Surface Parametrization

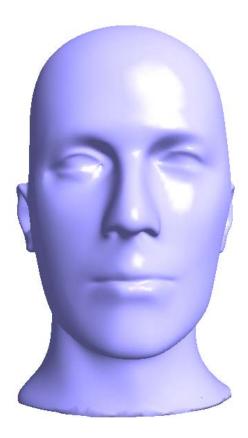
Most slides courtesy of Pierre Alliez and Craig Gotsman

The plan for today

- What is triangle mesh
- What is parameterization and what is it good for:
 - Texture mapping
 - Remeshing
- Parameterization
 - Convex mapping
 - □ Harmonic mapping

Triangle mesh

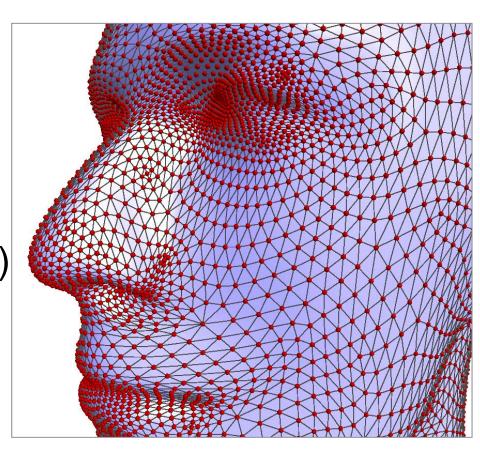
- Discrete surface representation
- Piecewise linear surface (made of triangles)



Triangle mesh

Geometry:

Vertex coordinates (x_1, y_1, z_1) (x_2, y_2, z_2) (x_{n}, y_{n}, z_{n}) Connectivity (the graph) □ List of triangles (i_1, j_1, k_1) (i_2, j_2, k_2) (i_{m}, j_{m}, k_{m})

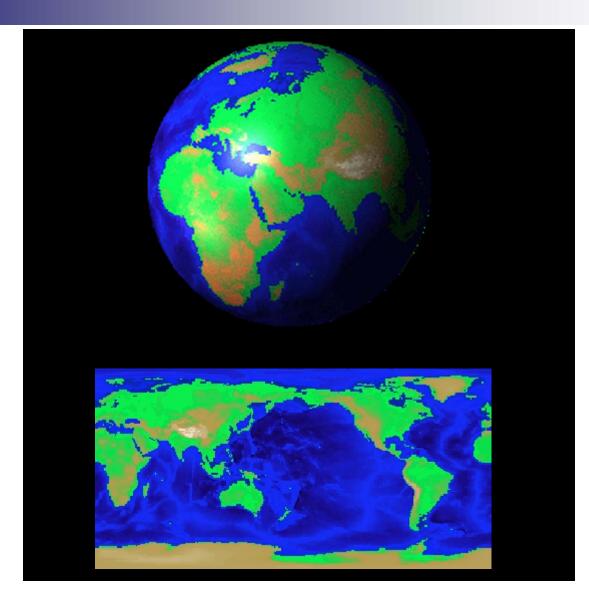


What is a parameterization?

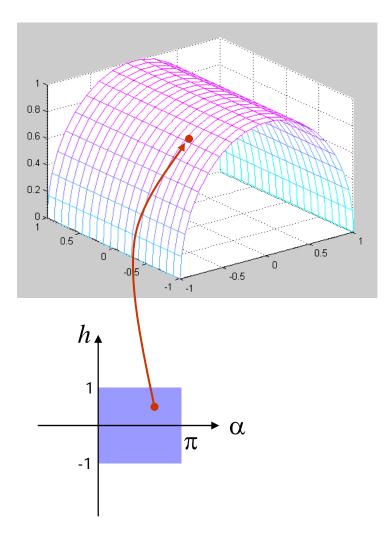
- $S \subseteq R^3$ given surface
- $D \subseteq R^2$ parameter domain
- **s** : $D \rightarrow S$ 1-1 and onto

$$\mathbf{s}(u,v) = \begin{pmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{pmatrix}$$

Example – flattening the earth



Another example:

