
Entropy Coding
(taken from the Technion)

2

Outline

• Definition of Entropy

• Three Entropy coding techniques:

• Huffman coding

• Arithmetic coding

• Lempel-Ziv coding
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Alphabet: A finite set containing at least one element: 
A = {a, b, c, d, e}

Symbol: An element in the alphabet: s � A

A string over the alphabet: A sequence of symbols, each 
of which is an element of that alphabet: ccdabdcaad…

Codeword: A sequence of bits representing a coded 
symbol or string:  110101001101010100…

pi: The occurrence probability of 
symbol si in the input string.

Li: The length of the codeword of symbol si in bits.

Definitions
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Entropy

Entropy (in our context) - smallest number of bits 
needed, on the average, to represent a symbol (the 
average on all the symbols code lengths).

Note: log2pi is the uncertainty in symbol ei (or the “surprise” when 
we see this symbol). Entropy – average “surprise”

Assumption: there are no dependencies between the symbols’
appearances
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Entropy of a set of elements e1,…,en with probabilities 
p1, … pn is:
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Entropy example
Entropy calculation for a two symbol alphabet.

Example 1: A pA=0.5
B pB=0.5

� �
15.0log5.05.0log5.0

plogpplogpB,AH
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Example 2: A pA=0.8
B pB=0.2

� �
7219.02.0log2.08.0log8.0

loglog,

22

22
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It requires one bit 
per symbol on the 
average to 
represent the data.

It requires less 
than one bit per 
symbol on the 
average to 
represent the 
data.

How can we  
code this ?
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Entropy examples

• Entropy of e1,…en is maximized when

p1=p2=…=pn=1/n   � H(e1,…,en)=log2n
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• 2k symbols may be represented by k bits

• Entropy of p1,…pn is minimized when

p1=1, p2=…=pn=0   � H(e1,…,en)=0
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Entropy coding

• Entropy is a lower bound on the average number of 
bits needed to represent the symbols (the data 
compression limit).

• Entropy coding methods:

• Aspire to achieve the entropy for a given alphabet, 
BPS�Entropy

• A code achieving the entropy limit is optimal

BPS : bits per symbol

messageoriginal

messageencoded
BPS �
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Code types

• Fixed-length codes - all codewords have the same 
length (number of bits)

A – 000, B – 001, C – 010, D – 011, E – 100, F – 101

• Variable-length codes - may give different lengths to 
codewords

A – 0, B – 00, C – 110, D – 111, E – 1000, F - 1011
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Code types (cont.)

• Prefix code - No codeword is a prefix of any other codeword.

A = 0;   B = 10;   C = 110;  D = 111

• Uniquely decodable code - Has only one possible source 
string producing it.

• Unambigously decoded
• Examples: 

• Prefix code - the end of a codeword is immediately recognized 
without ambiguity: 010011001110 � 0 | 10 | 0 | 110 | 0 | 111 | 0

• Fixed-length code
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Huffman coding
• Each symbol is assigned a variable-length code, depending 

on its frequency. The higher its frequency, the shorter the 
codeword

• Number of bits for each codeword is an integral number

• A prefix code

• A variable-length code

• Huffman code is the optimal prefix and variable-length code, 
given the symbols’ probabilities of occurrence

• Codewords are generated by building a Huffman Tree
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Huffman tree example
Each codeword is 
determined according 
to the path from the root 
to the symbol.

0.3

0.45

0.55

1.0

0.250.25 0.2 0.15 0.15

0 1

10

1 0
10

B-10A-01 C-00 D-110 E-111codewords:

When decoding, a tree 
traversal is performed, 
starting from the root.

Example: 
decoding input

“110” (D)

Probabilities
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Huffman encoding

Use the codewords from the previous slide to encode the 
string “BCAE”:

Encoded:

String:

111010010

EACB

Number of bits used:  9

The BPS is (9 bits/4 symbols) = 2.25

Entropy: - 0.25log0.25 - 0.25log0.25 - 0.2log0.2 -
0.15log0.15 - 0.15log0.15 = 2.2854

BPS is lower than the entropy. WHY ?
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Huffman tree construction
• Initialization:

• Leaf for each symbol x of alphabet A with weight=px.
• Note: One can work with integer weights in the leafs (for example, 

number of symbol occurrences) instead of probabilities.

