
The Visibility–Voronoi Complex and Its Applications

Ron Wein

Tel-Aviv University

wein@tau.ac.il

Jur P. van den Berg

Utrecht University

berg@cs.uu.nl

Dan Halperin

Tel-Aviv University

danha@tau.ac.il

Abstract

We introduce a new type of diagram called the VV(c)-diagram (the Visibility–Voronoi dia-
gram for clearance c), which is a hybrid between the visibility graph and the Voronoi diagram
of polygons in the plane. It evolves from the visibility graph to the Voronoi diagram as the
parameter c grows from 0 to ∞. This diagram can be used for planning natural-looking paths
for a robot translating amidst polygonal obstacles in the plane. A natural-looking path is short,
smooth, and keeps — where possible — an amount of clearance c from the obstacles. The
VV(c)-diagram contains such paths. We also propose an algorithm that is capable of prepro-
cessing a scene of configuration-space polygonal obstacles and constructs a data structure called
the VV-complex. The VV-complex can be used to efficiently plan motion paths for any start
and goal configuration and any clearance value c, without having to explicitly construct the
VV(c)-diagram for that c-value. The preprocessing time is O(n2 log n), where n is the total
number of obstacle vertices, and the data structure can be queried directly for any c-value by
merely performing a Dijkstra search. We have implemented a Cgal-based software package for
computing the VV(c)-diagram in an exact manner for a given clearance value, and used it to
plan natural-looking paths in various applications.

1 Introduction

In this report we study the problem of planning a natural-looking collision-free path for a robot
with two degrees of motion freedom moving in the plane among polygonal obstacles. By “natural-
looking” we mean that the robot should select a path that will be as close as possible to the path a
human would take in the same scene to reach the goal configuration from the start configuration.
This essentially means the following: (a) the path should be short — that is, it should not contain
long detours when significantly shorter routes are possible; (b) it should have a guaranteed amount
of clearance — that is, the distance of any point on the path from the closest obstacle should
not be lower than some prescribed value; and (c) it should be smooth, not containing any sharp
turns. Requirements (b) and (c) may conflict with the first requirement (a) in case it is possible
to considerably shorten the path by taking a shortcut through a narrow passage. In such cases we
may prefer a path with less clearance (and perhaps containing sharp turns).

The visibility graph is a well-known data structure for computing the shortest collision-free path
between a start and a goal configuration (see, e.g., [6, Chapter 15]). However, shortest paths are
in general tangent to obstacles, so a path computed from a visibility graph usually contains semi-
free configurations (the robot is in contact with an obstacle, but their interiors do not intersect)
and therefore does not have any clearance. This not only looks unnatural, it is also unacceptable
for many motion-planning applications. On the other hand, planning motion paths using the

1



Voronoi diagram of the obstacles [20] yields a path with maximal clearance, but this path may be
significantly longer than the shortest path possible, and may also contain sharp turns.

We suggest a hybrid of these two structures, called the VV(c)-diagram (the Visibility–Voronoi
diagram for clearance c), yielding natural-looking motion paths, meeting all three criteria mentioned
above. It evolves from the visibility graph to the Voronoi diagram as c grows from 0 to ∞, where
c is the preferred amount of clearance. The VV(c)-diagram contains the visibility graph of the
obstacles dilated with a disc of radius c. The dilated obstacle vertices become circular arcs in
this case, and the visibility edges are bitangent to these arcs. This guarantees that the paths in
the diagram are not only short but also smooth. However, due to this obstacle inflation, narrow
passages in the scene may disappear, which implies that it is not possible to pass through these
narrow passages with a clearance of at least c. As we still want to keep the option of traversing
these narrow passages, we integrate into the diagram paths having the maximal possible clearance
in regions where the preferred clearance c can not be obtained. It is easy to see that these paths
are portions of the Voronoi diagram of the original obstacles.

Beside the straightforward algorithm for constructing the VV(c)-diagram for a given clearance
value c, we also propose an algorithm for preprocessing a scene of configuration-space polygonal
obstacles and constructing a data structure called the VV-complex.1 The VV-complex can be used
to efficiently plan motion paths for any start and goal configuration and any given clearance value c,
without having to explicitly construct the VV(c)-diagram for that c-value. The preprocessing time
is O(n2 log n), where n is the total number of obstacle vertices, and the query takes O(n log n + k)
time, where k is the number of edges encountered during the search. Furthermore, we reduce the
number of costly geometric operations in the query stage and perform the most time-consuming
computations in the preprocessing stage.

We implemented our algorithm for constructing the VV(c)-diagram and applied it to the problem
of motion planning for coherent groups of entities. The paths contained in the VV(c)-diagram yield
convincing group motions, and the approach we propose has several advantages over methods used
so far to generate group paths. We discuss this application in detail in Section 3.2. We note that
the robust construction of the VV(c)-diagram involves many non-trivial geometric procedures and
requires careful algebraic computations, which we also discuss in this report.

The rest of this report is organized as follows: In Section 2 we give a short review of the
geometric data structures we use for constructing the VV(c)-diagram. In Section 3 we present the
VV(c)-diagram in more detail and explain how to construct it, given a scene with obstacles and
a preferred clearance value c. In Section 4 we introduce the VV-complex, show how to efficiently
construct it and explain how to query it. In Section 5 we discuss the algebraic details of the
computations needed for the two previous sections. We finally show some experimental results in
Section 6.

2 Preliminaries

We next give a short review of the basic ingredients of the data structure we propose — visibility
graphs, Voronoi diagrams and Minkowski sums — all basic and standard structures in computa-
tional geometry.

1Despite the similarity in names, our structure is not related to the visibility complex introduced in [21].

2



Figure 1: The visibility graph of a set of four convex polygons. The valid visibility edges are drawn with
solid lines, while some invalid edges are also shown, drawn with dashed lines. Notice that all obstacle edges
are also valid visibility edges.

2.1 Visibility Graphs

Let P = {P1, . . . , Pm} be a set of pairwise interior-disjoint polygons having n vertices in total,
representing configuration-space obstacles. The visibility graph of P is an undirected graph whose
set of vertices is the set of polygon vertices, and whose set of edges consists of those pairs of
vertices that are mutually visible. Two vertices are mutually visible if the straight line segment
connecting them does not intersect the interior of any of the polygons in P — in this case, we call
this segment a visibility edge. Each edge is given a weight equal to the Euclidean distance between
its two end-vertices. To find a shortest path between a start and a goal configuration, one simply
needs to connect them to the visibility graph and execute Dijkstra’s algorithm starting from the
vertex representing the start configuration.

The visibility graph can straightforwardly be computed in O(n2 log n) time [16], by separately
identifying the vertices visible from each vertex. Ghosh and Mount [10] were the first to give an
output-sensitive algorithm for computing the visibility graph in optimal O(n log n + s) time, where
s is the number of visibility edges in the output visibility graph. For more information on shortest
paths, see [18].

It should be noted that it is not necessary to consider all visibility edges in order to compute
shortest motion paths. It is sufficient to store only the edges that are bitangent to the polygons
they connect: Assume that two mutually visible vertices u and v belong to the polygons P (u) and
P (v), respectively — then the visibility edge is bitangent to both polygons only if its supporting
line does not penetrate either P (u) or P (v). In this case we say that uv is a valid visibility edge
(see Figure 1 for an illustration). Note that invalid visibility edges will never be part of a shortest
path.

2.2 Voronoi Diagrams of Polygons

Given a set S of geometric entities in Rm and a distance metric ‖ · ‖, the Voronoi diagram of S,
denoted Vor(S), is the subdivision of Rm into maximal connected cells, such that the points in each
Voronoi cell are closer to a specific entity of S than to all other entities of S.

The are many variants of Voronoi diagrams (see [4, 8]), here we focus on the Voronoi diagram of

3



Figure 2: The Voronoi diagram of four convex polygons contained inside a rectangle. Small dots mark the
endpoints of each Voronoi arc, while the Voronoi vertices are marked by larger dots. The point of minimum
clearance along each chain is marked by ×. Notice that the chain marked by an arrow is a monotone chain
and obtains its minimal clearance on one of its Voronoi vertices — so when we traverse it in the arrow’s
direction, the clearance only increases.

a set of pairwise interior-disjoint planar polygons, under the Euclidean distance metric d : R2×R2 →R, which can be regarded as a special case of a Voronoi diagram of line segments [17]. The Voronoi
vertices in this case are points equidistant to features of three (or more) different polygons (a
polygon feature is either a vertex or an edge). The vertices are connected by continuous chains of
Voronoi arcs. An arc may be equidistant to two vertices or to two polygon edges — in which case
it is a straight line segment, or to a polygon vertex and a (non-incident) polygon edge — in which
case it is a segment of a parabola (parabolic arc). Each arc has two endpoints, which either connect
it to the next arc in the chain or to a Voronoi vertex.