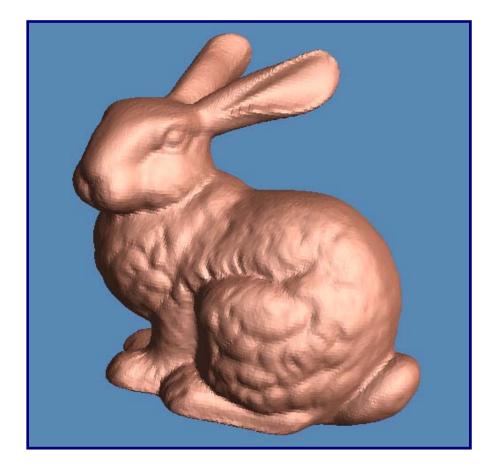


Parameters: α , h
$D = [0,\pi] \times [-1,1]$
$x(\alpha, h) = cos(\alpha)$
$y(\alpha, h) = h$
$z(\alpha, h) = sin(\alpha)$

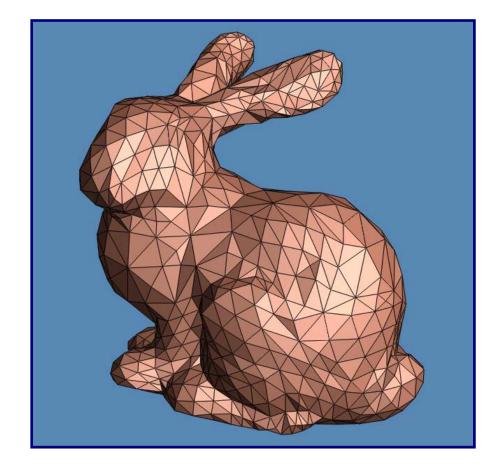
Triangular Mesh

- Standard *discrete* 3D surface representation in Computer Graphics – piecewise linear
- Mesh Geometry: list of vertices (3D points of the surface)
- Mesh Connectivity or Topology: description of the faces

Triangular Mesh



Triangular Mesh



Mesh Parameterization

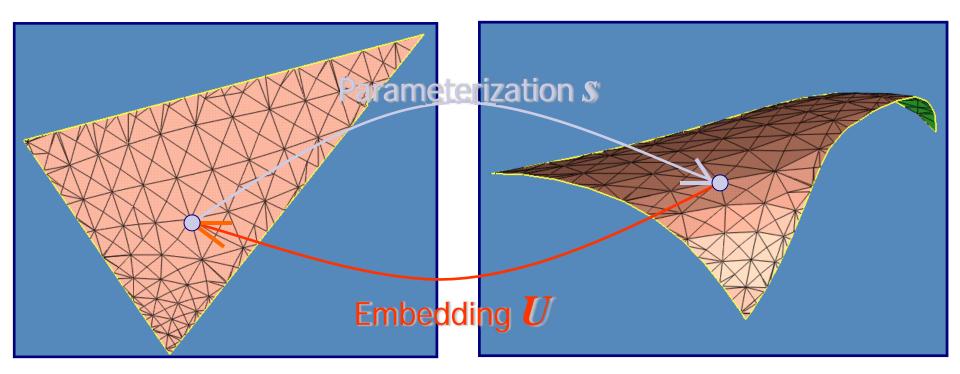
Uniquely defined by mapping mesh vertices to the parameter domain:

$$U: \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \rightarrow D \subseteq \mathbb{R}^2$$
$$U(\mathbf{v}_i) = (u_i, v_i)$$

■ No two edges cross in the plane (in *D*)

