Surface Parametrization

Most slides courtesy of Pierre Alliez and Craig Gotsman



The plan for today
" J
m \What is triangle mesh
m \WWhat is parameterization and what is it good for:

Texture mapping
Remeshing

m Parameterization
Convex mapping
Harmonic mapping



Triangle mesh
"
m Discrete surface representation
m Piecewise linear surface (made of triangles)




Triangle mesh
" A
m Geometry:
Vertex coordinates

(X1, Y1y Z1)
(.X.21.y2’ ZZ)
(Xn’ yn’ Zn)
m Connectivity (the graph)
List of triangles

(I, J2, Kq)

(I, J2 k)

(I Jns Kin)




] What Is a Earameterization?

S <R3 - given surface

D <« R? - parameter domain

s:D - S 1-1andonto

x(u, V)
s(u,v)=| y(u,v)
L Z(u,v),




Example — flattening the earth




] Another exami)le:

Parameters: «, h
D = [0,x]x[-1,1]
X(e, h) = cos(a)
y(e, h) =h

Z(a, h) = sin()




Triangular Mesh
"

m Standard discrete 3D surface representation in
Computer Graphics — piecewise linear

m Mesh Geometry: list of vertices (3D points of the
surface)

m  Mesh Connectivity or Topology: description of the faces



Triangular Mesh




Triangular Mesh
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Mesh Parameterization
=

m Uniquely defined by mapping mesh vertices
to the parameter domain:

U:{vy,....v.} > DcR°
U(vi) = (u;, v;)
m No two edges cross in the plane (in D)

Mesh parameterization < mesh embedding
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Mesh parameterization
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2D parameterization
" J

2D parameter domain (u,v)
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Application - Texture mapping




Requirements
" J
m Bijective (1-1 and onto):
m Minimal “distortion”
Preserve 3D angles
Preserve 3D distances

Preserve 3D areas
No “stretch”

No triangles fold over.
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Distortion minimization

Kent et al ‘92 Floater 97
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More texture mapping
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Resampling problems

Distorting
embedding

r i " ¥
. I,
H E~E' B E- H B

5

Resampling
on regular grid
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Applications
JE

m Texture Mapping
m Remeshing

m Surface Reconstruction
m Morphing

m Compression
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Remeshing
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Presenter
Presentation Notes
Papier siggraph de pierre
parametrisation globale de toute la surface


Remeshing

"
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ing

Remesh
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INng examples

More remesh
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Conformal parametrization

Shape-preserving

Texture map

Conformal
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Non-simple domains
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Cutting
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Parameterization of closed genus-0 triangle meshes
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Non-Constrained Planar Spherical
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Introducing seams (cuts)
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Partition
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Introducing seams (cuts)
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Introducing seams (cuts)
"

N A
J\:' et
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Bad parameterization
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Better...(free boundary)
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Partition — problems
"

m Discontinuity of parameterization
m Visible artifacts In texture mapping

m Require special treatment

Vertices along seams have several (u,v)
coordinates

Problems in mip-mapping

Make seams short and hide them
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Summary
"

m “Good” parameterization = non-distorting
Angles and area preservation
Continuous param. of complex surfaces cannot avoid distortion.

m “Good” partition/cut:
Large patches, minimize seam length
Align seams with features (=hide them)
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Mesh parameterization
" J
s and U are piecewise-linear
Linear inside each mesh triangle

N

In 2D In 3D

A mapping between two triangles
IS a mapping
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Barycentric coordinates
"

l

o
A B

C

F3:<P, B, C>A X (P, C, A>E§ X (P, A, B)

(A, B, C) (A, B, C) (A, B, C)

(-, -, -} denotes the (signed) area of the triangle

C
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Mapping triangle to triangle
"

P3

——
o O
P1

P2

<p’ p2’ p3> <p’ p3’ p1>
g, +
(Pr P2r Ps) (P Py P3)

S(p) =

O, +

(P, P1s Py)

<p1’ P2, p3>

3
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Some technigues




Convex mapping (Tutte, Floater)
" J
m \Works for meshes equivalent to a disk

m First, we map the boundary to a convex polygon
m Then we find the inner vertices positions

/%‘;/'4;

V) AT
Sy

N

)

Vi, Vo, ..., V, — INNEr vertices; v, V.4, ..., Vy — DOuNdary vertices
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Inner vertices
=

m \We constrain each inner vertex to be a weighted
average of its neighbors:

