
1

1

Image Space Occlusion CullingImage Space Occlusion Culling

2

Hudson et al, SoCG 97

C
B

AViewpoint

Occluder

umbra

3

What Methods are Called Image-Space?

• Those where the decision to cull or render is
done after projection (in image space)

View volume

Object space
hierarchy

Decision
to cull

5

Ingredients of an Image Space Method

• An object space data structure that
allows fast queries to the complex
geometry

Space partitioning

Hierarchical
bounding boxes Regular grid

6

An image space representation of the
occlusion information

• Discrete
– Z-hierarchy
– Occlusion map hierarchy
– Hardware – Occlusion Query

• Continuous
– BSP tree
– Image space extends

7

General Outline of Image Space
Methods

• During the (Top-down, front-to-back)
traversal of the scene hierarchy do:
– compare each node against the view

volume.
– if not culled, test node for occlusion against

occlusion map.
– if still not culled, render objects/occluders

augmenting the occlusion map

2

8

Set of Occluders Occlusion Map

Occlusion Map

9

Testing a Node for Occlusion
• If the box representing a node is not visible then

nothing in it is either
• The faces of the box are projected onto the image

plane and tested for occlusion

10

Testing a Node for Occlusion
• If the box representing a node is not visible then

nothing in it is either
• The faces of the box are projected onto the image

plane and tested for occlusion

11

Hierarchical Tests

O

12

Hierarchical Tests

O

13

Hierarchical Tests

O

3

14

Differences of Algorithms

• The most important differences between
the various approaches are:

– the representation of the (augmented)
occlusion map and,

– the method of testing the hierarchy for
occlusion

15

Hierarchical Z-Buffer (HZB)
(Ned Greene, Michael Kass 93)

• An extension of the Z-buffer VSD algorithm
• It follows the outline described above.
• Scene is arranged into an octree which is

traversed top-to-bottom and front-to-back.
• During rendering an occlusion map is

incrementally built.
• Octree nodes are compared against

occlusion map.
• The occlusion map is a z-pyramid…

16

OpenGL Assisted Culling
(Bartz et al C&G99)

• Similar in principle to HZB but instead of
creating a z-pyramid:
– set up OpenGL so that it doesn’t modify

the z-buffer and it writes into the stencil
whenever the depth test succeeds

– render the bounding box of the geometry
and check the stencil buffer to see if at all
visible

• Requires a lot of hardware access

17

HP Hardware implementation

• Before rendering an object, scan-
convert its bounding box

• Special purpose hardware are used to
determine if any of the covered pixels
passed the z-test

• If not, the object is occluded

18

The Z-Pyramid

• The content of the Z-buffer is the finest
level in the pyramid

• Coarser levels are created by grouping
together four neighbouring pixels and
keeping the largest z-value

• The coarsest level is just one value
corresponding to overall max z

19

The Z-Pyramid
Objects are
rendered

Depth taken
from the
z-buffer

Construct pyramid by taking max of each 4

= furthest
= closer
= closest

4

20

Using the Z-Pyramid

• To determine whether a polygon (e.g. a
face of an octree node) is occluded:
– find the finest-level of the pyramid whose pixel

covers the image-space box of the polygon
– compare their z-values

• if polygon z > pyramid z, then stop => occluded
• else descent down the z-pyramid and repeat

21

Using The Z-Pyramid
= furthest
= closer
= closest

22

Maintaining the Z-Pyramid

• Ideally every time an object is rendered
causing a change in the Z-buffer, this
change is propagated through the
pyramid

• However this is not a practical approach

23

More Realistic Implementation

• Make use of frame-to-frame coherence:
– at start of each frame render the nodes that

were visible in previous frame
– read the z-buffer and construct the z-pyramid
– now traverse the octree using the z-pyramid

for occlusion but without updating it

24

HZB: discussion

• It provides good acceleration in very
dense scenes

• Getting the necessary information from
the Z-buffer is costly

• A hardware modification was proposed
for making it real-time

25

Hierarchical Occlusion Maps
(Hansong Zhang et.al 97)

Similar idea to HZB but:
– they separate the coverage information

from the depth information, two data
structures

• hierarchical occlusion maps
• depth (several proposals for this)

5

28

What is Occlusion Map Pyramid?

• A hierarchy of occlusion maps (HOM)
• At the finest level it’s just a bit map with

– 1 where it is transparent and
– 0 where it is opaque (occluded)

• Higher levels are half the size in each
dimension and store gray-scale values

• Records average opacities for blocks of
pixels

• Represents occlusion at multiple resolutions

29

Occlusion Map Pyramid

64 x 64 32 x 32 16 x 16

31

Occlusion Map Pyramid

33

Problem Decomposition

•

View
Point

Z

X

Y

Top view

Front view

When is an object occluded by another object?

34

Set of Occluders Occlusion Map

Representing Occluders

35

Overlap Tests
• To test if the projection of a polygon is

occluded
– find the finest-level of the pyramid whose

pixel covers the image-space box of the
polygon

– if fully covered then continue with depth
test

– else descend down the pyramid until a
decision can be made

6

36

Aggressive Approximate Culling
• A great advantage over the HZB
• Ignoring barely-visible objects

– Small holes in or among objects
– To ignore the small holes

• Low-pass filter suppresses noise — holes
“dissolve”

• Regard “very high” opacity as fully opaque

37

Aggressive Approximate culling

0 1 2 3 4

43

Occluder selection

• This is a big issue relevant to most occlusion
culling algorithms

• Occluder data-base -- selection criterions
– size, redundancy, rendering complexity
– Size of bounding boxes (when depth-estimation

buffer is used)
• At run time

– Objects inside the view volume
– Distance-based selection with a polygon budget

44

Metric for Comparing Occluder Quality
Occluder quality: (-A (N * V)) / ||D||2

A : the occluder’s area
N : normal

V : viewing direction
D : the distance between the viewpoint and the occluder center
Large polygon have large area-angle.

V
A

N
D O

46

BSP Occlusion Culling
(Naylor GI92)

• Both scene and occlusion information are
represented as BSP trees

• Render scene in front-to-back order
• Create 2D BSP tree using the edges of the

rendered polygons
• Intersect this with the scene BSP tree to find

occluded regions

51

NV Occlusion Query (1)

• Extension name: NV_occlusion_query
• Returns pixel count – the # of pixels that pass
• Provides an interface to issue multiple queries at

once before asking for the result of any one
• Applications can now overlap the time it takes

for the queries to return with other work
increasing the parallelism between CPU and
GPU

7

52

NV Occlusion Query – How to Use (1)

• (Optional) Disable Depth/Color Buffers
• (Optional) Disable any other irrelevant non-geometric state
• Generate occlusion queries
• Begin ith occlusion query
• Render ith (bounding) geometry
• End occlusion query
• Do other CPU computation while queries are being made
• (Optional) Enable Depth/Color Buffers
• (Optional) Re-enable other state
• Get pixel count of ith query
• If (count > MAX_COUNT) render ith geometry

53

NV Occlusion Query – How to Use (2)
• Generate occlusion queries

Gluint queries[N];
GLuint pixelCount;
glGenOcclusionQueriesNV(N, queries);

• Loop over queries
for (i = 0; i < N; i++) {

glBeginOcclusionQueryNV(queries[i]);
// render bounding box for ith geometry
glEndOcclusionQueryNV();

}

• Get pixel counts
for (i = 0; i < N; i++) {

glGetOcclusionQueryuivNV(queries[i], GL_PIXEL_COUNT_NV, &pixelCount);
if (pixelCount > MAX_COUNT)

// render ith geometry
}