If we examine the clearance value along a Voronoi chain, we notice that in most cases the
minimum clearance value is obtained in the interior of a vertex–vertex or a vertex–edge arc inside
the chain (note that an edge–edge arc will never contain a clearance minimum). In such cases,
the clearance value increases as we move from this minimum point toward either of the chain’s
end-vertices. However, for some chains the minimum clearance value is obtained at one of their
end-vertices, and grows as we move along the chain toward its other end. We call such a chain a
monotone Voronoi chain (see Figure 2 for an illustration).

It can be shown that the total complexity of the Voronoi diagram is O(n), where n is the total
number of polygon vertices, and that it can be constructed in O(n log n) time. For more details on
the connection between Voronoi diagrams and motion planning see [19, 20, 22].

2.3 Minkowski Sums

Given two sets A,B ∈ Rm , their Minkowski sum, denoted A⊕B, is defined as:

A⊕B = {a + b | a ∈ A, b ∈ B} .

We will not describe all properties of Minkowski sums. We just mention that given a polygon

4



P1

P2

P3
P4

Figure 3: The VV(c)-diagram for four convex obstacles located in a rectangular room. The boundary of the
union of the dilated obstacles is drawn in a solid line, the relevant portion of the Voronoi diagram is dotted.
The visibility edges are drawn using a dashed line. Notice that an endpoint of a visibility edge may either
lie on a circular arc or on the intersection of two dilated obstacle boundaries (a chain point).

P , the set of points whose distance from P is less than d is the Minkowski sum P ⊕Bd, where Bd

is a circle of radius d. This Minkowski sum of a set P as above and a disc has O(n) complexity
and can be computed in O(n log2 n) time using a divide-and-conquer algorithm [15], where n is the
number of polygon vertices. It is also possible to use an incremental randomized algorithm that
achieves a running time of O(n log n) [5]. See [6, Chapter 13] and [11] for further discussions and
more references.

3 The VV(c)-Diagram

3.1 Description

Let P = {P1, . . . , Pm} be a set of pairwise interior-disjoint polygons having n vertices in total,
representing two-dimensional configuration-space obstacles. Given a start configuration, a goal
configuration and a preferred clearance value c > 0, we wish to find a shortest path between the
query configurations, keeping a clearance of at least c from the obstacles where possible.

We begin by dilating each obstacle by c, by computing the Minkowski sum of each polygon with
a disc of radius c. As it is the case with the visibility graph of the original polygons (for c = 0),
the visibility graph of the dilated obstacles contains all shortest paths with a clearance of at least
c from the obstacles. Moreover, as each convex polygon vertex becomes a circular arc of radius c,
the valid visibility edges are bitangents to two circular arcs (note that the dilated polygon edges
are also valid visibility edges). This guarantees that a shortest path extracted from such a visibility
graph is C1-smooth, and contains no sharp turns.

The only disadvantage in this approach is that narrow, yet collision-free, passages can be blocked
when we dilate the obstacles (for example, in Figure 3 there exists such a narrow passage between
P1 and P3). It is clearly not possible to pass in such passages with a clearance of at least c, but we

5



still wish to allow a path with the maximal clearance possible in this region. To do this, we compute
the portions of the free configuration space that are contained in at least two dilated obstacles,
and add their intersection with the Voronoi diagram of the original polygons to our diagram. The
resulting structure is called the VV(c)-diagram. It should be noted that if a path contains a portion
of the Voronoi diagram it may not be smooth any more. This is however acceptable, as we consider
making sharp turns inside narrow passages to be natural.

Given a start and a goal configuration we just have to connect them to our VV(c)-diagram
and compute the shortest path between them using Dijkstra’s algorithm. To this end, we have to
associate a weight with each diagram edge. The weight of a visibility edge can simply be equal
to its length, while for Voronoi edges we may add some penalty to the edge length, taking into
account its clearance value, which is below the preferred c-value. Below we discuss natural weight
functions related to the flow of the moving entities.

An interesting observation is that for c = 0, the VV(c)-diagram equals the visibility graph, while
for c = ∞, it equals the Voronoi diagram. Thus, our diagram interpolates between the visibility
graph and the Voronoi diagram.

3.2 Motivation

A straightforward application of the VV(c)-diagram is planning natural motion paths for a polygonal
robot among polygonal obstacles. A robust implementation of a complete algorithm for this problem
was given by [3] (generalizing the algorithm of Kedem et al. [15]), where they first compute the
Minkowski sum of each obstacle with the robot to obtain a set of configuration-space obstacles,
then plan a path that lies outside the union of these Minkowski sums. The main drawback of the
algorithm is that it creates a piecewise linear path that may be significantly longer that the shortest
path. If we construct the VV(c)-diagram of the configuration-space obstacles we can easily achieve
more naturally-looking paths.

Another interesting application is motion planning for a group of entities in a two-dimensional
environment cluttered with polygonal obstacles. Kamphuis and Overmars [12] solve this problem
by planning a collision-free path π from the start location to the goal for a single entity (a small
disc). The entities are constrained to a group shape, which has a constant area A during traversal
of the path. The group shape is constructed symmetrically about the path π and has a “pear”-like
shape. It is created by sweeping a disc (with a diameter equal to the preferred group width w) along
the path from the current position of the group. The disc becomes smaller only when it collides
with obstacles. That is, its radius becomes equal to the amount of clearance along the path. This
sweep extends along the path to the point where the total swept area by the disk becomes equal to
the desired group area A. The motions of the individual entities inside the “pear”-like shape are
governed by a potential field.

The method described above yields very natural group behavior if the path along which the
group is moving is smooth. In [12] a Probabilistic Roadmap (Prm — see, e.g., [14]) is used to
find a path between start and goal position. However, Prms do not contain smooth paths, so a
path computed using a Prm has to be smoothed in a post-processing stage to serve as a convenient
backbone for the motion of the group. This smoothing is done by shortcutting the path, but it must
obey a clearance of w

2 if possible. At places where this is not possible, the path is approximately
retracted to the Voronoi diagram of the obstacles, using the technique described in [9].

While the smoothing procedure outputs more natural paths, it has several drawbacks: First,

6



it is an expensive operation, so to obtain real-time performance it can only be done for the final
selected path. Moreover, computing the shortest path from the Prm and then smoothing it does
not guarantee that we get the shortest path possible, as smoothing may considerably deform the
original path. Also, as the Prm method is not complete, it is not guaranteed that the Prm contains
all possible paths between the start and goal locations. It is even possible that the two locations
cannot be connected using the Prm although there exists a path connecting them.

Fortunately, all the paths that can possibly be obtained after the smoothing step are contained
in the VV(c)-diagram of the environment where c = w

2 . So, we can select a path from the VV(c)-

diagram based on its true length and amount of clearance. It is guaranteed that the VV(c)-diagram
contains all possible paths between the start and goal locations (this is usually not the case when
using a Prm). The VV(c)-diagram also does not require any smoothing step, which saves a precious
amount of time.

When we compute a “shortest” path between two configurations using the VV(c)-diagram we
have to give a weight to each edge. Naturally, we wish to use the length of the visibility edges (as
well as circular arcs), which have a clearance of the preferred value c at least. In case of Voronoi
arcs, we should add some penalty to the arc length. For example, if the clearance of an arc is c′ < c,
we can give it the weight of its length multiplied by

(
c
c′

)κ
, where κ > 0 is a parameter controlling

the amount of extra weight given to Voronoi arcs.

Another option of weighting the edges, especially suitable for a moving group of entities is to
estimate the time it takes the group to traverse each edge: For edges with a clearance of c = w

2 , this
time is clearly proportional to the edge length. On the other hand, for Voronoi edges the actual
clearance of the edge would also be taken into account, as the moving entities will have to traverse
this edge in a long row. The resulting path will therefore be the one enabling the group to reach
its goal as quickly as possible.

3.3 Diagram Construction

Given a collection of disjoint convex (we will later discuss non-convex obstacles as well) obstacles
P1, . . . Pm and a preferred clearance c, we proceed as follows:

• Compute the Voronoi diagram V of the obstacles P1, . . . Pm. This is independent of the
preferred clearance c.

• Dilate every obstacle Pi with a disc of radius c, i.e. we construct the Minkowski sum M
(c)
i =

Pi⊕Bc for every obstacle Pi, where Bc is a disc with radius c. Note that the inflated obstacles

M
(c)
i may no longer be disjoint.

• Compute the unionM(c) of all M
(c)
i . The boundary ofM(c) consists of circular arcs, straight

line segments and reflex vertices. The reflex vertices are the intersection of the boundary arcs
of two dilated obstacles, hence they lie on the Voronoi diagram V as their distance from both
relevant polygons is exactly c.

• Compute a modified visibility graph G(c) ofM(c). This graph contains every valid bitangent
of two circular arcs of the boundary of M(c) (the edges that form the boundary of M(c)

are also regarded as bitangents to two neighboring dilated vertices), every free line segment
between two reflex vertices of M(c), and every free line segment from a reflex vertex tangent
to a circular arc.

7



• Compute the intersection V∩M(c), that is the portion of the Voronoi diagram that is contained
within the union of the dilated obstacles. Combine the corresponding Voronoi arcs (and sub-
arcs, as we consider only portions of some Voronoi arcs) with G(c) to connect the chain points
via narrow passages and form the final VV(c)-diagram.

