:

δ2(z) =
{

1
(tz − sz)

[
(tz − z)sy + (z − sz)ty

]}2

. (6)

For the segment AB to intersect the segment ST
of the profile of the tool, the right-hand terms of (5)

R

Q

A

B C

E

F

z

~NQ

~NR

Figure 7. The relevant points of 4ABC contributing
to the trace lie on the segments AE, EF, FB, BC.

and (6) must be equal. The comparison of these two
terms yields the following quadratic constraint for z:

z2
(
ab2 − e(f2

x + f2
y)

)
+ (7)

z
(
2abc− 2e(fxgx + fygy)

)
+(

ac2 − e(g2
x + g2

y)
)

= 0 ,

where

a =
1

(tz − s2
z)

,

b = (sy − ty) ,

c = (tysz − tzsy) ,

e =
1

(bz − a2
z)

,

fx = (ax − bx) ,

fy = (ay − by) ,

gx = (axbz − bxaz) ,

gy = (aybz − byaz) .

By solving Equation (7) for each relevant tool silhou-
ette segment ST and verifying that none of the real
roots, if any, lies in a proper range, we can conclude
that the segment AB either does or does not intersect
the tool.

Now, given a triangle 4ABC, one needs to identify
the closest points of 4ABC to the z-axis for each value
of z. There are several cases to handle; here we will ex-
amine the most complicated one. Consider the example
depicted in Figure 7. In this example we assume that
the triangle’s vertices, A, B, C, are in descending z-
order. Let Q be the plane containing 4ABC and ~NQ

be its normal. Then, for each value of z, the closest
points of Q to the z-axis will lie on the intersection be-
tween Q and the plane R whose normal ~NR is given by
~NR = ~NQ × z, where z = (0, 0, 1), and which contains

8

the z-axis. If R intersects 4ABC, as in this exam-
ple, then the closest triangle’s points to the z-axis will
lie on the segments AE, EF, FB and BC. The ra-
dial projection of the segments AE, FB and BC will
give rise to hyperbolic curves, while EF will generate a
line segment, as it lies on the same plane as the z-axis.
Otherwise, and depending on the order of the triangle’s
vertices, one or two edges of 4ABC will form the set
of the closest points to the z-axis.

Once the triangle is analyzed and the closest seg-
ments are identified and extracted, Equation (5) is ap-
plied to each segment. The resulting set of connected
hyperbolic arcs and/or line segments is, essentially, the
lower envelope of the radial projection of 4ABC onto
the yz-plane.

We proceed and obtain the set of hyperbolic arcs
and/or line segments for all the triangles in the PIP.
We call this set the Hyperbolic Segments Set (HSS). To
complete the collision detection test, for the current
tool orientation, we have two alternatives.

The first option is the direct approach. In this ap-
proach, each curve from the HSS is tested for intersec-
tion with the tool’s silhouette. Binary search is used
on the tool’s silhouette segments, along the z-axis. Be-
cause each test is performed by analytically solving the
quadratic Equation (7), this approach proves to be ef-
ficient when the tool’s silhouette contains a small num-
ber of segments.

The second approach takes advantage of the lower
envelope method described in Section 3.1. First the
lower envelope of all the curves from the HSS is con-
structed in O(λ4(n) log n) time, assuming HSS consists
of n curves. Thus, we have potentially reduced the to-
tal number of hyperbolic segments to be tested against
the tool. Then, the tests for intersections between this
lower envelope and the tool’s silhouette are performed
by a simultaneous traversal over the lower envelope and
the tool’s silhouette along z and a comparison between
the two entities (we assume here that the tool’s sil-
houette is weakly monotone in the z direction). The
last step is clearly linear in the complexity of the enve-
lope and the tool, making this approach more attrac-
tive when very complex tool geometry is used, and the
tool’s silhouette consists of a large number of segments.
We compare these two approaches in Section 6.

