

Video Compression | Yuval Noimark

Motion Estimation (*Cont.*) Given a Macroblock, *MB*_a(*x*, *y*), and an area in the reference frame *MB*_b(*x*, *y*) – how do we define the similarity? We calculate the Mean Square Error between the Macroblock and the area under test The complexity of each calculation *O*(*n*²) – can it be improved? Mee Compression | Your Norman.

© 2003 IBM R

Per-Layer	r (Juantiz	zatic	n Rc					
	acation		11116	suit	s			
	Overtientien	64.			Dil-+ 6			
	Quantization	Studio Sequence			Filot Sequence			
	8.2	1 812	2-levels	10w	1 657	2-levels	10w	
	10.4	1,013	1.080	2.851	1,007	2 1 2 1	2 506	
	12-6	1,300	1,960	2 516	070	1 514	2 326	
	14-8	908	1,432	1 813	788	1,514	1.657	
	16-10	767	932	1,815	652	912	1,037	
	18-12	660	783	1,105	548	744	979	
	Quantization	Sti	udio Secur	nce	Pi	ot Sequer	ce	
	Quantization	Stu	idio Seque	nce	Pi	ot Sequer	ce	
	Quantization 8-2	Stu high 512	2-levels	low 2.257	Pi high 430	ot Sequer 2-levels 1.190	ce low 1.788	
	Quantization 8-2 10-4	Sta high 512 378	1dio Seque 2-levels 1,160 699	nce low 2,257 1,158	Pi high 430 319	ot Sequer 2-levels 1,190 698	ce low 1,788 938	
	Quantization 8-2 10-4 12-6	Sta high 512 378 291	1dio Seque 2-levels 1,160 699 485	low 2,257 1,158 735	Pi high 430 319 244	0t Sequen 2-levels 1,190 698 476	ce low 1,788 938 609	
	Quantization 8-2 10-4 12-6 14-8	Sta high 512 378 291 230	1dio Seque 2-levels 1,160 699 485 359	nce 2,257 1,158 735 512	Pi high 430 319 244 191	ot Sequer 2-levels 1,190 698 476 347	ce low 1,788 938 609 430	
	Quantization 8-2 10-4 12-6 14-8 16-10	Sta high 512 378 291 230 188	1dio Seque 2-levels 1,160 699 485 359 278	nce 2,257 1,158 735 512 378	Pii high 430 319 244 191 152	ot Sequen 2-levels 1,190 698 476 347 264	ce 1,788 938 609 430 319	
	Quantization 8-2 10-4 12-6 14-8 16-10 18-12	Stu high 512 378 291 230 188 157	1dio Seque 2-levels 1,160 699 485 359 278 223	nce 2,257 1,158 735 512 378 485	Pii high 430 319 244 191 152 124	ot Sequer 2-levels 1,190 698 476 347 264 207	ce low 1,788 938 609 430 319 244	
	Quantization 8-2 10-4 12-6 14-8 16-10 18-12	Sta high 512 378 291 230 188 157	1dio Seque 2-levels 1,160 699 485 359 278 223	nce 2,257 1,158 735 512 378 485	Pil high 430 319 244 191 152 124	ot Sequer 2-levels 1,190 698 476 347 264 207	ce low 1,788 938 609 430 319 244	
	Quantization 8-2 10-4 12-6 14-8 16-10 18-12	Stu high 512 378 291 230 188 157	1,160 2-levels 1,160 699 485 359 278 223	low 2,257 1,158 735 512 378 485	Pi high 430 319 244 191 152 124	ot Sequer 2-levels 1,190 698 476 347 264 207	ce low 1,788 938 609 430 319 244	
	Quantization 8-2 10-4 12-6 14-8 16-10 18-12	Stu high 512 378 291 230 188 157	1100 Seque 2-levels 1,160 699 485 359 278 223	nce low 2,257 1,158 735 512 378 485	Pil high 430 319 244 191 152 124	ot Sequer 2-levels 1,190 698 476 347 264 207	ce low 1,788 938 609 430 319 244	