In case our polygons are not convex, we decompose them to obtain a set of convex polygons and
compute M(c) for this set. Note that not every reflex vertex of M(c) lies on the Voronoi diagram
V in this case, since reflex vertices can also be induced by reflex vertices of the original polygons.
However, these reflex vertices can be easily identified and ignored.

It takes O(n2 log n) time to construct the VV(c)-diagram of an input set P of pairwise interior-
disjoint polygons for a given c-value if we use a straightforward approach. We note that it may also
be possible to improve the running time to be O(n log n + s), where s is the number of visibility
edges, based on the work of Pocchiola and Vegter [21]. The main difficulty here is that we are
interested in the visibility among dilated obstacles, which may not be disjoint.

4 The VV-Complex

The construction of the VV(c)-diagram for a given c-value is straightforward, yet it requires some
non-trivial algebraic operations that should be computed in a robust manner — namely the con-
struction of the Voronoi diagram of the obstacles (see, e.g., [13]) and of the arrangement of dilated
obstacle boundaries and Voronoi arcs, which require handling segments of algebraic curves of de-
gree 2 (see, e.g., [23]). Moreover, if we wish to plan motion paths for different c-values and select
the best one, we must construct the VV(c)-diagram for each c-value from scratch. In this section
we explain how to efficiently preprocess an input set of obstacles and construct a data structure
called the VV-complex, which can be queried to produce a natural-looking path for every start
and goal configuration and for any preferred clearance value c. Let us examine what happens to
the VV(c)-diagram as c continuously changes from zero to infinity. For simplicity, we consider only
convex obstacles in this section. As we mentioned before, VV(0) is the visibility graph of the original
obstacles, while VV(∞) is their Voronoi diagram.

We start with a set of visibility edges containing all pairs of the polygonal obstacle vertices
that are mutually visible. Note that these edges need not be bitangents of the obstacles.2 We
also include the original obstacle edges in this set, and treat them as visibility edges between two
neighboring polygon vertices. Furthermore, we treat our visibility edges as directed, such that if
the vertex u “sees” the vertex v, we will have two directed visibility edges ~uv and ~vu.

As c grows larger than zero, each of the original visibility edges potentially spawns as many
as four bitangent visibility edges. These edges are the bitangents to the circles Bc(u) and Bc(v)
(where Br(p) denotes a circle centered at p whose radius is r) that we name ~uvll, ~uvlr, ~uvrl and
~uvrr, according to the relative position (left or right) of the bitangent with respect to u and to v
(see Figure 4).3

Let αuv be the angle between the vector ~uv and the x-axis, and d(u, v) the Euclidean distance

2Visibility edges are only valid when they are bitangents, otherwise they do not contribute to shortest paths in
the visibility graph. However, as c grows larger these edges may become bitangents, so we need them in our data
structure.

3Recall that all our edges are directed. According to our notation, ~uvll and ~uvrr are equivalent to ~vurr and ~vull,
respectively, while ~uvlr and ~uvrl are equivalent to ~vulr and ~vurl, respectively.

8



u

~uvll

~uvlr

~uvrl

~uvrr

αuv

v
ϕuv(c)

c

Figure 4: The four possible bitangents to the circles Bc(u) and Bc(v) of radius c centered at two obstacle
vertices u and v. Notice that in this specific scenario only the bitangent ~uvrl is a valid visibility edge.

between u and v, then it is easy to see that the two edges ~uvll and ~uvrr retain the same slope
αuv for increasing c-values. The slope of the other two edges changes as c grows: ~uvrl rotates
counterclockwise and ~uvlr rotates clockwise by the same amount, both around the midpoint 1

2(u+v)
of the original edge, so their slopes become αuv + ϕuv(c) and αuv − ϕuv(c), respectively, where
ϕuv(c) = arcsin( 2c

d(u,v)).

Note that for a given c-value, it is impossible that all four edges are valid (at most three can
be valid, and the ll- and rr-edges can never be valid simultaneously). Our goal is to compute a
validity range R(e) = [cmin(e), cmax(e)] for each edge e, such that e is part of the VV(c)-diagram for
each c ∈ R(e). In Section 4.3 we prove that such a validity range exists for each edge.

If an edge is valid, then it must be tangent to both circular arcs associated with its end-vertices.
There are several reasons for an edge to change its validity status:

• The tangency point of e to either Bc(u) or to Bc(v) leaves one of the respective circular arcs.

• The tangency point of e to either Bc(u) or to Bc(v) enters one of the respective circular arcs.

• The visibility edge becomes blocked by the interior of a dilated obstacle.

The important observation is that at the moment that a visibility edge ~uv gets blocked, it becomes
tangent to another dilated obstacle vertex w, so essentially one of the edges associated with ~uv
becomes equally sloped with one of the edges associated with ~uw (see Figure 5(a)). The first two
cases mentioned above can also be realized as events of the same nature, as they occur when one
of the ~uv edges becomes equally sloped with ~uwlr (or ~uwrl), when v and w are neighboring vertices
in a polygonal obstacle — see Figure 5(b).

This observation stands at the basis of the algorithm we devise for constructing the VV-complex:
We sweep through increasing c-values, stopping at critical visibility events, which occur when two
edges become equally sloped. We note that the edge ~uvll (or ~uvlr) can only have events with arcs
of the form ~uwll or ~uwlr, while the edge ~uvrl (or ~uvrr) can only have events with arcs of the form

9



~uwrl or ~uwrr. Hence, we can associate two circular lists Ll(u) and Lr(u) of the left and right-edges
of the vertex u, respectively, both sorted by the slopes of the edges. Two edges can have an event
at some c-value only if they are neighbors in the list for infinitesimally smaller c. At these event
points, we should update the validity range of the edges involved, and also update the adjacencies
in their appropriate lists, resulting in new events.

In the rest of this section, we will use the notation ~uv to represent any of the four edges ~uvll,
~uvlr, ~uvrl or ~uvrr. Moreover, we will use L(u) to denote either Ll(u) or Lr(u) (whether we choose
the “left” or the “right” list depends on the type of edge involved).

As mentioned in Section 3, an endpoint of a visibility edge in the VV(c)-diagram may also be
an intersection point of dilated obstacle boundaries, which by definition also lies on the Voronoi
diagram (see Figure 3 for an illustration). We call such an endpoint that lies on the Voronoi diagram
a chain point, as it can be associated with a Voronoi chain — in fact, as a Voronoi chain is either
monotone or has a single point with minimal clearance, we can associate at most two chain points
with every Voronoi chain. Our algorithm will also have to compute the validity range for edges
connecting a chain point with a dilated vertex or with another chain point. For that purpose, we
will have a list L(p) of the outgoing edges of each chain point p, sorted by their slopes (notice that
we do not have to separate the “left” edges from the “right” edges in this case).

In the next section we review the algorithmic details of the preprocessing stage for constructing
the VV-complex, and describe how to query this data structure in Section 4.2. We prove the
correctness of our algorithm in Section 4.3, and conclude the presentation of the algorithm by
a complexity analysis in Section 4.4. We finally show how to generalize the algorithm to work
properly with non-convex obstacles as well in Section 4.5.

4.1 The Preprocessing Stage

4.1.1 Initialization

Our algorithm starts as follows:

1. Compute the visibility graph of the polygonal obstacles.

2. Examine each bitangent edge in the visibility graph: For an infinitesimally small c only one
of the four edges it spawns is valid — assign 0 to be the minimal value of the validity range
of this edge.

3. Initialize an empty event queue Q, storing events by their increasing c-order.

4. For each obstacle vertex u:

(a) Construct Ll(u) and Lr(u), based on the edges obtained in step 2.

(b) Examine each pair of neighboring edges e1, e2 in Ll(u) and in Lr(u), compute the c-
value at which e1 and e2 become equally sloped, if one exists. Insert the visibility event
〈c, e1, e2〉 to Q.

5. Compute the Voronoi diagram of the polygonal obstacles.

10



v

w

u

~uwlr

~uvll

u

~uwrl

~uvrl

v

w

(a) (b)

Figure 5: Visibility events involving u, v and w: (a) The dilated vertex w blocks the visibility of u and v.
(b) As ~uwrl becomes equally sloped with ~uvrl (where vw is an obstacle edge), it becomes a valid visibility
edge.

6. For each non-monotone Voronoi chain, locate the arc a that contains the minimal clearance
value cmin of the chain in its interior, and insert the chain event 〈cmin, a〉 to Q.4

4.1.2 Event Handling

While the event queue is not empty, we proceed by extracting the event in the front of Q, associated
with minimal c-value, and handle it according to its type. We note that the visibility events (created,
for example, by step 4b of the initialization stage) always come in pairs — that is, if ~uv becomes
equally sloped with ~uw, we will either have an event for the opposite edges ~vu and ~vw, or for the
opposite edges ~wu and ~wv. We therefore handle a pair of visibility events as a single event:

Visibility event: The edges ~uv and ~uw become equally sloped for a clearance value c′, and at
the same time the edges ~vu and ~vw become equally sloped (see Figure 5).