6. Results

The collision detection algorithm presented in this
paper was implemented in the IRIT modeling environ-
ment [2]. The lower envelope calculations and the com-
parison of the envelope with the tool profile are carried
out with a recent extension [28] to the CGAL arrange-
ment package [1,27]. In our tests, we used the Utah
teapot model and a wineglass model, both in a 5-axis
machining mode. Toolpaths were generated by sam-
pling iso-parametric curves along the model surfaces.

Figure 8. Machining the body of the Utah teapot, us-
ing a flat-end tool oriented along the surface normal.
Only 1% of the contact points are shown. Red dots
and polygons indicate collisions at the cutter locations
and the interfering geometry, respectively. The tool’s
geometry is shown for one contact point with interfer-
ence.

For the teapot model, we used a toolpath consisting of
∼50000 contact points covering the teapot’s body with
tool orientations following the surface normals. A flat-
end tool with a tool holder of a larger radius was used
for machining the teapot. In the case of the wineglass
model, the toolpath was sampled along an offset sur-
face, having the orientation of the tool set so that its
axis line goes through a fixed point. A total of ∼15000
contact points were used. The tool that machined the
interior of the wineglass is a ball-end tool. Figures 8
and 9 show the output of running the algorithm on
both models. The teapot and the wineglass models
consist of 12600 and 2700 polygons, respectively. It
took about 64.2 seconds and 5.01 seconds, respectively,
to test for collisions on a Pentium IV 2.4GHz machine
with 512MB of RAM, setting the initial resolution of
the HiGrid data structure to 2 and the depth to 4.
Red polygons designate geometry that is overlapped
by the tool during the simulation process. Tables 1
and 2 show more detailed statistics for different values
of depth used for initializing the HiGrid data structure
for both models. The initial resolution of the HiGrid
was set to 2 in all test cases. Larger tool radius in
the case of the teapot model resulted in a longer pre-
processing time, as each polygon occupies more voxels
in the HiGrid data structure when considering a big-
ger offset. Table 3 demonstrates the advantage of the
lower envelope approach when using very complex tool
geometry. Here, we tested the Utah teapot model with
the toolpath as in Table 1. A tool with complex geom-
etry was chosen (see Figure 10), and tests with a tool’s
silhouette consisting of 50, 500, 5000 and 50000 line
segments were performed. It can be seen from Table 3,
that the lower envelope approach becomes beneficial
only when the tool’s silhouette consists of a very large
number of segments (50000 segments).

9

Table 1
The Utah teapot model with 12600 polygons and ∼50000 contact points along the toolpath, using a flat-end tool
with a tool holder of a larger radius; see Figure 8.

HiGrid depth 2 3 4

Preprocessing time 0.188 sec. 0.609 sec. 2.594 sec.

Total query time 133.7500 sec. 81.4070 sec. 61.6100 sec.

Avg. PIP extraction time per query 0.0005 sec. 0.0003 sec. 0.0003 sec.

Avg. intersections time per query 0.0020 sec. 0.0012 sec. 0.0009 sec.

Avg. num. of polys. per query 1376.4468 801.7224 574.2602

Avg. num. of intersections per query 18.3600 18.3600 18.3600

Table 2
A wineglass model with 2700 polygons and ∼15000 contact points along the toolpath, using a ball-end tool; see
Figure 9.

HiGrid depth 2 3 4

Preprocessing time 0.031 sec. 0.093 sec. 0.422 sec.

Total query time 9.5160 sec. 6.1260 sec. 4.5940 sec.

Avg. PIP extraction time per query 0.0001 sec. 0.0000 sec. 0.0000 sec.

Avg. intersections time per query 0.0005 sec. 0.0003 sec. 0.0002 sec.

Avg. num. of polys. per query 318.4795 192.1181 130.7773

Avg. num. of intersections per query 14.3005 14.3005 14.3005

7. Extending into Collision Detections with
Free-form Surfaces

In the previous sections, the general 5-axis machin-
ing problem was reduced to a machining tool that was
considered as a surface of revolution about the z-axis.
Further, the environment was given as a polygonal
approximation of a free-form surface using triangular
faces. Mapped to this specific case, we reduced the
given problem to a simpler problem of computing the
lower envelope of a set of planar, at most quadratic,
curves and computing the intersection of the lower en-
velope of these curves with the profile of the tool.