Mesh parameterization ⇔ mesh embedding

Mesh parameterization



Parameter domain

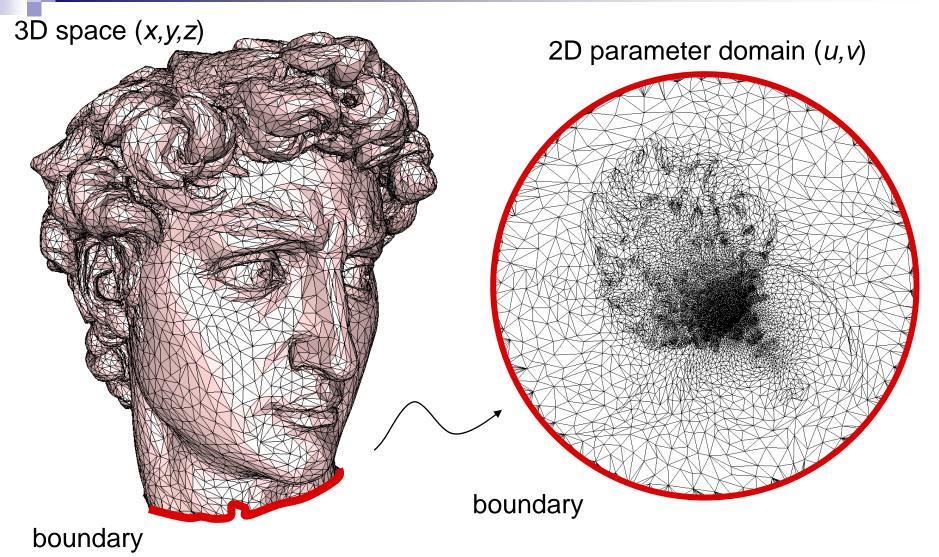
 $D \subseteq \mathbb{R}^2$

Mesh surface

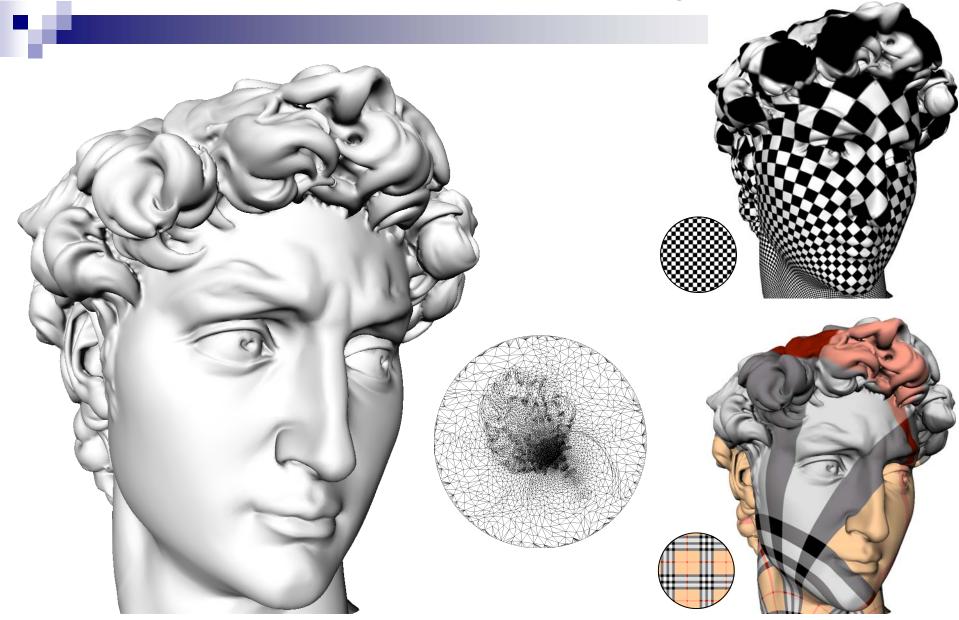
 $S \subseteq \mathbb{R}^3$

$$s = U^{-1}$$

2D parameterization



Application - Texture mapping