1. Assign c′ to be the maximal c-value of the validity range of ~uv and ~vu.

2. Remove the other event involving ~uv (based on its other adjacency in L(u)) fromQ, and delete
this edge from L(u). Examine the new adjacency created in L(u) and insert its visibility event
into the event queue Q.

3. Repeat step 2 for the opposite edge ~vu.

4. If the edge ~uv used to be valid before it was deleted and the edges ~uw and ~vw do not have
a minimal validity value yet, assign c′ to it, because these edges have become bitangent for
this c-value (see Figure 5(b) for an illustration).

Chain event: The value c equals the minimal clearance of a Voronoi chain χa, obtained on the
arc a, which is equidistant from an obstacle vertex u and another obstacle feature (see Figure 6).
Let z1 and z2 be a’s endpoints.

4Note that we do not create chain events for monotone Voronoi chains, whose minimum is obtained at one of their
end-vertices (see Section 2.2).

11



χ

Pi

Pj χ χ

p2(χ)
p1(χ)

(a) (b) (c)

Figure 6: A chain event associated with the Voronoi chain χ (dotted) induced by the two obstacles Pi

and Pj : (a) The clearance value c is less than the minimal clearance of the chain χ, so this chain does not
contribute to the VV(c)-diagram. (b) c equals the minimal clearance of the chain χ and a chain event occurs.
Note that the two dilated obstacles now begin to intersect. (c) When c grows the two chain points p1(χ)
and p2(χ), that define the portion of χ lying inside the VV(c)-diagram(drawn in a solid line) move toward
the end-vertices of χ.

p2(χ)

u

v

~uvrr u

v

p2(χ)

~uvrr u

v

p2(χ)

p2(χ)v

(a) (b) (c)

Figure 7: A tangency event: (a) The chain point p2(χ), whose creation is depicted in Figure 6, lies on the
supporting circle of the dilated vertex u. (b) The visibility edge ~uvrr becomes tangent to Bc(u) exactly at

p2(χ), so a tangency event occurs. (c) The reincarnated visibility edge ~p2(χ)v replaces ~uvrr as c grows. Note
that this edge is not tangent to Bc(u) any more.

1. Initiate two chain points p1(χa) and p2(χa) associated with the Voronoi chain χa. As c grows,
p1(χa) moves toward z1 and p2(χa) moves toward z2.

2. For all edges e = ~ux incident to u, compute the c-value c′ for which e becomes incident to
one of the chain points pi(χa) of a. If c′ is within the range of the Voronoi arc a, then insert
the tangency event 〈c′, e, pi(χa)〉 to the event queue.

3. If a is equidistant to u and to another obstacle vertex v, repeat the last step for the edges
incident to v.

4. Let c1 and c2 be the clearance values of z1 and z2, respectively. Insert the endpoint events
〈c1, p1(χa), z1〉 and 〈c2, p2(χa), z2〉 to the event queue.

When dealing with a chain event, we introduced two additional types of events: tangency events
and endpoint events. We next explain how we deal with these events.

Tangency event: An edge e = ~ux (the endpoint x may either represent a dilated vertex or
a chain point) becomes tangent to Bc(u) at a chain point p(χa) associated with the Voronoi arc a
(see Figure 7).

12



1. Remove all events involving the edge e from Q.

2. Assign c to be the maximal validity value of the edge e, and remove this edge from L(u).
Note that it is possible to disregard the new adjacency created in u’s list.

3. Insert a reincarnate of e to L(p(χa)), and assign c as its minimal validity value. Examine the
new adjacencies in L(p(χa)) and insert new visibility events into Q.

4. Replace the edge ~xu in L(x) by ~xp(χa) and recompute the critical c-values of the visibility
events of this edge with its neighbors.5 Modify the corresponding visibility events in Q.

5. In case x is a dilated obstacle vertex, we may have another tangency event in the queue,
associated with ~xu, which was computed under the (false) assumption that tangency point
of the edge on x coincides with a chain point before the one on u does. In this case, we have
to locate the tangency event from Q that is associated with ~xu and recompute the c-value
associated with it.

Endpoint event: A chain point p(χa) reaches the endpoint z of a. If z is a local maximum of
the clearance function, there are multiple event points associated with it, so we should just assign
a maximal validity value to all edges in the edge lists of all chain points coinciding with z. If z is
not a local maximum, we have to deal with one of the following two cases:

• z is incident only to two Voronoi arcs a and a′ belonging to the same chain (χa = χa′). In
this case the chain point p(χa) is transferred from a to a′, and we only have to examine the
adjacencies in L(p(χa′)) and modify the corresponding visibility events in the queue (as the
slopes of these arc become a different function of c from now on). We also have to deal with
the opposite edges, as we did in step 4 of the tangency-event procedure.

If one of the polygon features associated with the new arc a′ is a vertex u, iterate over all
edges incident to u and check whether each edge has a tangency event in the range of the new
Voronoi arc a′ — if so, add this event to the queue Q.6 If a′ is associated with two vertices
u and v, repeat the procedure above for v as well.

• z is the endpoint of the chain χa (i.e. a Voronoi vertex) and it is not a local maximum of the
clearance function. In this case we may have several chains χ1, χ2 . . . ending at z, having a
synchronous endpoint event, and a single monotone chain χ̂ beginning at z (see for example
the marked vertex in Figure 2):

1. Create a new chain point p(χ̂) associated with the monotone chain.

2. Assign the maximal validity value c to each edge in L(p(χ1)),L(p(χ2)), . . ., where c is
the clearance value at z. Remove all visibility events associated with these edges from
Q.

3. Insert reincarnates of all edges from L(p(χ1)) into L(p(χ̂)), and assign c as their minimal
validity value. Examine all adjacencies in L(p(χ̂)) and add the appropriate visibility
event to Q. We also have to deal with the opposite edges, as we did in step 4 of the
chain-event procedure.

5Notice that the slope of ~xp(a) becomes a different function of c from now on.
6Note that edges that had a tangency event in the range of the previous Voronoi arc a have already been deleted

from the incident-edge list of the vertex at the moment this endpoint event occurs.

13



Note that in the last step all edge lists of the chain points ending at z should be equal (L(p(χ1)) =
L(p(χ2)) = . . .), thus we consider only one of these lists. This event should be dealt with before any
visibility event occurring at the same c-value, in order to avoid handling visibility events involving
duplicate edges. In fact, when we have several events occurring at the same c-value, we deal with
endpoint events first, then with visibility events, then chain events and finally tangency events.

4.2 The Query Stage

In order to support queries in an efficient manner, we should store a VV-complex, containing:

• The Voronoi diagram V of the polygonal obstacles. We store the clearance value c(z) of each
vertex z in the Voronoi diagram, and for each non-monotone chain χ we store its minimal
clearance value cmin(χ).

• An interval tree Tu for each obstacle vertex u, containing its incident edges and and their
validity ranges — namely, the intervals are the valid c-ranges.

• An interval tree Tχ,i for each chain point associated with the Voronoi chain χ (at most two
chain points are associated with each Voronoi chain, so i ∈ {1, 2}), containing its incident
edges and incident Voronoi arcs along with their validity ranges.

A query on the VV-complex is defined by a triple 〈s, g, ĉ〉, where s and g are the start and
goal configurations, respectively, and ĉ is the preferred clearance value. We assume that s and g
themselves have a clearance larger than ĉ. Given a query, we proceed as follows:

1. First, we compute the coordinates of all chain points. For each Voronoi chain χ, connecting
the Voronoi vertices z1 and z2:

• If c(z1), c(z2) ≤ ĉ, the entire chain χ should be in the graph (it should be incident to
both z1 and z2).

• Otherwise, if χ is a monotone chain, assume without loss of generality that cmin(χ) =
c(z1). If c(z1) < ĉ < c(z2), compute a chain point p with clearance ĉ on χ.

• Otherwise, if cmin(χ) < ĉ we compute two points p1, p2 ∈ χ such that either pi = zi or
c(pi) = ĉ. Notice that for at least one of these points pi does not equal zi and is a chain
point.

2. Next we need to find the incident edges of s and g. This means that we should obtain two lists
L(s) and L(g) containing the visibility edges emanating from s and g (respectively) to every
visible circular arc and chain point. This can be done using a radial sweep-line algorithm.

3. Now we can start searching the graph we have implicitly constructed using a Dijkstra-like
search. We should devise a distance measure for the edges, which we discuss below.

(a) Initialize a Fibonacci heap H, containing vertices sorted by their distance from s. At
first H ← L(s).

(b) Extract the heap minimum, associated with an obstacle vertex or a chain point x. Stop
when the goal is reached (that is, if x = g).

(c) Obtain a list E of edges incident to x:

14



invalid

chain−vertex

valid

chain−vertexvertex−vertex

valid

visibility
event

visibility
event

endpoint
event

vertex−vertex

invalid

valid

chain−chaindeleted

(blocked)

tangency event

tangency event

v
isib

ility
 ev

en
t

v
isib

ility
 ev

en
t

visibility
event

visibility
 event

visibility event

event
tangency

endpoint event

endpoint event

Figure 8: The schematic “life-cycle” of a visibility edge during the execution of the preprocessing stage.
The solid arrows denote a change in the validity of the edge while the dashed arrows denote a reincarnation
of the edge.