We now consider the problem in a more general sit-
uation, where no approximation of the input geome-
try is made. The free-form surface is given as a ratio-
nal parametric surface. This problem is more difficult
than those in the previous sections. Nevertheless, the
problem can be reformulated as a system of polynomial
equations, which can be solved numerically. Thus, in
our alternative method approximation is made in the
final stage of solving constraint equations, while no ap-
proximation about the input surface geometry is made.
This scenario is common in contemporary computer
aided design systems that are used in design toward
manufacturing. Piecewise rational, NURBs geometry
plays a major role in these environments and hence

the incentive to compute the lower envelope directly is
high.

We consider the collision detection between a tool
and a rational parametric free-form surface S(u, v).
The tool is represented as the implicit surface of revo-
lution

x2 + y2 = r(z)2.

This surface is generated by rotating the curve
(0, r(z), z) about the z-axis. The free-form surface to
be machined, S(u, v), is given as a Bezier surface:

S(u, v) =
m∑

i=0

n∑
j=0

PijB
m
i (u)Bn

j (v).

7.1. Collision Detection with a Boundary Curve
We first consider the collision detection between a

tool and a boundary curve of the surface S(u, v), 0 ≤
u, v ≤ 1. For v0 = 0, 1, we define

C(u) = S(u, v0)

=
m∑

i=0

n∑
j=0

PijB
m
i (u)Bn

j (v0)

=
m∑

i=0

PiB
m
i (u),

10

Table 3
The Utah teapot model with 12600 polygons and ∼50000 contact points along the toolpath, using complex tool
geometry with the tool’s silhouette consisting of up to 50000 line segments. Average time per query (in milliseconds);
see Figure 10.

Number of segments in the tool’s silhouette 50 500 5000 50000

Direct Approach 0.2 0.4 2.4 20.2

Lower Envelope Approach 5.3 5.6 5.6 5.8

Figure 9. Machining the interior of a wineglass, using
a ball-end tool through a point. Only 3% of the con-
tact points are shown. Red dots and polygons indicate
collisions at the cutter locations and the interfering ge-
ometry, respectively. The tool’s geometry is shown for
one contact point with interference.

Figure 10. Complex tool geometry.

where Pi =
∑n

j=0 PijB
n
j (v0).

The collision between the tool and a boundary curve
C(u) = (x(u), y(u), z(u)) can be detected by checking

x(u)2 + y(u)2 − r(z(u))2 < 0,

for some 0 ≤ u ≤ 1. When the radius function r(z)
is a rational function of z, this condition can be tested
precisely within an arbitrary error bound. When the
curve C(u) is a line segment,

C(u) = (1− u)P0 + uP1, for 0 ≤ u ≤ 1,

the above test can be reduced to a quadratic inequality
condition

au2 + bu + c < 0,

for some constants a, b, c. When there is no collision
between the tool and the two end points P0 and P1, we
have a > 0 and the above condition is equivalent to

b2 − 4ac > 0.

This algebraic condition can be tested exactly.

7.2. Collision Detection with a Surface
The radial silhouette of a surface S(u, v) is the set

of surface points that forms the silhoutte when all sur-
face points are radially projected onto the Y Z-plane.
The radial silhouette corresponds to the silhouette of
S(u, v) = (r(u, v), θ(u, v), z(u, v)) (represented in ra-
dial coordinates) when the surface is projected along
the θ-direction. On the radial silhouette curve, the
normal line of a surface passes through the z-axis

det
[
∂S

∂u
(u, v),

∂S

∂v
(u, v), S⊥(u, v)

]
= 0, (8)

where S⊥(u, v) = S(u, v)× (0, 0, 1). This equation de-
fines an implicit curve in the uv parameter plane. The
zero-set of Equation (8) can be approximated by curve
segments of the form (u(t), v(t)), where u(t) and v(t)
are polynomial functions of t. The radial silhouette of
the surface S(u, v) is approximated by S(u(t), v(t)) =
(x(t), y(t), z(t)). Equation x2 + y2 − r(z)2 = 0 is then
approximated by a rational equation:

x(t)2 + y(t)2 − r(z(t))2 = 0.