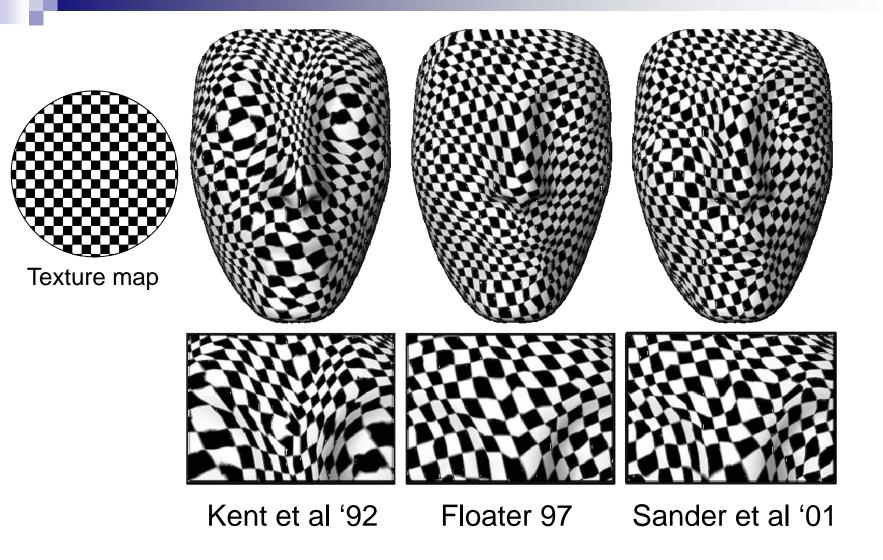


Requirements

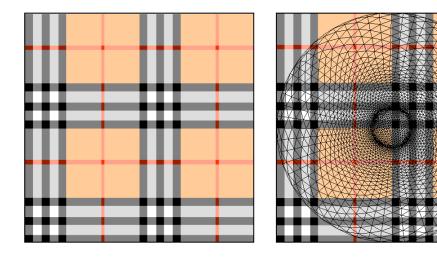
Bijective (1-1 and onto): No triangles fold over.

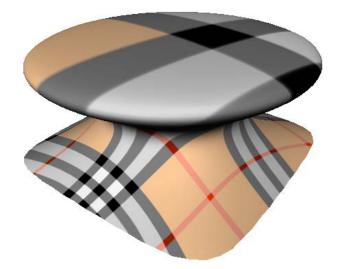
- Minimal "distortion"
 - Preserve 3D angles
 - Preserve 3D distances
 - □ Preserve 3D areas
 - □ No "stretch"