• If x is a chain point, and we arrived on x over a visibility edge, consider only the
Voronoi arc incident to x. If we arrived on x over a Voronoi arc, consider only the
visibility edges incident to x (an exception to this rule is that x is a Voronoi vertex
— in this case, we arrived on x over a Voronoi arc and we will leave it over another
Voronoi arc).

• Otherwise (x represents a dilated vertex), query Tx with the given c-value ĉ to obtain
the valid edges incident to x and consider only the edges that emanate from x at
the same side (left or right) as we entered it.

In addition, add g to the list of x’s neighbors if x ∈ L(g).

(d) For each edge ~xy ∈ E obtained in the previous step, check whether D(y) > D(x)+w( ~xy),
where D(x) is the currently calculated distance of x from s, and w( ~xy) is the weight of
the current edge — if x is an obstacle vertex, we should keep in mind to add the length
of the portion of the corresponding circular arc to the overall weight. If so, we update
the record of y in H.

(e) While H 6= ∅ goto step 3b.

The way we select the distance measure for the graph edges may depend on the path-planning
strategy we employ. All visibility edges (and portions of the circular arcs which need to be traversed)
have a clearance of at least ĉ, so their distance measure depends only on their length. For the
portions of the Voronoi diagram, the limited amount of clearance may add extra weight (see the
discussion in Section 3.2).

4.3 Proof of Correctness

To prove that the algorithm described in Section 4.1 for constructing the VV-complex is indeed
correct, we need to show that every visibility edge has only one continuous range [cmin, cmax] of
c-values for which it is valid, so once it has been deleted it should not become valid again for a
higher c-value. As we see in Figure 8, which describes the schematic “life-cycle” of a visibility edge,

15



edges can only be deleted when a visibility event occurs and they become blocked by some dilated
vertex.7 Here we show that once an edge becomes blocked, it does not become unblocked again for
a higher c-value.

Consider a visibility edge ~uv (it may either be invalid or valid) tangent to the supporting circles
of the dilated vertices u and v, and a dilated vertex w whose supporting circle will start blocking
the edge ~uv for some c-value c′. At the moment c = c′, the edge ~uw has the same slope as ~uv, and
~uv is deleted. Assume without loss of generality that the slope of ~uw was smaller than the slope
of ~uv for c < c′, then for c-values infinitesimally larger than c′ the slope of ~uw is larger than the
slope of uv (assuming that we do not delete ~uv).

Obviously, ~uv is blocked by the dilated vertex w as long as the slope of ~uw is larger than the
slope of ~uv, so ~uv can only become unblocked again, if for some clearance value c > c′ the slope of
~uw will become smaller again than the slope of ~uv. We conclude that there must exist some value
c′′ > c′ for which the edges ~uv and ~uw should become equally sloped for the second time.

It is easily proved that such a value c′′ does not exist. In Section 5.2.1 we solve a quadratic
equation to compute for which c-values two edges are equally sloped. This equation has two
solutions for c, one of which one is negative and therefore invalid. Hence, there is only one c-value
between 0 and ∞ for which the two bitangent edges are equally sloped. This means that the edge
~uv cannot become unblocked once it has been deleted.

The proof above holds for a visibility edge ~uv tangent to two dilated vertices, but in our
algorithm we also consider edges ~xv between a chain point and a dilated vertex. Assume that ~xv is
blocked by a dilated vertex w, so it becomes equally sloped with ~xw. To compute the c-values for
which ~xv and ~xw become equally sloped we have to solve a polynomial of degree 4, that can have
as many as four distinct solutions. However, two of these solutions are negative, and one of the
positive solutions in not relevant as it relates to the second chain point associated with the same
chain. We conclude that there is only one positive c-value for which the edge ~xv becomes equally
sloped with ~xw, so once w blocks ~xv the edge cannot become unblocked again. The same argument
holds for blocking an edge ~xy between two chain points. The equation we need to solve in this case
has as many as eight solutions, but only two of them relate to the correct pair of chain-points, of
which only one is positive. Hence, after an edge has been deleted, it will not become valid again.

4.4 Complexity Analysis

Proposition 1 The preprocessing stage takes O(n2 log n) in total, where n is the total number of
obstacle vertices.

Proof: In the initialization of the preprocessing stage we first have to compute the visibility graph,
which can be performed in O(n2 log n) time — this also accounts for the time needed to construct
the initial edge lists L(u) for each obstacle vertex u (we need O(n log n) time to construct each of
the n edge lists) and label the valid visibility edges. The construction of the Voronoi diagram can
be performed in O(n log n), and the complexity of the diagram (the number of arcs) is linear.

After the initialization, the priority queue Q contains O(1) events associated with each of the
O(n2) visibility edges, and in addition O(n) chain events. Any operation on the event queue thus
takes O(log n). The initialization takes O(n2 log n) time in total.

7An edge can also reincarnate as a different edge, but in this case we can treat the validity range of its reincarnate
as a direct continuation of the range of the original edge.

16



Figure 9: A portion of the Voronoi diagram of two non-convex polygons. The Voronoi chain separating the
two obstacles is drawn with a solid line, while the Voronoi chains induces by features of the same polygon
are drawn with a dashed line.

As the preprocessing algorithm proceeds, it starts handling events: In total we have O(n2)
visibility events, each of them can be handled in O(log n) time. There are O(n) chain events, each
of them can be handled in O(n log n) time. Each chain event spawns O(n) tangency events, so in
total there are O(n2) tangency events, each of them can be handled in O(log n) time. Finally, there
are O(n) endpoint events, and we need O(n log n) time to handle each of these events. 2

The query phase takes in any case O(n log n) time, which is spent on calculating the valid visi-
bility edges emanating from s and g. Calculating the relevant portions of the Voronoi diagram takes
O(n) time (note that the Voronoi diagram itself has already been constructed in the preprocessing
phase).

The rest of the query phase consists of executing Dijkstra’s algorithm, or an equally suited
A∗-algorithm. The worst-case running-time of these algorithms is O(n log n + k) where k is the
number of edges encountered during the search. In practice, Dijkstra’s algorithm turns out to be
very fast, because hardly any geometric operations have to be performed anymore. In particular
the A∗-variant of Dijkstra may be the method of choice here, as it biases the search toward the
goal configuration, which keeps the number k low.

As we noted in Section 3.3, the VV(c)-diagramfor a fixed c-value may be constructed in O(n log n+
s) time, where s is the number of visibility edges, so it may seem we do not need any preprocessing
stage, and it is better to construct the VV(c)-diagram from scratch whenever we are given a pre-
ferred clearance value. However, this algorithm involves the construction of the planar arrangement
of line segments, circular arcs and parabolic arcs, which is very complicated when carried out in
a robust manner. Such an approach will require longer running times than the query stage of the
second algorithm. We note that Dijkstra’s algorithm, whose running time theoretically dominates
the query phase, is in practice very fast. Moreover, after preprocessing our set of input obstacles,
we may switch to machine-precision arithmetic in the query stage (see more details in Section 6).

17



4.5 Non-Convex Obstacles

So far we described the algorithm for constructing a VV-complex for a set of convex polygonal
obstacles. The algorithm is however easily adapted to work with non-convex obstacles as well. The
only thing that is changed is the way in which the Voronoi diagram is constructed.

Due to the non-convexity of the obstacles, some obstacles may contain reflex vertices. These
reflex vertices are treated as normal vertices in the initial construction (for c = 0) of the visibility
graph. Note that the visibility edges emanating from reflex vertices will never be part of a shortest
path, but we still need to keep track of these edges, as they may induce visibility events that give
other valid edges the correct c-values of their validity ranges.

As c grows, the reflex vertices will be treated as chain points. These chain points move over
monotone Voronoi chains originating in the reflex vertices themselves (see Figure 9). To this end,
the definition of the Voronoi diagram should be adapted such that Voronoi arcs can be equidistant
to two edges of the same polygon as well. Still, this new Voronoi diagram is an instance of the
Voronoi diagram of line segments, so this change is easily carried through.

The rest of the algorithm remains unchanged. Also, the complexity analysis is still valid, since
the construction time and the complexity of both the visibility graph and the Voronoi diagram is
not affected by the non-convexity of its input obstacles.

5 Implementation Details

Cgal, the computational geometry algorithms’ library [1] offers the infrastructure we need for
developing a robust software that constructs the VV(c)-diagram. First, we made use of software
components by Hirsch and Leiserowitz [11], who implemented a motion-planning algorithm for a
disc robot among polygonal obstacles. For this purpose they decompose each obstacle into convex
sub-polygons, compute the Minkowski sums of the convex sub-polygons with the disc robot, and
finally compute the union of the Minkowski sums in order to obtain an exact representation of the
forbidden configuration space for the robot.