By rotating the radial silhouette curve of Equa-
tion (8), we generate a surface of revolution from which

11

we can extract a section of the lower envelope curve
in the Y Z-plane. We consider only the +Y portion.
Alternatively, we could radially project this radial sil-
houette curve onto the Y Z plane.

When the surface S(u, v) is a triangle, it can be rep-
resented as

S(u, v) = (1− u− v)P00 + uP10 + vP01,

for 0 ≤ u, v ≤ 1 and 0 ≤ u + v ≤ 1. Now we have

∂S

∂u
(u, v) = P10 − P00,

∂S

∂v
(u, v) = P01 − P00,

S(u, v)⊥ = (1− u− v)P⊥
00 + uP⊥

10 + vP⊥
01.

Equation (8) is linear in u and v. The radial silhouette
curve of S(u, v) is a line segment if there is a solution
(u, v) that satisfies 0 ≤ u, v ≤ 1 and 0 ≤ u + v ≤ 1.
Otherwise, there is no radial silhouette in the interior
of the triangle. The exact radial silhouette of S(u, v)
is represented as a line segment parameterized by t:

S(u(t), v(t)) = (x(t), y(t), z(t)).

When r(z) is a rational function of z, equation x(t)2 +
y(t)2 − r(z(t))2 = 0 is a rational equation in t, which
can be solved precisely with an arbitrary error bound.
The corresponding lower envelope in the Y Z-plane is a
simple rotation of this line segment about the z-axis.

7.3. An Example
Given a rational surface S, and the tool’s position

and orientation, we seek to verify whether surface S
intersects the tool. We assume, without loss of gen-
erality, that the tool is in canonical orientation; that
is, the cutter position is at the origin and the tool is
oriented along the positive z-direction. The zero-set
of Equation (8) characterizes the radial silhouette of
surface S and is computed using the solver described
in [10]. One can extract a single curve on the surface.
This curve can then be approximated to an arbitrary
precision by a piecewise linear curve and radially pro-
jected onto the Y Z-plane in the manner described in
Section 5. The projection includes both the lower radial
as well as the upper radial envelopes of the geometry.
Furthermore, for open surfaces the boundary curves, as
described in Section 7.1, should be considered as well.
By extracting the lower, upper and boundary radial
envelopes of the surface, the actual lower envelope of
the surface, radially projected, could be compared for
collision against the tool’s profile.

In the example shown in Figure 11 one can see the
tool moving along the surface of the Utah teapot’s
body. The radial silhouette of the teapot’s spout
(shown in blue) is defined as the zero-set of Equa-
tion (8), and contains all the points on the surface at
which the surface normal is coplanar with the tool’s
axis. The boundary of the teapot’s spout is shown in

~V

S(u, v)

���
�*r

~NS

Figure 11. Radial silhouette of the Utah teapot’s spout
with respect to the tool’s axis. The radial silhouette is
drawn in blue. The surface’s boundary (drawn in cyan)
is also checked for intersection with the tool.

cyan and is checked for intersection with the tool as
well.

The advantage of this direct approach can be found
in the fact that no preprocessing is needed, a time- and
memory-consuming task. One is only required to ex-
tract the radial silhouette of a finite number of surfaces
with respect to the tool’s positions and orientations, in
the toolpath. Instead of managing tens if not hundreds
of thousands of polygons, this direct process only neces-
sitates the handling of dozens or hundreds of free-form
surfaces. Further, this direct approach also makes it
possible to extract the solution to an arbitrary preci-
sion and adaptively.

8. Conclusions

We have presented a new approach to the problem
of collision detection in multi-axis NC-machining that
yields, in the tests so far conducted, promising results.

