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From-Region Visibility  and
Ray Space Factorization 

Daniel Cohen-Or
Tel-Aviv University

Overview

Short introduction to the problem
Dual Space & Parameter/Ray Space
Ray space factorization (SIGGRAPH’03)

From Point Visibility

Input:
– Large scene
– Viewpoint

Output:
– Set of visible objects from the 

viewpoint

From the blue point only the 
blue objects are visible

From Point Visibility

From-region Visibility From Region Visibility

A much harder problem:
The red objects are now visible by 

the blue rays
4D problem for 3D scenes

Compute the set of objects which partially visible from 
anywhere in the viewcell
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Usages for From-Region visibility

Amortization: 
– Visibility data valid for 

many frames
– Utilizes coherency 

between frames
Web Systems:
– Stream only the visible 

parts of the model
– Overcomes latency

�iew�c

Conservative Visibility Sets

Exact Visibility Set (VS):
– Hard to compute
– Superset for each individual viewpoint in the cell

PVS (Potentially Visible Set): Conservative
– Contains all the visible objects and maybe some occluded 

objects
– Easier to compute

Conservative Visibility Sets

�iew�cell
PVS

Conservative Visibility Sets (Cont.)

Computing a conservative PVS is the key point 
in designing an efficient visibility algorithm.

Tight PVS Fast computation

A top-down front-to-back 
traversal.
Allows culling large parts 
of the scene
Simple projection and 
simple image-space 
visibility test
Conservative

Image-space Hierarchical 
Computation (Cont.)

Image-space Hierarchical 
Computation (Cont.)

Visibility test of cells is applied in every frame.
Imposes overhead on rendering
Using the same framework for from-region
visibility will amortize the cost over many 
frames!
But: we don’t have a “center of projection”
anymore – testing a cell-to cell visibility is 
harder.
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Straightforward solution: Sampling

Problem:
– Is the green object visible from 

the viewcell?
Solution:

– Sample some points from within 
the viewcell

– Test if the green object is visible 
from each sampled point

Con:
– Not conservative
– Slow!

ה 
View cell

Strong Occlusion Test

Algorithm:
– Find objects occluded by a single 

convex occluder
– Mark only such objects as hidden

Pro:
– Conservative solution
– Fast

Con:
– Objects may be occluded only by a 

combination of other objects (Weakly 
Occluded)

– Large viewcells

ה 

Umbrae of occluders

Positive UmbraNegative Umbra

Occluder Fusion

Visibility preprocessing with occluder fusion for urban walkthroughs 
– P. Wonka et.al. EGRW’ 2000

Virtual Occluder …
– V. Koltun at.el. EGRW’ 2000

Conservative Volumetric Visibility with Occluder Fusion
– G. Schaufler et.al. SIGGRAPH’2000

Visibility Preprocessing using Extended Projections
– F. Durand et.al. SIGGRAPH’2000

Occluder Fusion – Key Idea

Merge umbrae that 
intersect
Fuse small umbrae into 
larger aggregated umbrae

View cell

Intersecting Umbrae - problem

Doesn’t capture all the cases of occluder fusion

View cell
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Ray (parameter) space techniques

All rays hitting an object define a footprint 
in parameter space.

Boolean set operations on footprints 
determine visibility.

Exact - captures all the cases of occluder 
fusion.

Simple Dual Space

Simple duality transformation  in 2D:

– L : y = ax+b L*: (-a,b) 
– p: (a,b) p* : y = -ax+b

Primal Plane

y = ax+b

Dual Plane

(-a,b)

Simple Dual Space

All lines passing through a point are mapped 
to a line

Primal Plane Dual Plane

Basic Dual Space (Cont.)