Karavelas [13] has recently implemented a Cgal package for constructing the Voronoi diagram
of line segments. By adding a label to each segment (polygon edge) that identifies its source
polygon, it is straightforward to compute the Voronoi diagram of the polygon edges and remove
Voronoi chains induced by features of the same polygon. Moreover, as we assume that there is one
obstacle that contains all other obstacles in its interior (typically a bounding box), we can ignore
infinite Voronoi edges. We should note here that the fact that our input segments are pairwise
disjoint in their interior makes the construction of the Voronoi diagram very efficient.

We exploit the fact that our polygonal obstacles are given as sequences of points with rational
coordinates, so that the supporting curves of each dilated obstacle boundary and each Voronoi
arc can be represented as algebraic curves of degree 2 with rational coefficients (see below). The
intersection between the dilated obstacles and the Voronoi edges can therefore be robustly computed
using the conic-arc traits [23] of Cgal’s arrangement package [7]. In Section 5.1 we prove the
following theorem, which guarantees that we can compute the VV(c)-diagram in a robust manner:

Theorem 2 Let P = {P1, . . . , Pm} be a set of pairwise interior-disjoint polygons whose vertices
all have rational coordinates. Given a preferred clearance value c such that c2 is rational, the

18



boundaries of the dilated obstacles and the edges of the Voronoi diagram can be represented as
segments of algebraic curves of degree 2 at most with rational coefficients.

For the construction of the VV-complex, we are mainly interested in the computation of the
critical c-values for our events. In Section 5.2 we prove the following theorem:

Theorem 3 Let P = {P1, . . . , Pm} be a set of pairwise interior-disjoint polygons whose vertices
all have rational coordinates. All critical c-values needed for the computation of the VV-complex
of P can be obtained as solutions to algebraic equations with rational coefficients.

5.1 Representation of Edges

We next show that under the assumption that the polygon vertices all have rational coordinates,
then all Voronoi arcs have supporting algebraic curves of degree 2 at most with rational coefficients
and that all chain minima are also points with rational coordinates. Moreover, we show that for a
clearance value c such that c2 is rational, then the dilated obstacle boundaries are also supported
by algebraic curves of degree 2 with rational coefficients. We can therefore use the conic-arc traits
of Cgal’s arrangement package to robustly compute the VV(c)-diagram for such c-values. We also
show that the visibility edges between two dilated obstacle vertices can also be formulated as curves
of degree 2 with rational coefficients in this case.

5.1.1 Voronoi Arcs

An arc a of the Voronoi diagram corresponds to the locus of all points equidistant from two polygon
features, and the following cases are possible:

Vertex–vertex arc: The arc is equidistant from two polygon vertices u and v. The equation of
its supporting curve, a line in this case, is simply given by:8

(x− xu)2 + (y − yu)2 = (x− xv)
2 + (y − yv)

2

2(xv − xu)x + 2(yv − yu)y = x2
v + y2

v − (x2
u + y2

u) . (1)

Note that this line is perpendicular to the line segment connecting u an v and bisects it.
The point with minimal clearance on the arc is therefore the midpoint between u and v,
zmin = 1

2 (xu + xv, yu + yv), and its clearance is of course cmin = 1
2d(u, v).

Vertex–edge arc: The arc is equidistant from a polygon vertex u and a polygon edge vw, whose
supporting line will be denoted ` : Ax + By + C = 0, where A, B and C are rational (since
the vertices have rational coordinates). The equation of its supporting curve, a parabola in
this case, is thus given by:

(Ax + By + C)2

A2 + B2
= (x− xu)2 + (y − yu)2 . (2)

In this case, to find the point with minimal clearance on the arc we compute a line perpendic-
ular to ` that passes through u. The equation of this line is `⊥ : By−Ax+(Ayu−Bxu) = 0,

8Throughout this section we use the squared distance between two vertices, or between a vertex and an edge, in
order to avoid the square-root operation.

19



and the point with minimal clearance is the midpoint between u and the intersection point
of ` and `⊥:

zmin =
1

2

(

xu +
B2xu −A(Byu + C)

A2 + B2
, yu +

A2yu −B(Axu + C)

A2 + B2

)

.

The minimal clearance is half the distance between u and the line `.

Edge–edge arc: The arc is equidistant from two polygon edges, whose supporting lines will be
denoted by `1 : A1x + B1y + C1 = 0 and `2 : A2x + B2y + C2 = 0, respectively. The
supporting curve of this edge is a line, but in general this line cannot be represented as a
linear curve with rational coefficients.9 Instead, we represent the edge as a segment of a pair
of perpendicular lines, which form the two angle bisectors of `1 and `2:

(A1x + B1y + C1)
2

A2
1 + B2

1

=
(A2x + B2y + C2)

2

A2
2 + B2

2

. (3)

As we mentioned before, such an arc is always monotone — that is, if we traverse it from
its end-vertex that with smaller clearance value toward the other end-vertex, we keep getting
further away from the obstacles.

We showed that under the assumption that the polygon vertices all have rational coordinates,
then all Voronoi arcs have supporting curves with rational coefficients and that all chain minima
are also points with rational coordinates.

In order to construct and to query the VV-complex, we need to carry out the following compu-
tation: Given a Voronoi arc and a clearance value c, find a point z on the arc whose clearance is
exactly c. Let us examine how we handle this computation for the various arc types. Notice that in
all cases it is sufficient to locate a point whose distance from the two polygon features that define
the arc is exactly c, as any other polygon feature is obviously further away:

Vertex–vertex arc: If the arc is defined by two polygon vertices u and v and 1
2d(u, v) ≤ c,

the point we are looking for is
√

c2 − 1
4d2(u, v) away from the midpoint zmin. Assume that

yu = yv, then there are two candidate points are given by
(

1
2(xu + xv), yu ±

√

c2 − 1
4d2(u, v)

)

— but as this is not usually the case, we can simply add the vector
(

0, ±
√

c2 − 1
4d2(u, v)

)

rotated by αuv (such that sin αuv = yv−yu

d(u,v) and cos αuv = xv−xu

d(u,v) ) to zmin (see Figure 10(a)),
so we get:




xu + xv

2
∓ (yv − yu)

√

c2 − 1
4d2(u, v))

d(u, v)
,

yu + yv

2
± (xv − xu)

√

c2 − 1
4d2(u, v))

d(u, v)



 .

Of course we need to check that each point is indeed between the two endpoints of the arc.

9For example, if `1 : y = 0 and `2 : y = x, the slope of the line bisecting the angle between `1 and `2 is
tan 22.5◦ = 1

1+
√

2
, and this line (y = 1

1+
√

2
) cannot be represented using rational coefficients. Note however that the

line y = 1

1−
√

2
is also an angle bisector in this case ...

20



u
αuv

v

zmin

c

u

zmin

αvw

c

v

w

β

2

v

t

u

w

β
p0

αvw

c

(a) (b) (c)

Figure 10: Voronoi edges induced by: (a) two vertices u and v of two polygons; (b) a polygon vertex u and
an edge vw of another polygon; and (c) two polygon edges tu and vw. The upper frames show the original
scenario, while the lower frames show the same scenario transformed to a more convenient coordinate system
(the circles mark the origin in each of the lower frames), for computing a point on the arc having a given
amount of clearance c.

Vertex–edge arc: In case the arc is defined by the polygon vertex u and the polygon edge vw, let
δ denote the distance of u from the line ` supporting vw (note that δ2 is rational). Assume
that ` is parallel to the x-axis and zmin is located on the origin, so ` : y = − δ

2 and the arc

is supported by the parabola y = x2

2δ
(see Figure 10(b) for an illustration). Note that given

a point (x, y) on this hyperbola, its clearance is simply given by y + δ
2 , so we have to find

x-values for which:

x2

2δ
= c− δ

2
.

If δ
2 ≤ c, the required points are

(

±
√

2δc− δ2, c− δ
2

)

, but in order to transform them to the

original coordinate system it is necessary to rotate them by αvw around the origin (where
sin αvw = yw−yv

d(v,w) and cos αvw = xw−xv

d(v,w) ) and shift them by zmin, so we get:

(

±(xw − xv)
√

2δc − δ2 − (yw − yv)(c− δ
2)

d(v,w)
,
±(yw − yv)

√
2δc− δ2 + (xw − xv)(c− δ

2)

d(v,w)

)

.

Edge–edge arc: If the arc is defined by two polygon edges tu and vw, let z1 and z2 be its
endpoints. As such an arc is always monotone, we can find a point with a clearance c
on it iff c ∈ [c(z1), c(z2)]. Let p0 = (x0, y0) be the intersection point of the two supporting
lines of these edges.10 Assume, without loss of generality, that u and w are the two vertices
further away from p0 (that is, d(t, p0) < d(u, p0) and d(v, p0) < d(w, p0)). If β is the angle

10In the degenerate case of a Voronoi arc defined by two parallel polygon edges, all points on the arc have the
same clearance, so we do not consider this case here. We also note that such arcs do not pose any problem when
implementing the algorithm for the VV-complex construction.