• while (tree not fully connected) do begin

• Y, Z � lowest_root_weights_tree()

• r � new_root

• r->attachSons(Y, Z) // attach one via a 0, the other via a 
1 (order not significant)

• weight(r) = weight(Y)+weight(Z)
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Huffman encoding

• Build a table of per-symbol encodings (generated by 
the Huffman tree). 

• Globally known to both encoder and decoder

• Sent by encoder, read by decoder

• Encode one symbol after the other, using the encoding 
table.

• Encode the pseudo-eof symbol.
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Huffman decoding
• Construct decoding tree based on encoding table

• Read coded message bit-by-bit:

• Travers the tree top to bottom accordingly.

• When a leaf is reached, a codeword was found �
corresponding symbol is decoded

• Repeat until the pseudo-eof symbol is reached.

No ambiguities when decoding codewords (prefix code)
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Symbol probabilities

• How are the probabilities known?

• Counting symbols in input string
o Data must be given in advance
o Requires an extra pass on the input string

• Data source’s distribution is known
o Data not necessarily known in advance, but we 

know its distribution 
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Example
“Global” English frequencies table:

Prob.LetterProb.Letter

Total: 1.0000

0.0638
0.0681
0.0290
0.0023
0.0638
0.0728
0.0908

0.0235
0.0094
0.0130
0.0077
0.0126
0.0026

N
O
P
Q
R
S
T

U
V
W
X
Y
Z

0.0721
0.0240
0.0390
0.0372
0.1224
0.0272
0.0178

0.0449
0.0779
0.0013
0.0054
0.0426
0.0282

A
B
C
D
E
F
G

H
I
J
K
L
M
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Best results (entropy wise) - only when symbols have 
occurrence probabilities which are negative powers of 2 (i.e. 
½, ¼, …). Otherwise, BPS > entropy bound.

Example: 

Entropy = 1.75
A representing probabilities input stream : AAAABBCD
Code: 11110101001000
BPS = (14 bits/8 symbols) = 1.75

Huffman Entropy analysis

0000.125D

0010.125C

010.25B

10.5A

CodewordProbabilitySymbol
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Huffman tree 
construction complexity

• Simple implementation - o(n2).

• Using a Priority Queue - o(n·log(n)):

� Inserting a new node – o(log(n))

� n nodes insertions - o(n·log(n))

� Retrieving 2 smallest node weights – o(log(n))
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Huffman summary

• Achieves entropy when occurrence probabilities are 
negative powers of 2 

• Alphabet and its distribution must be known in advance

• Given the Huffman tree, very easy (and fast) to encode 
and decode

• Huffman code is not unique (because of some arbitrary 
decisions in the tree construction)



Arithmetic coding
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Arithmetic coding

• Assigns one (normally long) codeword to entire input 
stream

• Reads the input stream symbol by symbol, appending 
more bits to the codeword each time

• Codeword is a number, representing a segmental sub-
section based on the symbols’ probabilities

• Encodes symbols using a non-integer number of bits �
very good results (entropy wise)
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Example

A

B

D

C

E

0.0

0.25

0.50

0.70

0.85

1.0

Coding of BCAE

A

B

D

C

E

0.25

0.3125

0.375

0.4625

0.50

0.425

A

B

D

C

E

0.375

0.4

0.425

0.41

0.4175

0.3875

A

B

D

C

E

0.375

0.38125

0.3875

0.38375

0.385625

0.378125

Any 
number in 
this range 
represents 
BCAE.

pA = pB = 0.25,  pC = 0.2,  pD = pE = 0.15
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Mathematical definitions

L – The smallest binary value 
consistent with a code 
representing the symbols 
processed so far.

R – The product of the 
probabilities of those 
symbols.

A

B

D

C

E

Li � 0.25

0.3125

Li+1 � 0.375

0.4625

0.50

0.425

Ri

Ri+1
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Arithmetic encoding

Initially L = 0, R = 1.

When encoding next symbol, 
L and R are refined.

j

1j

1i
i pRRpRLL 
��� �

�

 

At the end of the message, a binary value between L and L+R will
unambiguously specify the input message. The shortest such binary 
string is transmitted.

In the previous example: 

• Any number between 385625 and 3875 (discard the ‘0.’). 

• Shortest number - 386, in binary: 110000010

• BPS = (9 bits/4 symbols) = 2.25
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Arithmetic encoding (cont.)

Two possibilities for the encoder to signal to the
decoder end of the transmission:

1. Send initially the number of symbols encoded.
2. Assign a new EOF symbol in the alphabet, with a very 

small probability, and encode it at the end of the 
message.