The lines that intersect a line-
segment produce a double-
wedge in dual-space

We can encode all the lines 
that intersect  a segment into 
some footprint in dual-space

p

qL

L*

p*

q*

Parameter Space Footprint

Is segment A mutually visible from segment B ?
– WA ∩ WB describes all possible sight-lines
– The union of footprints of the occluder segments is the aggregated 

occlusion of these segments

A

B

WA ∩ WB

Parameter space - discussion

Advantages:
– Easy to implement with Boolean set operations
– Great for occluder fusion – provides exact solution

Problems:
– The footprint is unbounded – can’t be discretized and 

implemented in hardware
– No simple extension to 3D rays



5

Hardware Accelerated
[Koltun, Cohen-Or and Chrysanthou, EGRW2001]

Put a plane lying on the viewcell A and the target cell B
For 2.5D occluders: A & B are mutually visible iff their upper rims are 
mutually visible
Reduces the 2.5D problem into planar visibility test

BAA B

s2

s1

Parameter Ray Space

S1

S2

S2
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Ray Space

Parameter Ray Space

S1

S2

S2
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0,0

1
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0
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Ray Space

Footprint

Render all the footprint polygons onto parameter 
space
Check whether the frame buffer is fully covered
Conservativeness - draw only fully covered pixels

0 1

1
s2s2

s1
0 1

1

s1

s2 s2

s1

s1

Hardware Accelerated Occlusion Test

Discussion

This parameterization is bounded
Can be efficiently used with graphics hardware

The parameterization is valid only within the shaft.
Need to construct different parameter space for each occludee –
which means each occluder is processed many times. 
2.5D occluders only.
Conclusion: we need something better…

Ray Space Factorization (Siggraph’03)

Use a bounded parameter space
One global parameter space
Each occluder is processed once
Support 3D scenes
Fast using graphics HW
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viewcell

The dimensionality of the from-
region problem

From-Region visibility is 4D

viewcell

From-Region visibility is 4D

A ray exists the viewcell through a 2D surface and 
enters the target region through a 2D surface

The dimensionality of the from-region 
problem

Horizontal direction Vertical direction

We factor the 4D visibility 
problem into horizontal and 
vertical components

Our Factorization

v

u

Lumigraph/light-field

A 2D grid of 2D images

Our Main Contribution

Our factorization:

•Exploits vertical coherence

•Maps to the graphics card
s t

R

R ‘

Horizontal direction

Vertical direction

Vertical umbra

Algorithm Overview

Per Object:
•Parameterization of vertical slices
•Umbra encoding 
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Algorithm Overview (Cont.)

Top-down, front-to-back traversal of a KD-tree hierarchy
Objects in visible leafs serve as occluders

Parameterization in 2D

Two concentric squares
Parameters (s,t) are associated with the inner and outer 
squares ( 0<s,t<1)

s=0
t=0

1/4

1/2 s

t

1/23/4

1/4

3/4

s=0
1/4

1/4 q

1/23/4

A Footprint of a Segment in 2D

1/4 1/2 3/4 1

)4/1(qt

)2/1(qt
)4/1(qt

)2/1(qt

0

A footprint of a 2D segment is several 2D 
polygons

s

t

Extension to 3D

2D solution is not enough
– Can’t tell whether an object is really 

occluded
Plucker Coordinates
– The curse of dimensionality
– Very slow, no hardware realization 

[Bittner and Prikryl 01, Nirenstein02]

s

t

Within a Vertical Slice Within a Vertical Slice

A ray that leaves the viewcell has a 2D horizontal direction
Each horizontal direction (s,t) defines a vertical-slice
Within the slice the ray has a 2D vertical direction
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Horizontal direction Vertical direction

ts ts

Horizontal and Vertical directions

We need to encode more than a 
single value per slice…

v

s

t

Parameter Space

viewcell

dire
ctio

nal

umbra

Vertical slice P(s,t)

Umbra Encoding

Encode supporting and separating angles

viewcell

Directional
accumulated
umbra

Vertical slice P(s,t)

tα

bα

tβ

bβ

Testing Visibility

In parallel (in all slices) 
test occlusion by 
comparing supporting 
angles

viewcell

Umbrae Merging

Augment (fuse) the aggregated  umbra if 
the directional umbra intersects

viewcell

Umbrae Merging (Cont.)