21



between the lines supporting tu and uv, we can apply the Cosine Theorem on the triangle
4up0w and obtain:

cos β =
d2(u, p0) + d2(w, p0)− d2(u,w)

2d(u, p0)d(w, p0)
, (4)

and thus:

sin β =
√

1− cos2 β =

=

√

(2d2(u, p0) + 2d2(w, p0)− d2(u,w)) d2(u,w) − (d2(u, p0) + d2(w, p0))
2

2d(u, p0)d(w, p0)
. (5)

Let us transform our coordinate system such that vw lies on the x-axis and p0 is the origin
(see Figure 10(c)). The Voronoi arc corresponding to the two edges is now supported by a line
that crosses the origin and forms an angle β

2 with the x-axis. Using the Half-Angle Formula
together with Equations (4) and (5) we get:

cot
β

2
=

1 + cos β

sinβ
=

=
(d(u, p0) + d(w, p0))

2 − d2(u,w)
√

(2d2(u, p0) + 2d2(w, p0)− d2(u,w)) d2(u,w) − (d2(u, p0) + d2(w, p0))
2

. (6)

Under the new coordinate system, it is clear that there is a single point with clearance c on
the arc, given by (c · cot β

2 , c). We only have to transform this point to the original coordinate
system, by rotating it by αvw and shifting by p0 to obtain:

(

x0 +
(xw − xv)c · cot β

2 − (yw − yv)c

d(v,w)
, y0 +

(yw − yv)c · cot β
2 + (xw − xv)c

d(v,w)

)

.

Note that in the first two cases, where the arc can contain a minimum point, zmin has rational
coordinates, and in the latter case p0 is a point with rational coordinates. At any case, we showed
that given a Voronoi arc and a clearance value c, we can compute a point (or two points) on the
arc whose clearance is exactly c using the square-root operator (in addition to the basic arithmetic
operations) on the input coordinates and the given c-value.

5.1.2 Dilated Obstacle Boundaries

The boundaries of the dilated obstacles are formed by arcs of the two following types:

Dilated vertex: Each convex polygon vertex u induces a circular arc, which is a segment of the
circle Bc(u), given by the equation:

(x− xu)2 + (y − yu)2 = c2 . (7)

Since xu, yu and c2 are all rational, Bc(u) has rational coefficients.

Dilated edge: The edges of the dilated obstacles are formed by offsetting the polygon edges
parallel to themselves. However, it is impossible to represent a dilated edge as a linear curve

22



with rational coefficients.11 Instead, we represent it as a segment of a pair of parallel lines,
representing the locus of all points whose distance from the line ` : Ax + By + C = 0
supporting the original polygon edge equals c:

(Ax + By + C)2

A2 + B2
= c2 . (8)

The two endpoints of the segment lie of course on one of the two lines given by the equation
above, and not on the other.

5.1.3 Edges in the Visibility Graph

As we construct the VV(c)-diagram for clearance values such that c2 is rational, we can show that
the bitangents to two dilated obstacle vertices can also be formulated as curves of degree 2 with
rational coefficients. This fact helps us to achieve a convenient representation for the visibility
edges as well.

Given two obstacle vertices u and v with a clearance value c, there are four possible bitangents
to Bc(u) and Bc(v) (see Figure 4). First notice that the two bitangents ~uvrr and ~uvll are both
parallel to the line ` connecting u and v and at a distance c from it. We can therefore represent
this pair of bitangents by a line-pair of the form (8). Let us examine the other two bitangents. We
know that they intersect at the midpoint (x0, y0) = (xu+xv

2 , yu+yv

2 ), and that the slope of ~uvrl is
tan(αuv + ϕuv(c)), while the slope of ~uvlr is tan(αuv − ϕuv(c)). We can therefore write:

{
~uvrl: cos(αuv + ϕuv(c))(y − y0)− sin(αuv + ϕuv(c))(x − x0) = 0
~uvlr: cos(αuv − ϕuv(c))(y − y0)− sin(αuv − ϕuv(c))(x − x0) = 0

We can multiply the two equations to obtain a line-pair whose equation is given by:

cos(αuv + ϕuv(c)) cos(αuv − ϕuv(c))
︸ ︷︷ ︸

X̂

(y − y0)
2 + sin(αuv + ϕuv(c)) sin(αuv − ϕuv(c))

︸ ︷︷ ︸

Ŷ

(x− x0)
2 −

(cos(αuv + ϕuv(c)) sin(αuv − ϕuv(c)) + sin(αuv + ϕuv(c)) cos(αuv − ϕuv(c)))
︸ ︷︷ ︸

Ẑ

(x− x0)(y − y0) = 0

However, we have:

X̂ = cos(αuv + ϕuv(c)) cos(αuv − ϕuv(c)) =

= cos2(αuv) cos2(ϕuv(c))− sin2(αuv) sin2(ϕuv(c)) ,

Ŷ = sin(αuv + ϕuv(c)) sin(αuv − ϕuv(c)) =

= sin2(αuv) cos2(ϕuv(c))− cos2(αuv) sin2(ϕuv(c)) ,

Ẑ = sin(αuv + ϕuv(c) + αuv − ϕuv(c)) =

= sin(2αuv) = 2 sin αuv cos αuv = 2
(xv − xu)(yv − yu)

d2(u, v)
.

As one can see in equations (9) and (10), sin2(αuv) and cos2(αuv) are always rational, while
sin2(ϕuv(c)) and cos2(ϕuv(c)) are rational if c2 is rational. We conclude that the two bitangents
~uvlr and ~uvrl form a line-pair with rational coefficients.

11For example, if we seek a line lying at a distance 1 from ` : y = x, we find the line y = x +
√

2, that cannot be
represented using rational coefficients. However, the line y = x −

√

2 also has the same distance property ...

23



5.2 Detecting Critical c-Values

We next explain how do we compute the critical c-values for visibility events and tangency events.
We note that the critical c-values for chain events are actually the cmin values we discussed in Sec-
tion 5.1.1, while endpoint events are easily detected by taking the clearance values of the endpoints
of a Voronoi arc.

5.2.1 Detecting Visibility Events

Let u and v be two convex obstacle vertices that are mutually visible (that is, the line segment uv
does not intersect the interior of any obstacle). We denote by αuv the angle between the vector ~uv
an the x-axis. If d(u, v) is the Euclidean distance between the two vertices, it is clear that:

sinαuv =
yv − yu

d(u, v)
, cos αuv =

xv − xu

d(u, v)
. (9)

Let ϕuv(c) be the angle that the bitangent ~uvrl to the circles Bc(u) and Bc(v) forms with the vector
~uv (see Figure 4). We thus have (note that when c > 1

2d(u, v) the two circles intersect and therefore
have no rl- or lr -bitangents):

sin ϕuv(c) =
2c

d(u, v)
, cos ϕuv(c) =

√

d2(u, v)− 4c2

d(u, v)
. (10)

The slope of this bitangent is therefore:

tan(αuv + ϕuv(c)) =
sin αuv cos ϕuv(c) + cos αuv sin ϕuv(c)

cos αuv cos ϕuv(c)− sin αuv sin ϕuv(c)
=

=
(yv − yu)

√

d2(u, v) − 4c2 + 2(xv − xu)c

(xv − xu)
√

d2(u, v) − 4c2 − 2(yv − yu)c
. (11)

We mention that the slope of the bitangent ~uvlr is tan(αuv − ϕuv(c)) and is also an expression of
the same form.

Let us examine the three vertices u, v and w and determine the critical clearance values c for
which the slope of one of the bitangents of u and v becomes equal to a slope of one of the bitangents
of u and w. As a “right” bitangent can never be equally sloped with a “left” bitangent, we should
examine the following cases for the right bitangents of uv (the treatment of the left bitangents is
symmetrical):

1. The bitangent ~uvrr becomes equally sloped with the bitangent ~uwrr. This means that
tan(αuv) = tan(αuw), thus the three vertices u, v and w must be collinear.

2. The bitangent ~uvrl becomes equally sloped with the bitangent ~uwrr. Hence:

tan(αuv + ϕuv(c)) = tan(αuw)

(yv − yu)
√

d2(u, v) − 4c2 + 2(xv − xu)c

(xv − xu)
√

d2(u, v) − 4c2 − 2(yv − yu)c
=

yw − yu

xw − xu

24



((yv − yu)(xw − xu)− (xv − xu)(yw − yu))
︸ ︷︷ ︸

Φuvw

·
√

d2(u, v) − 4c2 =

−2 ((xv − xu)(xw − xu) + (yv − yu)(yw − yu))
︸ ︷︷ ︸

Ψuvw

·c .

Squaring the equation above we get (note that Ψuvw = ~uv · ~uw and Φuvw = ~uv⊥ · ~uw):

Φ2
uvw

(
d2(u, v) − 4c2

)
= 4Ψ2

uvw · c2

c2 =
Φ2

uvwd2(u, v)

4(Φ2
uvw + Ψ2

uvw)
.

But it is easy to show that Φ2
uvw + Ψ2

uvw = d2(u, v)d2(u,w), so we have:

c2 =
Φ2

uvwd2(u, v)

4(d2(u, v)d2(u,w))
=

Φ2
uvw

4d2(u,w)

c =
(yv − yu)(xw − xu)− (xv − xu)(yw − yu)

2
√

(xw − xu)2 + (yw − yu)2
. (12)

3. The bitangent uvrr becomes equally sloped with the bitangent ~uwrl. In this case tan(αuv) =
tan(αuw + ϕuw(c)) and we can compute c in an analogous manner to the previous case.

