Digital Matting

Presenting: Alon Gamliel, Tel-Aviv University, May 2006

Outline

- 1. Introduction to Digital Matting
- 2. Bayesian Matting
- 3. Poisson Matting
- 4. A Closed Form Solution to Matting

Introduction to Digital Matting

Goal: Separate a foreground object from the background

Introduction to Digital Matting

Problem: Intricate boundaries - hair strands and fur.

- Known Background
- Controlled Scene

Statistical Methods

Berman et al. 2000, Ruzon and Tomasi 2000, Chuang et al. 2001

Bayesian Matting

"Video Matting of Complex Scenes", SIGGRAPH 2002 "A Bayesian Approach to Digital Matting", CVPR 2001

Chuang, Agarwala, Curless, Salesin, Szeliski

Bayesian Matting - Details

■ Estimating L(C | F,B,**α**)

 $L(C | F, B, \alpha) = -\|C - \alpha F - (1 - \alpha)B\|^2 / \sigma_C^2$

This log-likelihood models error in the measurement of C and corresponds to a gaussian probability distribution centered at $\mu=\alpha F+(1-\alpha)B$ with standard deviation σ_C

Estimating Color Correspondence

The probability that color c agree with gaussian color model, parameterized with μ, Σ

$$f(c|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d \det(\Sigma)}} \exp\left(-\frac{(c-\mu)^T \Sigma^{-1}(c-\mu)}{2}\right)$$

Taking the maximum logarithm (in respect to c)

$$(c \mid \mu, \Sigma) = -(c - \mu)^T \Sigma^{-1} (c - \mu)$$

Bayesian Matting - Details

- Eliminating $L(\alpha)$
 - With no other good assumption, assume L(α) is constant for every possible α
- Solving:
 - Derive from argmax(L(C | F,B,α)+L(F)+L(B)) two sets of linear equations
 - Solve iteratively, alternating the sets, assuming that α or F/B are constant each iteration

Video Matting

- Problem
 - Bayesian matting requires a trimap for each frame
 - Drawing trimaps is labor-intensiv

Solution

- Draw trimaps only for key-frames
- Interpolate trimaps between key-fram
- How to interpolate? → Optical Flow

Optical Flow

• u(x) : velocity of the pixel at x – called *flow field*

Poisson Matting

"Poisson Matting", SIGGRAPH 2004

Sun, Jia, Tang, Shum

Poisson Matting Overview

- Assumption: The matting gradients mimic the image gradients
- 1. Start with a user trimap
- 2. Estimate alpha values in unknown area, based on image gradients and become alpha values
- = 2 Dofino trimon
- 4. Back to (2)

Initializing Iterative Process

Start from a user-defined trimap

 For each p in Ω, measure F&B from the nearest pixels in Ω_F & Ω_B

Calculating α

- Ω unknown area
- $\Omega_{\rm F}$ trimap foreground area
- $\Omega_{\rm B}$ trimap background area
- Solve:
- $\alpha^* = \arg\min_{\alpha} \int \int_{p \in \Omega} ||\nabla \alpha_p \frac{1}{F_p B_p} \nabla I_p||^2 dp$
- F_p/B_p are taken from nearest pixels at Ω_F / Ω_B

Calculating α

Minimizing is equivalent to solving the Poisson equation:

$$\Delta \alpha = \frac{\partial^2 \alpha}{\partial x^2} + \frac{\partial^2 \alpha}{\partial y^2} = div \left(\frac{\nabla I}{F - B} \right)$$

ning Dirichlet boundary condition

$$\widehat{lpha}_p|_{\partial\Omega}=\left\{egin{array}{cc} 1 & p\in\Omega_F \ 0 & p\in\Omega_B \end{array}
ight.$$

F, B and ∇*I* are measured in grayscale
 Solve linear system

Calculating $\boldsymbol{\alpha}$ in the local case

- Ω unknown area
- $\Omega_{\rm F}$ trimap foreground area
- Ω_{B} trimap background area
- Ω_{L-} user selected area

. .

