Line/Polygon Clipping
(FVD 3.12)

The problem:

Given a set of 2D lines or
polygons and a window, clip the
lines or polygons to their regions
that are inside the window.

Motivation

+ Efficiency.
* Display in portion of a screen.

e QOcclusions.

[T 7

A LA
5

clip rectangle

Clipping (cont.)

» We will deal only with lines
(segments).
* Our window can be described by
two extreme points:
KminoYmin) a0d (Xinax>Yimax)
* A point (x,y) is in the window iff:

X X< Xmax and Ymin < Yy < Ymax

min

Analytic Solution

/57 /
w w /W

/]

0, 1, or 2 intersections between a line and a window

* The intersection of two convex regions
is always convex (why?).

¢ Since both W and S are convex, their
intersection is convex, i.e a single
connected segment of S.

* Question: Can the boundary of two
convex shapes intersect more than
twice?

Vector Calculus -
Preliminaries

» A 2D vector V is defined as:
V=(V,.V,).
* Scalar (dot) product between
two vectors V and U is defined:

U
V-U= [Vx vy {UX} =V, U, +V,U, =[V|U]cos®
v

«If V.U=0 thenVandU
are perpendicular to each other.

Vector Subtraction

v

Vector Addition

Parametric Line

P=P(t=0)

S~ {(?:P0+(P1'Pn)l
»

P=P(t=1)

v

Changing the Origin

Q
V(t=0)
#\//I

VOPO-Q ™ e
V(t=1)

Inside/Outside Test

_

Assume WLOG that V=(V,-V,) is the

border vector where "inside" is to its

right.

If V=(V,,Vy), Nisaprep' vector

pointing outside, where we define:
N=(-V,,V,)

Vector U points "outside" if N-U>0

Otherwise U points "inside".

Segment-Line Intersection

 The parametric line P(t)=P,+(P,-Py)t

* The parametric line V(t)=P(t)-Q

+ The segment intersects the line L at t,
satisfying V(t,) N=0.

+ The intersection point is P(t).

» The vector A=P,-P points "inside" if (P,-
P,) N<0. Otherwise it points "outside".

e If L is vertical, intersection can be

computed using the explicit equation.

Cohen-Sutherland for Line
Clipping

Clipping is performed by the
computation of the intersections with
four boundary segments of the window:
L, i=1,2,34

Purpose: Fast treatment of lines that are
trivially inside/outside the window.

Let P=(x,y) be a point to be classified
against window W.

Idea: Assign P a binary code consisting
of a bit for each edge of W, whose value
is determined according to the following
table:

Yy < Ymin

y 2 Ymin

Y ~ Yimax

Y = Yimax

X > Xnax

X < Xpax

X< Xmin

X2 Xmin

0101

0110

Ymax

0001

0010

Ymin
1001

1010

Cohen-Sutherland (cont.)

0101 i 0100

0110

0001 0000

0010

1001 1000

1010

* Given a line segment S from p;=(X,y,)

to p,=(x,,y,) to be clipped against a

window W.

* If code(p,) AND code(p,) is not zero -
then S is trivially rejected.

 If code(p,;) OR code(p,) is zero - then
S is trivially accepted.

+ Otherwise: let assume w.l.o.g. that p, is
outside the window W.

— Find the intersection of S with the
edge corresponding to the MSB in
code(p,) that equal to 1. Call the
intersection point p,.

— Rerun the procedure for the new
segment (p; , p,).

Cohen-Sutherland
Algorithm

CompOutCode (x, y : real; var code : outcode);
/* Compute outcode for the point (x,y) */
begin
code :=0;
if Y > Ymax then code := code | B1000
else
if Y < Ymin then code := code | B0100;
if X > Xmax then code := code | BO010
else
if X < Xmin then code := code | B0001;
end;

Cohen-Sutherland Algorithm
CS (x0,y0,x1,y1,xmin,xmax,ymin,ymax)

boolean accept, done :;
float outcode0, outcodel, x, y;
accept = false ;
done :=false;
CompOutCod (x0,y0,outcode0);
CompOutCod (x1,y1,outcodel);

repeat

if ((outcodeO | outcodel) == 0)

/* Trivial accept */
accept = true ;
done :=true;

}

else
if ((outcode0 & outcodel) <> 0){

/* Trivial reject */

done := true

else
/* Failed both tests, so calculate the line
segment to clip from an outside point to an
intersection with clip edge */

Cohen-Sutherland Algorithm
(cont.)

/* At least one endpoint is outside the clip
rectangle, pick it*/
if (outcode0 <> 0) {
outcodeOut := outcode0
else
outcodeOut := outcodel;

/* now find the intrsection point by using the
formulas:

y=y0 + slope*(x-x0), and

x =x0 + (1/slope)*(y-y0) */

if (outcodeOut & 0x1000) then
divide line at top of clip rectangle;

else if (outcodeOut & 0x0100) then
divide line at bottom of clip rectangle;

else if (outcodeOut & 0x0010) then
divide line at right edge of clip rectangle;

else if (outcodeOut & 0x0001) then
divide line at left edge of clip rectangle;

Cohen-Sutherland Algorithm
(cont.)