4. The bitangent ~uvrl becomes equally sloped with the bitangent ~uwrl. However, from w’s point
of view, this means that the bitangent ~wurl becomes equally sloped with the bitangent ~wvrr,
so we can compute the critical c-value as we did for case 2.

If we assume that all our input vertices have rational coordinates, the critical c-values, given in
Equation (12), only involve taking the square root of a rational number. Moreover, c2 is a rational
number, so the equations of the supporting circle Bc(u) of each circular arc, which are of the form
(x− xu)2 + (y − yu)2 = c2, have rational coefficients.

5.2.2 Detecting Tangency Events

In a tangency event, a visibility edge between a chain point p and a dilated obstacle vertex v
becomes equally sloped with a bitangent ~uv (see Figure 7 for an illustration). In Section 5.1.1
we explained in detail how to compute a chain point, and we now formulate the slope of ~pv as a
function of c.

Consider the tangent to the obstacle vertex v dilated by c, supported by the circle Bc(v)
emanating from a point p = (x0, y0). In order to compute the slope of this tangent, we have to
compute the tangency point q = (x, y). We do this by defining the following system of equations:

I
II

{
(x− xv)

2 + (y − yv)
2 = c2

(x− x0)(x− xv) + (y − y0)(y − yv) = 0
. (13)

The first equation expresses the fact that q lies on Bc(v), while the second condition is that \pqv
is a right angle (that is, pq ⊥ vq, so ~pq · ~vq = 0). By subtracting the two equations we get:

(x0 − xv)(x− xv) + (y0 − yv)(y − yv) = c2 . (14)

25



(a) (b) (c)

Figure 11: The VV(c)-diagrams constructed for several input files and c-values: (a) octagon with c = 7
10 ,

(b) two rooms with c = 2
5 , and (c) scene14 with c = 9

10 (visibility edges are not shown in this case).

Thus we can plug the expression for (y− yv) into Equation (13-I) and obtain a quadratic equation
in (x − xv) (similarly, if we plug the expression for (x − xv) we obtain a quadratic equation in
(y − yv)). In general, there are two tangency points emanating from p, given by:

(

xv +
(x0 − xv)c

2 ±
√

d2(v, p0)− c2 · (y0 − yv)c

d2(v, p0)
, yv +

(y0 − yv)c
2 ∓

√

d2(v, p0)− c2 · (x0 − xv)c

d2(v, p0)

)

Having computed the tangency point(s) q in terms of c, we can express the slope of the corre-
sponding tangent as a function of c (note that the coordinates of p are functions of c themselves),
thus we can compute for which c-value does such a tangent become equally sloped with another
visibility edge. This gives rise to an algebraic equation of degree 4 in c, but only one solution of
the equation may be valid and give the critical c-value.

We note that the critical clearance value at with the visibility edge ~pv is blocked by a dilated
obstacle vertex w can also be obtained from an equation of the same form. Detecting the visibility
event blocking an edge ~xy that connects two chain points is slightly more complicated, as it involves
extracting the roots of a polynomial of degree 8. However, only one of the positive solutions is
relevant in each case.

6 Experimental Results

Our software is implemented using Cgal 3.1 and the exact number types are supplied by Core 1.7 [2].
As we wish to obtain an exact representation of the VV(c)-diagram, we may spend some time on the
diagram construction, especially if it contains chain points, which are algebraically more difficult
to handle. For example, the construction of the VV(c)-diagram depicted in Figure 3 (the shapes

scene) takes about 10 seconds (running a Pentium IV 2 GHz machine with 512 MB of RAM), but
if we choose a smaller clearance value for the same scene, such that no chain points appear in the
diagram, the construction time drops to 2.5 seconds (see Table tab:times). In more involved scenes,
the construction of the diagram may take 15–20 seconds (see Figure 11 and Table 1).

However, once the VV(c)-diagram is constructed, it is possible to use a floating-point approxi-

26



mation of the edge lengths to speed up the time needed for answering motion-planning queries,12

so that the average query time is only a few milliseconds.

We also used the VV(c)-diagram to generate convincing group motions in a more complex scene
(the scene14 input file). The construction of the diagram took about 15 seconds (for a clearance
value that causes chain points), but the average query time was only a few milliseconds. This is
a considerable improvement over previous techniques, which require smoothing operations in the
query stage, taking about one second on average.

Construction Average query
Input file c time (sec.) time (sec.)

shapes 1/5 2.3 0.01
shapes 2/5 9.7 0.01
octagon 3/10 4.9 0.01
octagon 7/10 15.2 0.01
two rooms 2/5 2.8 0.02
scene14 9/10 15.4 0.02

Table 1: The construction time of the VV(c)-diagram for several input scenes and different c-values.

References

[1] The Cgal project homepage. http://www.cgal.org/.

[2] The Core library homepage. http://www.cs.nyu.edu/exact/core/.

[3] P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction of
Minkowski sums. Computational Geometry: Theory and Applications, 21:39–61, 2002. Special
Issue, selected papers from the European Workshop on Computational Geometry, Eilat, 2000.

[4] F. Aurenhammer and R. Klein. Voronoi diagrams. In J.-R. Sack and J. Urrutia, editors,
Handbook of Computational Geometry, chapter V, pages 201–290. Elsevier Science Publishers
B.V. North-Holland, Amsterdam, 2000.

[5] M. de Berg, J. Matoušek, and O. Schwarzkopf. Piecewise linear paths among convex obstacles.
Discrete and Computational Geometry, 14:9–29, 1995.

[6] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Heidelberg, Germany, 2nd edition, 2000.

[7] E. Fogel, R. Wein, and D. Halperin. Code flexibility and program efficiency by genericity:
Improving Cgal’s arrangements. In Proc. 12th Europ. Symp. Alg.(ESA 2004), pages 664–676.
Springer-Verlag, 2004.

[8] S. Fortune. Voronoi diagrams and Delaunay triangulations. In J. E. Goodman and J. O’Rourke,
editors, Handbook of Discrete and Computational Geometry, chapter 23, pages 513–528. Chap-
man & Hall/CRC, 2nd edition, 2004.

12Indeed, we lose some accuracy here, but as our constructed diagram is topologically correct, the worst thing that
can happen is that we may compute a path that is only slightly longer than the shortest possible path.

27



[9] R. Geraerts and M. H. Overmars. Clearance based path optimization for motion planning.
In IEEE International Conference on Robotics and Automation (ICRA’04), pages 2386–2392,
2004.

[10] S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing visibility graphs.
SIAM Journal on Computing, 20(5):888–910, 1991.

[11] S. Hirsch and E. Leiserowitz. Exact construction of Minkowski sums of polygons and a disc with
application to motion planning. Technical Report ECG-TR-181205-01, Tel-Aviv University,
2002.

[12] A. Kamphuis and M. H. Overmars. Finding paths for coherent groups using clearance. In
R. Boulic and D. K. Pai, editors, Eurographics/ACM SIGGRAPH Symposium on Computer
Animation, pages 1–10, 2004.

[13] M. I. Karavelas. Segment voronoi diagrams in Cgal, 2004.
http://www.cgal.org/UserWorkshop/2004/svd.pdf.

[14] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path
planning in high dimensional configuration spaces. IEEE Trans. Robotics and Automation,
12:566–580, 1996.

[15] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-
free translational motion amidst polygonal obstacles. Discrete and Computational Geometry,
1:59–70, 1986.

[16] D.-T. Lee. Proximity and Reachability in the Plane. PhD thesis, Coordinated Science Labo-
ratory, University of Illinois, Urbana, IL, 1978.

[17] D.-T. Lee and R. L. Drysdale III. Generalization of Voronoi diagrams in the plane. SIAM
Journal on Computing, 10(1):73–87, 1981.

[18] J. S. B. Mitchell. Shortest paths and networks. In J. E. Goodman and J. O’Rourke, editors,
Handbook of Discrete and Computational Geometry, chapter 27, pages 607–642. Chapman &
Hall/CRC, 2nd edition, 2004.

[19] C. Ó’Dúnlaing, M. Sharir, and C. K. Yap. Retraction: A new approach to motion-planning.
In Proc. 15th Annu. ACM Sympos. Theory Comput., pages 207–220, 1983.

[20] C. Ó’Dúnlaing and C. K. Yap. A “retraction” method for planning the motion of a disk. J.
Algorithms, 6:104–111, 1985.

[21] M. Pocchiola and G. Vegter. The visibility complex. International J. of Computational Ge-
ometry and Applications, 6(3):279–308, 1996.

[22] H. Rohnert. Moving a disc between polygons. Algorithmica, 6:182–191, 1991.

[23] R. Wein. High-level filtering for arrangements of conic arcs. In Proc. 10th Europ. Symp.
Alg.(ESA 2002), pages 884–895. Springer-Verlag, 2002.

28