Distortion minimization

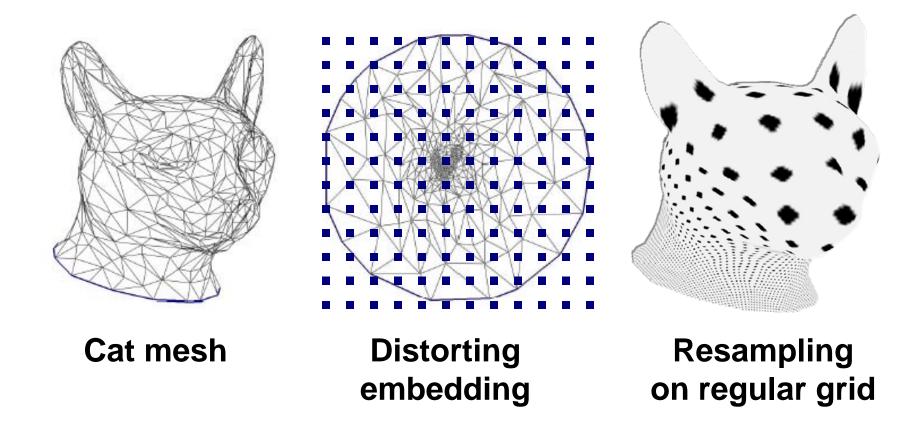


More texture mapping



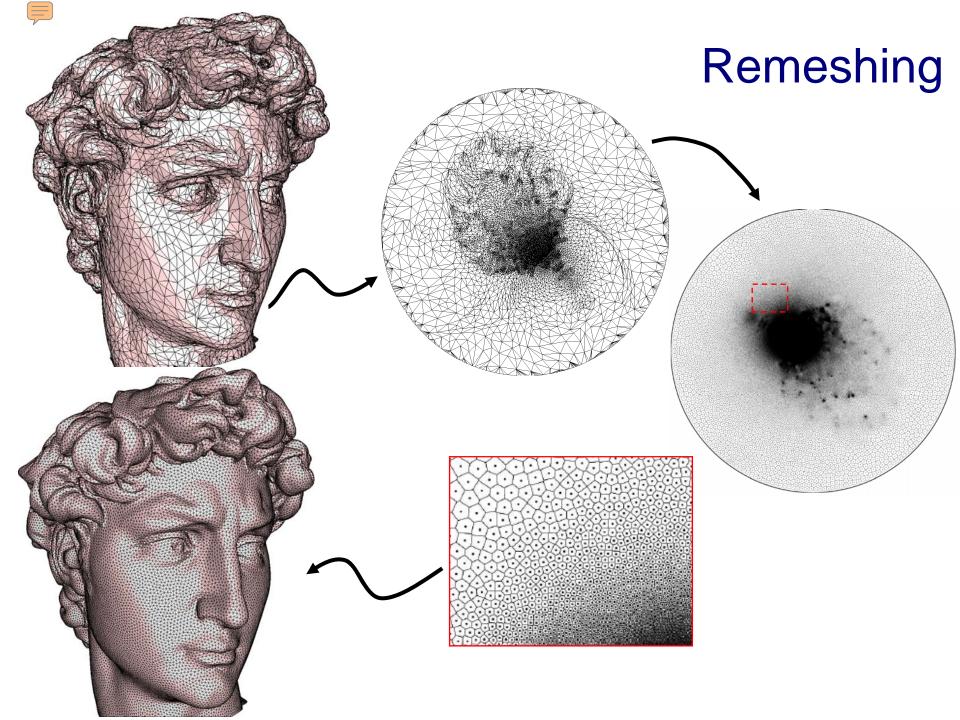


Resampling problems

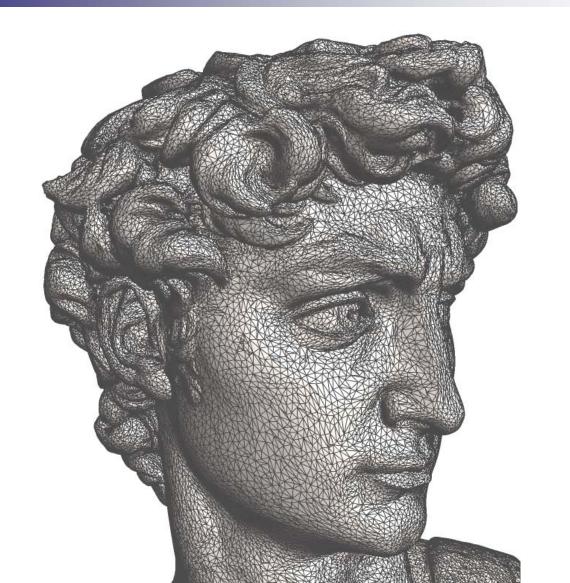


Applications

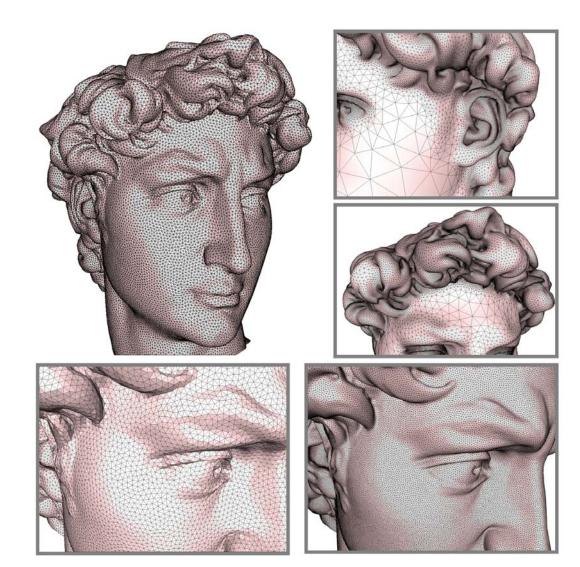
- Texture Mapping
- Remeshing
- Surface Reconstruction
- Morphing
- Compression