/* Now we move outside point to intersection point
to clip, and get ready for next pass */
if (outcodeOut == outcode0)
{
x0:=x;y0:=y;CompOutCod (x0,y0,outcode0);
)
else {
x1:=x;y1:=y;CompOutCod (x1,y1,outcodel);
}

} /* Subdivide */
until (done) ;

if (accept) draw_line (x0,y0,y0,y1);
} /* end */

Cyrus-Beck Line Clipping

Po \NZ Qi

\.pl

* Denote p(t)=p,+(p;-pp)t te[0..1]

+ Let Q; be a point on the edge L; with
outside pointing normal N;.

* V(t) =p(t)-Q; is a parameterized
vector from Q; to the segment P(t).

* Ni-V(t)=0 iff V(t) LN;

* We are looking for ¢ satisfying the
above equation:

Cyrus-Beck Clipping (cont.)
0=Ni- V(1)
=Ni- (p()-Q;)
= Ni- (pyH(p;-p)t-Q))
=Ni- (p-Q)) + Ni- (p;-po)t

Solving for t we get:

t= Ni-(p-Q) | Ni-(p-Q)
-Ni - (p;-po) -Ni-A

where A=(p;-p,)

* Comment: If Ni-A=0, t has no
solution. However, in this case V(t) L N;
and there is no intersection.

Cyrus-Beck Algorithm:

* The intersection of p(z) with all four
edges L;is computed, resulting in up to
four ¢, values.

o If 1,<0 or t>1, t; can be discarded.

* Based on the sign of Ni-A, each
intersection point is classified as PE
(potentially entering) or PL
(potentially leaving).

» PE with the largest # and PL with the
smallest # provide the domain of p(t)
inside W.

* The domain, if inverted, signals that
p(t) is totally outside.

Pi .
PE / 1
PL/ PL

' .
R
/

Po

Cyrus-Beck Line Clipping

precalculate Ni and select a Pei for each edge;

for each line segment to be clipped
if (P1=P2) then
line is degenerate so clip as a point;
else {
tPE=0; tPL=1;
for each candidate intersection with a clip edge
if ((<Ni, D>) <> 0) then {
/* Ignore edges parallel to line for now */
calculate t;
sign of <Ni, D> categorizes as PE or PL ;
if PE then tPE = max (tPE, t);
if PL then tPL =min (tPL, t);

}
if (tPE > tPL) return null
else
return P(tPE) and P(tPL) ;
/* as true clip intersections */

Polygon Clipping

l

—

Sutherland-Hodgman
Polygon-Clipping Algorithm

Clip a polygon by successively clipping
against each (infinite) clip edge.

After each clipping a new set of vertices is

produced.

right clip boungta

bottom clip boyndary

|

U
left clip boundary

— |

top clip boundary

For each clip edge - consider the relation
between successive vertices of the polygon:

Assume vertex s has been dealt with, vertex
p follows:

inside | outside inside | outside inside | outside inside | outside
p s i p s
clip clip clip clip
boundary boundary boundary boundary
p added to i added to i and p added to
output list output list no output ougput list

Sutherland - Hodgman
polygon Cliping Algoruthm

type
vertex = point; /* point holds real x, y */
edge = array [1..2] of vertex;
/* Max declared as constant */
vertexArray = array [1..MAX] of vertex;

procedure SutherlandHodgmanPolygonClip (

inVertexArray: vertixArray; /* input vertex array */
var outVertexArray: vertexArray, /*output vertex array */
inLength: integer; /* num of entries in inVertexArray */

var outLength:integer; /*num of entries in outVertexArray */
clipBoundary : edge /* Edge of clip polygon */

>

Sutherland - Hodgman (cont.)

var
s,p /* Start, End point of current polygon edge */
i:vertix; /* Intersection point with clip boundary */
j :integer; /* vertex loop counter */
begin
outLength :=0;
s == inVertexArray [inLength];
/* Start with the kast vertex in inVertexArray*/
for j:==I to inLength do
begin
p = inVertexArray([j |;
if Inside (p, clipBoundary) then
if Inside (s, clipBoundary) then
Output (p,outLength, outVertexArray) /*case #1*/
else
begin /* case # 4 */
Intersect (s, p, clipBoundary, i);
Output (i, outLength, outVertexArray);
Output (p, outLength, outVertexArray);
end
else
if Inside (s, clipBoundary) then
begin /* case #2 */
Intersect (s, p, clipBoundary, i);
Output (i, outLength, outVertexArray);
end;
s=p; /* Advance to next pair of vertices */
end /* for */
end; /* SutherlandHodgmanPolygonClip */