Note: The order of the symbols in the alphabet must remain 
consistent throughout the algorithm.
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Arithmetic decoding

In order to decode the message, the symbols order and 
probabilities must be passed to the decoder.

The decoding process is identical to the encoding. Given 
the codeword (the final number), at each iteration the 
corresponding sub-range is entered, decoding the 
symbol representing the specific range. 
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A

B

D

C

E

0.0

0.25

0.50

0.70

0.85

1.0

Decoding of 0.386

A

B

D

C

E

0.25

0.3125

0.375

0.4625

0.50

0.425

A

B

D

C

E

0.375

0.4

0.425

0.41

0.4175

0.3875

A

B

D

C

E

0.375

0.38125

0.3875

0.38375

0.385625

0.378125

0.386�

0.386�

0.386�

0.386�

B C A E

Decoding:

Arithmetic decoding example
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Arithmetic entropy analysis

• Arithmetic coding manages to encode symbols using 
non integer number of bits !

• One codeword is assigned to the entire input stream, 
instead of a codeword to each individual symbol

• This allows Arithmetic Coding to achieve the Entropy 
lower bound
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Distributions issues

• Until now, symbol distributions were known in 
advance

• What happens if they are not known?
• Input string not known
• Huffman and Arithmetic Codings have an adaptive 

version
o Distributions are updated as the input string is read
o Can work online
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Lempel-Ziv concepts
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Lempel-Ziv concepts
• What if the alphabet is unknown ? Lempel-Ziv coding 

solves this general case, where only a stream of bits is 
given.

• LZ creates its own dictionary (strings of bits), and 
replaces future occurrences of these strings by a 
shorter position string:

• In simple Huffman/Arithmetic coding, the dependency between the 
symbols is ignored, while in the LZ, these dependencies are 
identified and are exploited to perform better encoding.

• When all the data is known (alphabet, probabilities, no 
dependencies), it’s best to use Huffman (LZ will try to find 
dependencies which are not there…)
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Lempel-Ziv compression

• Parses source input (in binary) into the shortest distinct strings:

1011010100010 � 1, 0, 11, 01, 010, 00, 10

• Each string includes a prefix and an extra bit (010 = 01 + 0), 
therefore encoded as:  (prefix string place, extra bit)

• Requires 2 passes over the input (one to parse input, second to 
encode). Can be modified to one pass.

• Compression:  (n – number of distinct strings)

• log(n) bits for the prefix place + 1 bit for the added bit

• Overall – n·log(n) bits compressed
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Lempel-Ziv algorithm

1. Initialize the dictionary to contain an empty 
string (D={ }). 

2. W � longest block in input string which 
appears in D. 

3. B � first symbol in input string after W
4. Encode W by its index in the dictionary, 

followed by B
5. Add W+B to the dictionary. 
6. Go to Step 2. 
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Example
Input string: 1 0 1 1 0 1 0 1 0 0 0 1 0

Index Entry

Dictionary D

Encoded string:

1
0
1

2

3

1

0

11

01

010

0 1

1

1

0

4

0

01

0

0

5

00

0

1

10
6

(0,1)

7

0001

(0,0)

0000

(1,1)

0011

(2,1)

0101

(4,0)

1000

(2,0)

0100

(1,0)

0010

0001000000110101100001000010

B

W

Pairs:

Encoding:
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Compression comparison

28.1%29%ABCD(500k) 
Random ascii file

28.2%33%ABCD (1.5k) 
Random ascii file

95%75%pdf (690k) 
Binary file

65%20%html (25k) Token 
based ascii file

Huffman 
(unix pack)

Lempel-Ziv 
(unix gzip)

Compressed 
to (percentage):

ABCD – {pA = 0.5, pB = 0.25, pC = 0.125, pD = 0.125}

Lempel-Ziv is asymptotically optimal
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Comparison

Not intuitiveNot intuitiveIntuitiveIntuition

Codewords for set 
of alphabet

One codeword for 
all data

One codeword for 
each symbol

Codewords

Best results when 
alphabet not known

Very closeIf probabilities are 
negative powers of 2

Entropy

First pass on data 
(can be eliminated)

NoneTree building –
O(n log n)

Preprocessing

Used – better 
compression

Not usedNot usedSymbols 
dependency

NoneNoneNoneData loss

Not known in 
advance

Known in advanceKnown in advanceAlphabet

Not known in 
advance

Known in advanceKnown in advanceProbabilities

Lempel-ZivArithmeticHuffman