Preprocessing can take up a significant amount of
time and memory, depending on the tool radius, model
resolution (number of polygons) and the HiGrid reso-
lution. Since this preprocessing is performed only once
and can be used for more than one toolpath verifica-
tion, it increases the overall performance considerably
by narrowing the calculations to a small subset of the
geometry. Also, we have shown a way to compute in-
tersections of the free-form surfaces with the tool di-
rectly, in which case we have no need for the time-
and memory-consuming preprocessing and construct

12

the polygonal approximation of the model.
In the future, we intend to compute an exit vector

from the intersection data to support collision avoid-
ance as well as detection. Further, extending the tool
definition to allow its silhouette to contain quadratic
or higher order curves is on our research agenda. As
already mentioned, the computation of the lower enve-
lope and its comparison with the tool profile are coded
generically so that allowing for higher degree curves
will not affect the topological part of the implementa-
tion and only local numerical procedures will have to
be modified. Furthermore, as long as the tool profile
consists of at most second-degree curves, our software
can already carry out the collision detection precisely
in the same way as is done for the polygonal tool pro-
file in the current work, being able to analytically solve
degree four polynomial constraints.

So far, we have considered possible collisions at con-
tact points only. Clearly, collisions could occur be-
tween contact points and hence be missed. Recently
we have introduced an extension of the presented ap-
proach that supports the representation of lower en-
velopes that change (slightly) over time between con-
tact points. This approach detects such intermediate
collisions as well [29].

9. Acknowledgment

This research was supported in part by the Tech-
nion Vice President for Research Fund - New York
Metropolitan Research Fund and in part by Israeli Min-
istry of Science Grant No. 01-01-01509. This work has
also been supported in part by the IST Programmes
of the EU as Shared-cost RTD (FET Open) Projects
under Contract No IST-2000-26473 (ECG - Effective
Computational Geometry for Curves and Surfaces) and
No IST-2001-39250 (MOVIE - Motion Planning in Vir-
tual Environments), by The Israel Science Foundation
founded by the Israel Academy of Sciences and Human-
ities (Center for Geometric Computing and its Appli-
cations), and by the Hermann Minkowski – Minerva
Center for Geometry at Tel Aviv University.

REFERENCES

1. The cgal project homepage.
http://www.cgal.org/.

2. Irit modeling environment, version 9.0,
2002. G. Elber, Department of Com-
puter Science, Technion, Haifa, Israel.
www.cs.technion.ac.il/~irit/.

3. T. Akenine-Möller. Fast 3D triangle-box overlap
testing. Journal of Graphics Tools, 6(1):29–33,
2001.

4. M. J. Atallah. Some dynamic computational geom-
etry problems. Comput. Math. Appl., 11(12):1171–
1181, 1985.

5. M. Balasubramaniam, S. E. Sarma, and
K. Marciniak. Collision-free finishing toolpaths
from visibility data. Computer-Aided Design,
35(4):359–374, April 2003.

6. E. L. J. Bohez, N. T. H. Minh, B. Kiatsrithanakorn,
P. Natasukon, H. Ruei-Yun, and L. T. Son. The
stencil buffer sweep plane algorithm for 5-axis CNC
tool path verification. Computer-Aided Design,
35(12):1129–1142, October 2003.

7. H. Brönnimann, L. Kettner, S. Schirra, and
R. Veltkamp. Applications of the generic program-
ming paradigm in the design of CGAL. In M. Jaza-
yeri, R. Loos, and D. Musser, editors, Generic
Programming—Proceedings of a Dagstuhl Seminar,
LNCS 1766. Springer Verlag, 2000.

8. G. Elber. Freeform surface region optimization for
3-axis and 5-axis milling. Computer-Aided Design,
27(6):465–470, June 1995.

9. G. Elber and E. Cohen. A unified approach to ver-
ification in 5-axis freeform milling environments.
Computer-Aided Design, 31(13):795–804, Novem-
ber 1999.

10. G. Elber and M.-S. Kim. Geometric constraint
solver using multivariate rational spline functions.
In Proceedings of ACM Symposium on Solid Model-
ing and Applications, pages 1–10, Ann Arbor, MI,
June 2001.