Otherwise, create another umbra entry. 
If there are too many discard it.

v

s

t

),( 00 ts

s

t

(s,t) plane (s,t,v) plane Primal Space

0v

),( 00 ts

),,( 000 vts

A simple case

To make it clearer, let’s look at a simpler 
case.

Here we just encode the top-elevation angle
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Merging Umbrae (within the slice)

1

2

4

5

6

7

– Process objects in front-to-back order
– Maintain the aggregated umbrae

viewcell

3

Merging Umbrae

1

2

4

5

6

7

viewcell

3

– Process objects in front-to-back order
– Maintain the aggregated umbrae

Merging Umbrae

2

4

5

6

7

viewcell

1 3

– Process objects in front-to-back order
– Maintain the aggregated umbrae

Merging Umbrae

2

3

4

5

6

7

viewcell

1

– Process objects in front-to-back order
– Maintain the aggregated umbrae

Merging Umbrae

2

4

5

6

7

viewcell

31

– Process objects in front-to-back order
– Maintain the aggregated umbrae

Merging Umbrae

2

4

5

6

7

viewcell

31

– Process objects in front-to-back order
– Maintain the aggregated umbrae
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Merging Umbrae

2

4

5

6

7

viewcell

31

– Process objects in front-to-back order
– Maintain the aggregated umbrae

Merging Umbrae

2

4

5

6

7

viewcell

31

– Process objects in front-to-back order
– Maintain the aggregated umbrae

Merging Umbrae

2

4

5

6

7

viewcell

31

– Process objects in front-to-back order
– Maintain the aggregated umbrae

Merging Umbrae

2

4

5

6

7

viewcell

31 Segments 6 and 7 can be 
identified as occluded

– Process objects in front-to-back order
– Maintain the aggregated umbrae

Pixel-shader

Performs all the directional operations 
simultaneously over all the pixels of the 
occluder footprint.
The pixel resolution defines the degree of 
conservativeness. 

A Multi-layer Occlusion Map

Each pixel is associated with a series of supporting and 
separating angles pairs used by the pixel-shader
operation
The number of umbrae is limited
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A Single Aggregated Umbra

Maintain a single aggregated umbra
The algorithm is still conservative

Final aggregated umbra using a single aggregateFinal aggregated umbra using two aggregates

2
4

5

6

7

viewcell

31

2
4

5

6

7

viewcell

31

A Single Value – 2.5D scene

Aggregated umbrae always intersect
Fast on common graphics card

2.5D Example

The red skyscrapers (left) have large top supporting 
angles
Their red footprints are visible => the skyscrapers 
themselves are visible

Primal Space Parameter Space

A top-down front-to-back 
traversal.
Allows culling large parts 
of the scene
Simple projection and 
simple image-space 
visibility test
Conservative

Image-space Hierarchical Computation

A top-down front-to-back 
traversal.
NOT-Simple projection 
and simple ray-space 
visibility test
Conservative

Ray-space Hierarchical Computation

Random Urban Model Box Field ModelVienna 2000 Model

Results 
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Results – Random Urban Model Results – Box Field Model

Results – Vienna 2000 Model The End

Thank You

Preliminary results

The algorithm is extremely fast if implemented with hardware 
support.
Even faster with new hardware (pixel shader operations, occlusion 
flag)

6687101778951,308.7K

622663164834325.9K

44747612360580.1K

3203418743318.8K

3513741014794.7K

ReadTotal time
Footprint times

(ms)
Total Times

(ms)
No. of 

trapezoids
Frame Buffer

Performance Table
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The End

(a) (b)
City with T & H shaped buildings along a street. (a) is taken from within the view-cell (in green) and (b) from
a birds eye (gray buildings are hidden) 

Non-linearity of parameterization

viewcell

L(s,t)

H(s,t)α ),(
),(αtan

tsL
tsH

=

We approximate this rational 
function by a linear function

Handling arbitrary triangles

s=0
t=0

1/4

1/2
1/23/4

1/4

3/4

Horizontal component: 
parameterize each 
visible edge

Inside directional slice: 
as before!