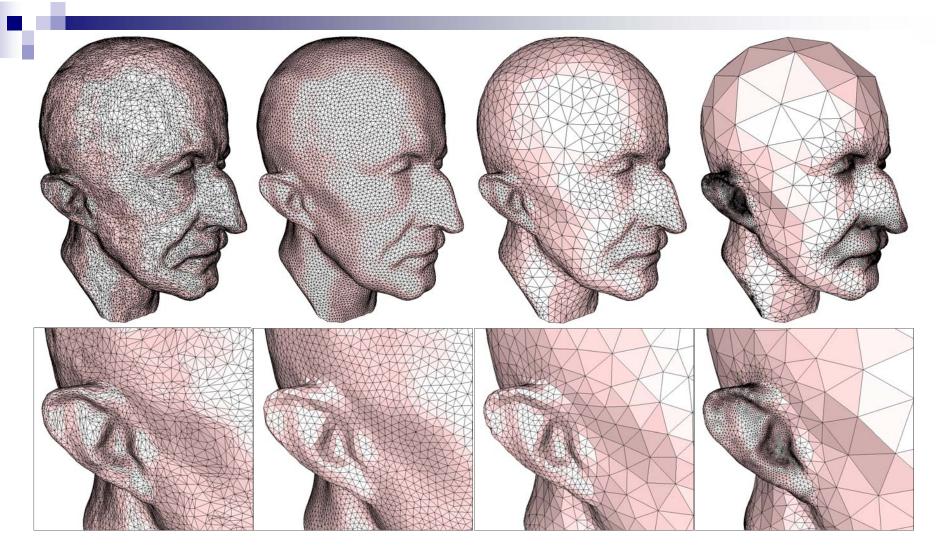
Remeshing



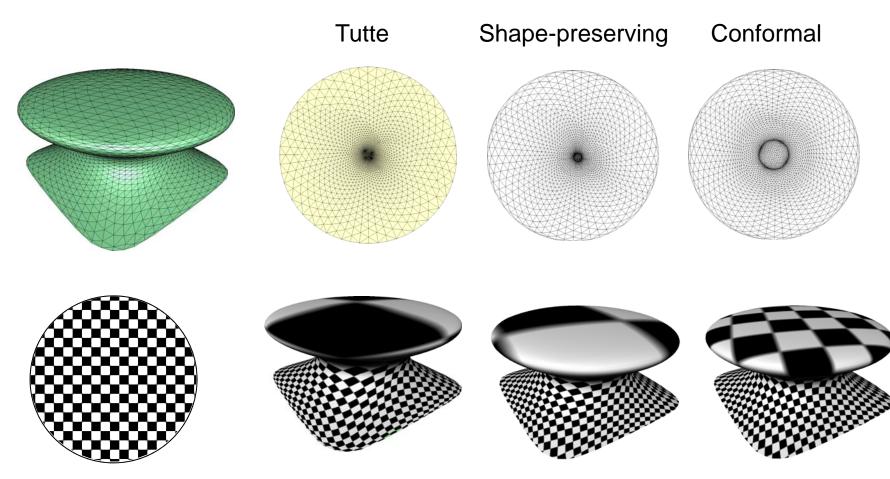
Remeshing



More remeshing examples

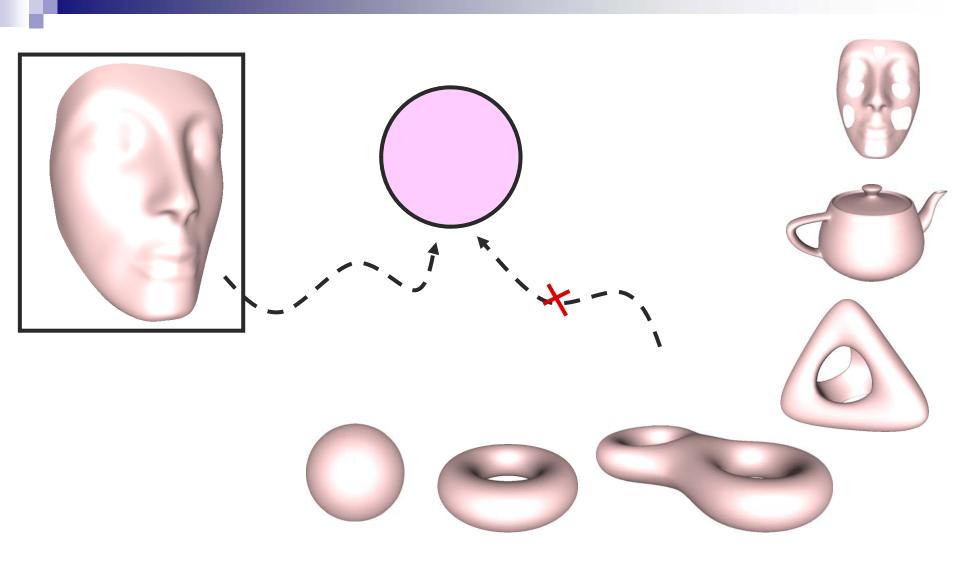


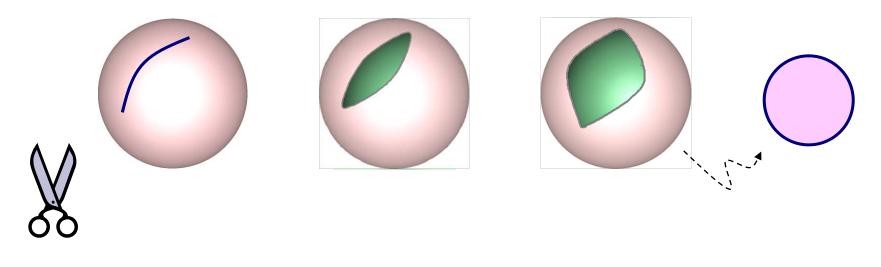