 $\alpha^* = \arg\min_{\alpha} \int \int_{p \in \Omega_t \cap \Omega} ||\nabla \alpha_p - A_p (\nabla I_p - \mathbf{D}_p)||^2 dp.$

$D = \alpha \nabla F +$

Calculating $\boldsymbol{\alpha}$ in the local case

Assuming Dirichlet boundary condition

 \blacksquare $\alpha_{\rm g}-{\rm was}$ calculated at the global case

No local discontinuity can be seen

Results

A Closed Form Solution to Matting

"A Closed Form Solution to Natural Image Matting", CVPR 2006

Levin, Lischinski, Weiss

Recall Poisson Matting...

 $I = \alpha F + (1-\alpha)B$ $\nabla I = (F-B)\nabla \alpha + \alpha \nabla F + (1-\alpha)\nabla B$

• Assume smooth foreground & background $\alpha \nabla F + (1 - \alpha) \nabla B << (F - B) \nabla \alpha$

■ We get:

 $\nabla \alpha \approx \frac{1}{F - B} \nabla I$

Estimating Matting Field

- $I = \alpha F + (1 \alpha)B$
- Assume smooth foreground & background
 For every window W

 $\alpha_i \approx aI_i + b$ for each i in W

Estimating Matting Field

■ Minimize J:

$$J(\alpha, a, b) = \sum_{j \in I} \left(\sum_{i \in w_j} (\alpha_i - a_j I_i - b_j)^2 + \varepsilon a_j^2 \right)$$
$$J(\alpha) = \min_{a, b} J(\alpha, a, b)$$

ε is a regulation term

Closed Form Solution • It can be proven that: $J(\alpha) = \alpha^{T}L \alpha$ • Where L is NxN matrix, and computed directly: $\sum_{k|(i,j)\in w_{k}} \left(\delta_{ij} - \frac{1}{|w_{k}|} \left(1 + \frac{1}{\frac{\varepsilon}{|w_{k}|} + \sigma_{k}^{2}} (I_{i} - \mu_{k}) (I_{j} - \mu_{k}) \right) \right)$ • δ – delta function • μ, σ – window parameters

Moving to Color Images
<u>For every window W</u>
$\alpha_i \approx a^R I^R_i + a^G I^G_i + a^B I^B_i + b$
for each i in W
W 11 12 13 14 15 16 17 18 19
• Derive a^{R} , a^{G} , a^{B} , b from : $\mathbf{F} = \beta \mathbf{F}_{1} + (1 - \beta) \mathbf{F}_{2}$
$B = \gammaB_1 + (1-\gamma)B_2$
This relaxes the assumption that foreground &
background are smooth

Moving to Color Images • L is still NxN matrix, but computed differently: $\sum_{k|(i,j)\in w_k} \left(\delta_{ij} - \frac{1}{|w_k|} (1 + (I_i - \mu_k)(\Sigma_k + \frac{\varepsilon}{|w_k|}I_3)^{-1}(I_j - \mu_k)) \right)$ • δ – delta function • μ , Σ – window parameters

Solving for α , F, B • To find F,B, solve a set of linear equations • Correspondence term (for each pixel) $(\alpha F + (1-\alpha)B - I)^2$ • Smoothness terms (for each pixel) $\alpha \|F(x, y) - F(x+1, y)\|^2 + \alpha \|F(x, y) - F(x, y+1)\|^2 + (1-\alpha) \|B(x, y) - B(x+1, y)\|^2 + (1-\alpha) \|B(x, y) - B(x+1, y)\|^2$

Summary				
	Bayesian	Poisson	Closed Form	
Hints	Local color analysis	Image gradients	Image windows	
Assumptions	Color separation, camera quality	Locally smooth foreground and background	Locally linear foreground and background	
User Data	Trimap	Trimap	Scribbles	
Solving Method	Iterative	Iterative	Direct	
Computation Time (640x480)	~30 secs	~5 secs	~60 secs	

Future Work (my thesis)

Interactive Matting

- Incorporate additional user scribbles directly into Aα = B linear problem
- Integrating global color model Statistical analysis of user scribbles
- Based on this analysis add more alpha constraint
- Solving for video
- Goal: Keep a minimal user interface framework
- Suggestion: Feature-based expansion of user scribble
- <u>Goal:</u> Retrieving concretit results between train
 Suggestion: Clobally solve for frame pairs
- <u>Suggestion:</u> Globally solve for frame pairs

■ Live presentation