11. E. Flato, D. Halperin, I. Hanniel, O. Nechushtan,
and E. Ezra. The design and implementation of
planar maps in CGAL. ACM Journal of Exper-
imental Algorithmics, 5, 2000. Special Issue, se-
lected papers of the Workshop on Algorithm Engi-
neering (WAE).

12. E. Fogel, R. Wein, and D. Halperin. Code flexibil-
ity and program efficiency by genericity: Improving
cgal’s arrangements. In Proc. 12th Annual Euro-
pean Symposium on Algorithms (ESA), 2004. To
appear.

13. D. Foley, A. van Dam, S. K. Feiner, and J. F.
Hughes. Fundamentals of Interactive Computer
Graphics. Addison Wesley, second edition, 1990.

14. A. S. Glassner. An Introduction to Ray Tracing.
Academic Press, 1990.

15. D. Halperin. Arrangements. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 24, pages 529–
562. CRC Press LLC, Boca Raton, FL, 2004.

16. I. Hanniel. The design and implementation of pla-
nar arrangements of curves in cgal. M.Sc. thesis,
Computer Science Department, Tel Aviv Univer-
sity, Tel Aviv, Israel, 2000.

17. S. Hart and M. Sharir. Nonlinearity of Davenport-
Schinzel sequences and of generalized path com-
pression schemes. Combinatorica, 6:151–177, 1986.

18. J. Hershberger. Finding the upper envelope of n
line segments in O(n log n) time. Inform. Process.
Lett., 33:169–174, 1989.

13

19. S. Ho, S. Sarma, and Y. Adachi. Real-time interfer-
ence analysis between a tool and an environment.
Computer-Aided Design, 33(13):935–947, Novem-
ber 2001.

20. C.-S. Jun, K. Cha, and Y.-S. Lee. Optimizing tool
orientations for 5-axis machining by configuration-
space search method. Computer-Aided Design,
35(6):549–566, May 2003.

21. B. Lauwers, P. Dejonghe, and J. P. Kruth. Optimal
and collision free tool posture in five-axis machin-
ing through the tight integration of tool path gen-
eration and machine simulation. Computer-Aided
Design, 35(5):421–432, April 2003.

22. H. Müller, T. Surmann, M. Stautner, F. Albers-
mann, and K. Weinert. Online sculpting and visu-
alization of multi-dexel volumes. In Proc. 8th ACM
Sympos. on Solid Modeling and applications, pages
258–261, 2003.

23. G. J. Olling, B. K. Choi, and R. B. Jerard. Ma-
chining Imposible Shapes. Kluwer Academic Pub-
lishers, November 1998.

24. M. Sharir and P. Agarwal. Davenport–Schinzel Se-
quences and Their Geometric Applications. Cam-
bridge University Press, 1995.

25. S. Verma. Simulation of numerically controlled ma-
chines. M.Sc. thesis, Computer Science Depart-
ment, The University of Utah, September 1994.

26. R. Wein. High-level filtering for arrangements of
conic arcs. In Proc. ESA 2002, pages 884–895.
Springer-Verlag, 2002.

27. R. Wein and D. Halperin. Generic implementa-
tion of the construction of lower envelopes of pla-
nar curves. Technical Report ECG-TR-361100-01,
Tel-Aviv University, 2004.

28. R. Wein and D. Halperin. Generic implementa-
tion of the construction of lower envelopes of pla-
nar curves. Technical Report ECG-TR-361100-01,
Tel-Aviv University, 2004.

29. R. Wein, O. Ilushin, G. Elber, and D. Halperin.
Continuous path verification in multi-axis NC-
machining. In Proceedings of the Twentieth
Anuual Symposium on Computational Geometry
(SCG’04), pages 86–95, 2004.

30. L. Yuan-Shin and C. Tien-Chien. 2-phase approach
to global tool interference avoidance in 5-axis ma-
chining. Computer-Aided Design, 27(10):715–729,
October 1995.