Conformal parametrization

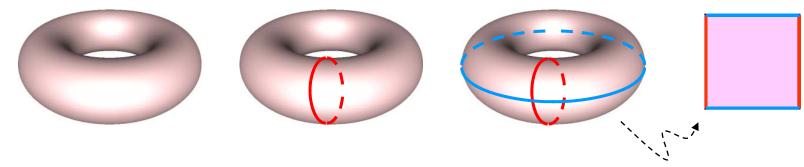


Texture map

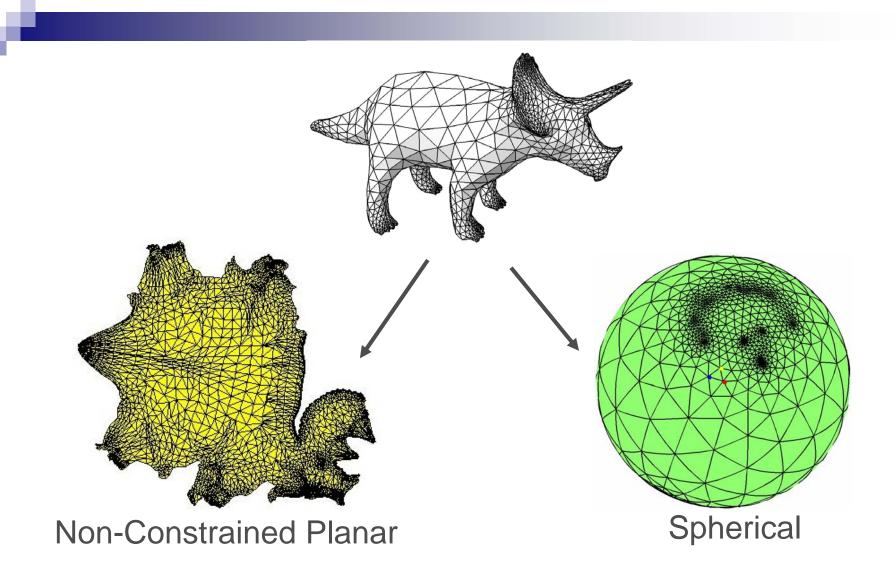
Non-simple domains



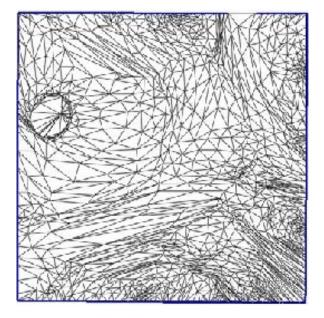




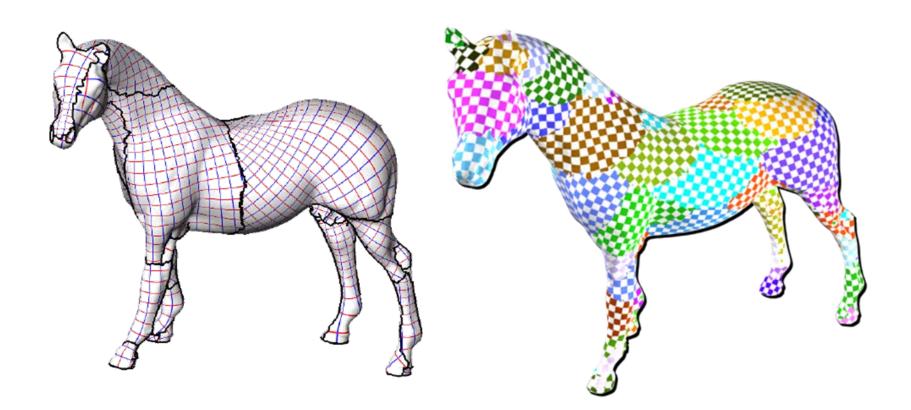