= Y AV, i=12,...,n

JeN (i)

>0 (I, ]) e E (neighbours)

Zﬂ’w =1

JeN(i)

_{ 0 i, arenotneighbors
h,j
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Linear system of equations

vi— > Av;=0,i=12..,n

o]
JeN(i)

Zill i

jeN(i)\B
1 ey
1
1
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\ -_)%Js

Y AV, i=12,..,n

keN (i)NB
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Shape preserving weights

p, 2D

P
° P2

P
* P3

To compute 4, ..., 4, a local embedding of the patch is found:
D lIpi=p Il =1x—xIl

2) angle(p;, p, Pix1) = (2n /26) angle(v;, v, vi,4)

fpzzﬁﬁ

I, < A >0 —> use these 1 as edge weights.
\ XA =1
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Linear system of equations
" J
m A unigue solution always exists
m Important: the solution is legal (bijective)

m The system Is sparse, thus fast numerical

solution Is

m Numerical
middle mig

possible
oroblems (because the vertices Iin the

Nt get very dense...)
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Harmonic mapping
JE

m Another way to find inner vertices

m Sftrives to preserve angles (conformal)

m \We treat the mesh as a system of springs.
m Define spring energy:

1
ki JHVi ‘V1H2

harm — A ,
2 (1,])eE

E

where v; are the flat position (remember that the boundary
vertices v, V.4, -.., Vy are constrained).
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Energy minimization — least squares
" J
m \We want to find such flat positions that the
energy Is as small as possible.

m Solve the linear least squares problem!
Vi = (%, ¥;)
1 2
Eharm(xl """ Xos Y1500y yn) — A Zki,jHVi_VJ‘H =
)

1
= = ki,J((Xi_Xj)2+(yi_yJ)2)'
2 (ifyee

E..rm IS function of 2n variables
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Energy minimization — least squares
"
m To find minimum: VE, .= 0

0 1
—E, == 2k . (X, —x.)=0
8X- harm 2 jeNZ(i) I,j( I j)

0p _1

ay harm — 2 _ZN%_)Zki,j(yi_yj)ZO
i jeN (i

m Again, X ,q,...., Xy and y, .4, ..., yy are constrained.




Energy minimization — least squares
"
m To find minimum: VE, .= 0

> k(% —x,)=0, i=12...,n

JeN(i)

> kii(y,—y;)=0, i=12...,n

JeN(i)

m Again, X ,q,...., Xy and y, .4, ..., yy are constrained.
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The spring constants k;;
"
m The weights k;; are chosen to minimize angles
distortion:
Look at the edge (i, ) in the 3D mesh
Set the weight |k;; = cot o + cot g

. ‘@»

J




Discussion
=

The results of harmonic mapping are better than those of
convex mapping (local area and angles preservation).

But: the mapping is not always legal (the weights can be
negative for badly-shaped triangles...)

Both mappings have the problem of fixed boundary —
It constrains the minimization and causes distortion.

There are more advanced methods that do not require
boundary conditions.
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Angle-based Flattening (ABF)
[Sheffer and de Sturler 2001]
" J

m Angle-preserving parameterization

m The energy functional is formulated using the flat
mesh angles only!

m Allows free boundary
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Angle-based Flattening (ABF)

[Sheffer and de Sturler 2001]
" J
m The goal: minimize the difference

1=1
where 3; are angles of original (3D) mesh and a;
are the unknowns (the flat mesh)
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The angles equations (constraints)
" J
All angles are positive:
a, >0 (1)

Angles around an inner vertex in 2D sum up to 2n

Za =27 (2)

jaroundi
Angles in a triangle sum up to n

a, +a, +a =7 (3
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The angles equations (constraints)
" J

m Finally, something like the sine theorem must
hold:

(4) = =1
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The final optimization:
" J

m \We minimize

ZN:(O‘i Y )2

1=1

under the 4 constraints

m [t's enough to fix one triangle in the plane to
define the whole flat mesh
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Results
" A
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Results
" A0

ol
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Results




Results
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Discussion
" A

m Pros:
Angle preserving
Always valid (at least internally)
No rigid boundary constraints

m Cons:

Non-linear optimization
m Expensive (but now a multi-grid method exists)

Building the mesh from angles can be unstable
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