

How do we remove aliasing ?

- Cheaper solution : take multiple samples for each pixel and average them together → supersampling.
- Can weight them towards the centre → weighted average sampling
- Stochastic sampling

Removing aliasing is called *antialiasing*

Cone Tracing

- Amanatides SIGGRAPH 84
- · Replace rays with cones
- · Cone samples pixel area
- · Intersect cone with objects
 - Analytic solution of cone-object intersection similar to ray-object intersection
 - Expensive

Images courtesy John Amanatides

Beam Tracing

- Heckbert & Hanrahan SIGGRAPH 84
- Replace rays with generalized pyramids
- Intersection with polygonal scenes
 - Plane-plane intersections easy, fast
 - Existing scan conversion antialiasing
- Can perform some recursive beam tracing
 - Scene transformed to new viewpoint
 - Result clipped to reflective polygon

Stochastic Sampling

OpenGL Aliases

- · Aliasing due to rasterization
- · Opposite of ray casting
- · New polygons-to-pixels strategies
- Prefiltering
- Edge aliasing
 - Analytic Area Sampling
 - A-Buffer
 - Texture aliasing
 - MIP Mapping
 - Summed Area Tables

Postfiltering

- Accumulation Buffer

Analytic Area Sampling

• Ed Catmull, 1978

- Eliminates edge aliases
- Clip polygon to pixel boundary
- Sort fragments by depth
- Soft fragments by depth
- Clip fragments against each otherScale color by visible area
- Sum scaled colors

A-Buffer

- Loren Carpenter, 1984
- Subdivides pixel into 4x4 bitmasks
 Clipping = logical operations on bitmasks
- · Bitmasks used as index to lookup table

Texture Aliasing

- Image mapped onto polygon
- Occur when screen resolution differs from texture resolution
- Magnification aliasing
 - Screen resolution finer than texture resolution
- Multiple pixels per texel
- Minification aliasing
 - Screen resolution coarser than texture resolution
 - Multiple texels per pixel

Minification Filtering

- Multiple texels per pixel
- Potential for aliasing since texture signal bandwidth greater than framebuffer
- Box filtering requires averaging of texels
- Precomputation
 MIP Mapping
 - Summed Area Tables

A1 0 W4 - 1002													
Abram & Westover, 1983													
Г										7			
				┥┝	F		-			-			
						200							
Г										7			
-										-			
	n3 ا	וגמה למקר	•			27	למקרו						

Texture Pre-Filtering

- Problem: filtering the texture during rendering is too slow for interactive performance.
- Solution: pre-filter the texture in advance
 Summed area tables gives the average value of each axis-aligned rectangle in texture space
 - Mip-maps (tri-linear interpolation) supported by most of today's texture mapping hardware

MIP-Maps

- Precompute a set of prefiltered textures (essentially an image pyramid).
- Based on the area of the pre-image of the pixel:
 - Select two "best" resolution levels
 - Use bilinear interpolation inside each level
 Linearly interpolate the results
- Referred to as trilinear interpolation

MIP Mapping

- Lance Williams, 1983
- · Create a resolution pyramid of textures Repeatedly subsample texture at half resolution
 - Until single pixel
 - Need extra storage space
- Accessing

 - Use texture resolution closest to screen resolution - Or interpolate between two closest
 - resolutions

Texture Aliasing

- Image mapped onto polygon
- Occur when screen resolution differs from texture resolution
- Magnification aliasing
 - Screen resolution finer than texture resolution - Multiple pixels per texel
- · Minification aliasing
 - Screen resolution coarser than texture resolution
 - Multiple texels per pixel

Minification Filtering

- Multiple texels per pixel
- Potential for aliasing since texture signal bandwidth greater than framebuffer
- Box filtering requires averaging of texels
- Precomputation
 - MIP Mapping
 - Summed Area Tables

Summed Area Table • Frank Crow, 1984 x,y x-1,y-1 · Replaces texture map with summed-area texture map $- S(x,y) = \text{sum of texels} \le x,y$ - Need double range (e.g. 16 bit) Creation - Incremental sweep using previous computations -S(x,y) = T(x,y) + S(x-1,y) + S(x,y-1) - S(x-1,y-1) x_2, y_2 Accessing $- \Sigma T([x_1, x_2], [y_1, y_2]) = S(x_2, y_2) - S(x_1, y_2)$ x_1, y_1 $S(x_2, y_1) + S(x_1, y_1)$ - Ave $T([x_1,x_2],[y_1,y_2])/((x_2-x_1)(y_2-y_1))$

Summed Area Tables

- A 2D table the size of the texture. At each entry (i,j), store the sum of all texels in the rectangle defined by (0,0) and (i,j).
- Given any axis aligned rectangle, the sum of all texels is easily obtained from the summed area table:

area =
$$A - B - C + D$$

Accumulation Buffer

- Increases OpenGL's resolution
- Render the scene 16 times
- Shear projection matrices
- Samples in different location in pixel
- Average result
- Jittered, but same jitter sampling pattern in each pixel

