0 ===

Interactive Image Cutout

- Separate an object from its background
- Compose the object on another image

Soft Constraints

• Minimize the Energy:

$$E(X) = \sum_{i \in V} E_1(x_i) + \lambda \sum_{\substack{i,j \in E\\x \neq x_i}} E_2(x_i, x_j)$$

@==

• E_1 : Region: Color difference to user marks

• E_2 : Boundary: Color similarity between pixels

Lazy Snapping

🧑 ana

Li et al. SIGGRAPH'04

💋 au s

🧑 📾

Graph Cut Algorithm

Per-pixel method	Region based method	
Pixels	Small regions	
Neighbors	Region connection	
Pixel color	Region mean color	
Color difference	Region color difference	

0-

💋 ana

Region-based Graph Cut

- Advantages
 - More than 10 times fewer nodes
 - Instant feedback of cutout result
- Pre-processing overhead
 2~3 seconds background processing

Polygon Fitting

- First vertex border pixel with highest curvature
- Next vertices: furthest boundary pixel
- Stop when distance < thresh

Border Editing

- Brush Replace polygon segment
- Vertex Editing: Move/Add/Delete
- => Graph Cut on border pixels

Band of Uncertainty

Boundary Editing

- For Low Contrast case:
 - In E_2 Add a term to reflect distance from polygon

💋 en

- Hard Vertex constraint
 - Adjust graph so cut passes through vertex

Video Demo (Left boy)

🕗 anna

Video Demo (Right Boy)

2

Summary: Two Steps					
First Step: Object Marisegond Steps: Boundary Editing					
Input Image	Small Regions	Coarse Boundary	Editable Polygon	Refined Boundary	
Pre-Segmen	Region Ba Graph C	sed Polygo	n F Band Grap	Band Pixels Graph Cut	

2

Iterated Graph Cuts

- $E_1 GMMs (E_2 No change)$
- Algorithm:
 - I. Initialize $B, U = \overline{B}, F = \phi$ Initialize GMMs w_k, μ_k, Σ_k
 - 2. Repeat (until constant energy)
 - a. $\forall p \in U$ assign best $G_k => 2K$ clusters
 - **b**. For each cluster calculate $w_k, \mu_k, \Sigma_k \Rightarrow 2$ GMMs
 - c. Find Min Cut => U decreases3. Apply border matting
 - Apply border matting
 Enable user editing & repeat

Incomplete Labeling

- User specifies border => B, $U = \overline{B}$, $F = \phi$
- F populates through iterations
- Some F pixels can be retracted. B cannot

Editing (In case of error):

- User adds F, B (brush)
- Re-compute
- Graph Cut can be reused.

@==

Summary

- $G_U(\alpha)$ should match U pixels
- α should change like a soft step function
- Step function should change smoothly along contour

🧷 eress

at

Bayes MattingGrabCut(no regularization)(with regularization)

