Image Space Occlusion Culling

Hudson et al, SoCG 97

Viewpoint

<

[

What Methods are Called Image-Space?

* Those where the decision to cull or render is
done after projection (jn'image space)

Object space
hierarchy

View volume
_/ s

Ingredients of an Image Space Method

» An object space data structure that
allows fast queries to the complex
geometry

N
] ok
2 it
wiR g

& Hierarchical

bounding boxes :
Space partitioning Regular grid

An image space representation of the
occlusion information

* Discrete

— Z-hierarchy

— Occlusion map hierarchy

— Hardware — Occlusion Query
 Continuous

—BSP tree

— Image space extends

General Outline of Image Space
Methods

 During the (Top-down, front-to-back)
traversal of the scene hierarchy do:

— compare each node against the view
volume.

—if not culled, test node for occlusion against
occlusion map.

— if still not culled, render objects/occluders
augmenting the occlusion map

Occlusion Map

Occlusion Map

Set of Occluders

Testing a Node for Occlusion

« If the box representing a node is not visible then
nothing in it is either

« The faces of the box are projected onto the image
plane and tested for occlusion

Testing a Node for Occlusion

« If the box representing a node is not visible then
nothing in it is either

« The faces of the box are projected onto the image
plane and tested for occlusion

10

Hierarchical Tests

Hierarchical Tests

12

Hierarchical Tests

Differences of Algorithms

» The most important differences between
the various approaches are:

— the representation of the (augmented)
occlusion map and,

— the method of testing the hierarchy for
occlusion

14

Hierarchical Z-Buffer (HZB)
(Ned Greene, Michael Kass 93)
» An extension of the Z-buffer VSD algorithm
* It follows the outline described above.

» Scene is arranged into an octree which is
traversed top-to-bottom and front-to-back.

» During rendering an occlusion map is
incrementally built.

» Octree nodes are compared against
occlusion map.

» The occlusion map is a z-pyramid...

OpenGL Assisted Culling
(Bartz et al C&G99)
« Similar in principle to HZB but instead of
creating a z-pyramid:

— set up OpenGL so that it doesn’t modify
the z-buffer and it writes into the stencil
whenever the depth test succeeds

— render the bounding box of the geometry
and check the stencil buffer to see if at all
visible

» Requires a lot of hardware access

16

HP Hardware implementation

» Before rendering an object, scan-
convert its bounding box

» Special purpose hardware are used to
determine if any of the covered pixels
passed the z-test

* If not, the object is occluded

The Z-Pyramid

» The content of the Z-buffer is the finest
level in the pyramid

 Coarser levels are created by grouping
together four neighbouring pixels and
keeping the largest z-value

» The coarsest level is just one value
corresponding to overall max z

18

The Z-Pyramid
[J= furthest

= closer T Objects are
B= closest Dg rendered
Depth taken] ‘-J
from the
s B |

e aotesch 4

Construct pyramid by takin

Using the Z-Pyramid

» To determine whether a polygon (e.g. a
face of an octree node) is occluded:

—find the finest-level of the pyramid whose pixel
covers the image-space box of the polygon
— compare their z-values
« if polygon z > pyramid z, then stop => occluded
« else descent down the z-pyramid and repeat

20

Using The Z-Pyramid

[=furthest

= closer]
M = closest !
A D
Pdunn

Maintaining the Z-Pyramid

« |deally every time an object is rendered
causing a change in the Z-buffer, this
change is propagated through the
pyramid

» However this is not a practical approach

22

More Realistic Implementation

+ Make use of frame-to-frame coherence:

— at start of each frame render the nodes that
were visible in previous frame

—read the z-buffer and construct the z-pyramid

—now traverse the octree using the z-pyramid
for occlusion but without updating it

HZB: discussion

* It provides good acceleration in very
dense scenes

 Getting the necessary information from
the Z-buffer is costly

» A hardware modification was proposed
for making it real-time

24

Hierarchical Occlusion Maps
(Hansong Zhang et.al 97)

Similar idea to HZB but:

—they separate the coverage information
from the depth information, two data
structures

« hierarchical occlusion maps
« depth (several proposals for this)

What is Occlusion Map Pyramid?

A hierarchy of occlusion maps (HOM)

At the finest level it's just a bit map with

— 1 where it is transparent and

— 0 where it is opaque (occluded)

Higher levels are half the size in each
dimension and store gray-scale values
Records average opacities for blocks of
pixels

Represents occlusion at multiple resolutions

28

Occlusion Map Pyramid

64 x 64 32x 32 16 x 16

Occlusion Map Pyramid

31

Problem Decomposition

33

When is an object occluded by another object?

Representing Occluders

Set of Occluders Occlusion Map

34

Overlap Tests

 To test if the projection of a polygon is
occluded

—find the finest-level of the pyramid whose
pixel covers the image-space box of the
polygon

— if fully covered then continue with depth
test

— else descend down the pyramid until a
decision can be made

Aggressive Approximate Culling

« A great advantage over the HZB

* Ignoring barely-visible objects
— Small holes in or among objects
—To ignore the small holes

« Low-pass filter suppresses noise — holes
“dissolve”

« Regard “very high” opacity as fully opaque

36

Aggressive Approximate culling

Occluder selection

This is a big issue relevant to most occlusion
culling algorithms

Occluder data-base -- selection criterions

— size, redundancy, rendering complexity

— Size of bounding boxes (when depth-estimation
buffer is used)

At run time
— Objects inside the view volume
— Distance-based selection with a polygon budget

43

Metric for Comparing Occluder Quality

Occluder quality: (-A (N * V)) / ||DJ2

A : the occluder’s area

N : normal
V : viewing direction

D : the distance between the viewpoint and the occluder center
Large polygon have large area-angle.

BSP Occlusion Culling
(Naylor G192)

Both scene and occlusion information are
represented as BSP trees

Render scene in front-to-back order

Create 2D BSP tree using the edges of the
rendered polygons

Intersect this with the scene BSP tree to find
occluded regions

@EA

46

NV Occlusion Query (1)

Extension name: NV_occlusion_query

Returns pixel count — the # of pixels that pass
Provides an interface to issue multiple queries at
once before asking for the result of any one
Applications can now overlap the time it takes
for the queries to return with other work

increasing the parallelism between CPU and
GPU

NV Occlusion Query — How to Use (1)

(Optional) Disable Depth/Color Buffers

(Optional) Disable any other irrelevant non-geometric state
Generate occlusion queries

Begin it occlusion query

Render it (bounding) geometry

End occlusion query

Do other CPU computation while queries are being made
(Optional) Enable Depth/Color Buffers

(Optional) Re-enable other state

Get pixel count of it query

If (count > MAX_COUNT) render it" geometry

52

NV Occlusion Query — How to Use (2)

« Generate occlusion queries
Gluint queries[N];
GLuint pixelCount;
glGenOcclusionQueriesNV(N, queries);

« Loop over queries

for (i=0;i<N;i++){
glBeginOcclusionQueryNV(queries[i]);
/I render bounding box for i" geometry
glEndOcclusionQueryNV();

}

« Get pixel counts

for (i=0;i<N;i++) {
glGetOcclusionQueryuivNV(queries|i], GL_PIXEL_COUNT_NV, &pixelCount);
if (pixelCount > MAX_COUNT)

Il render it geometry