Parameterization of closed genus-0 triangle meshes



Introducing seams (cuts)

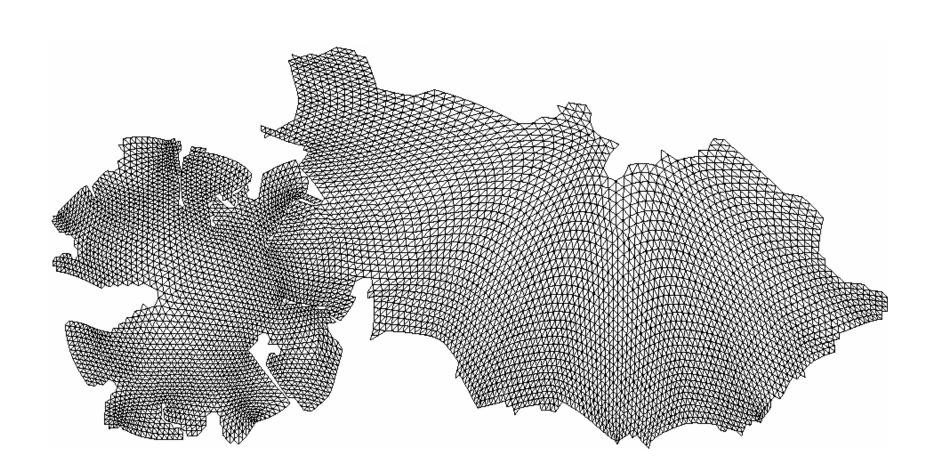


Partition

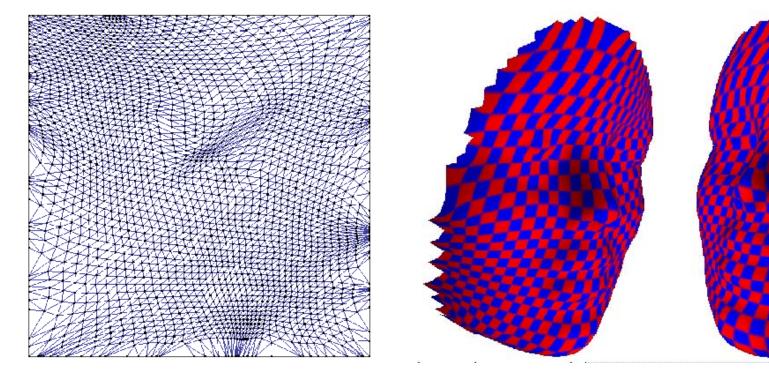


Introducing seams (cuts)

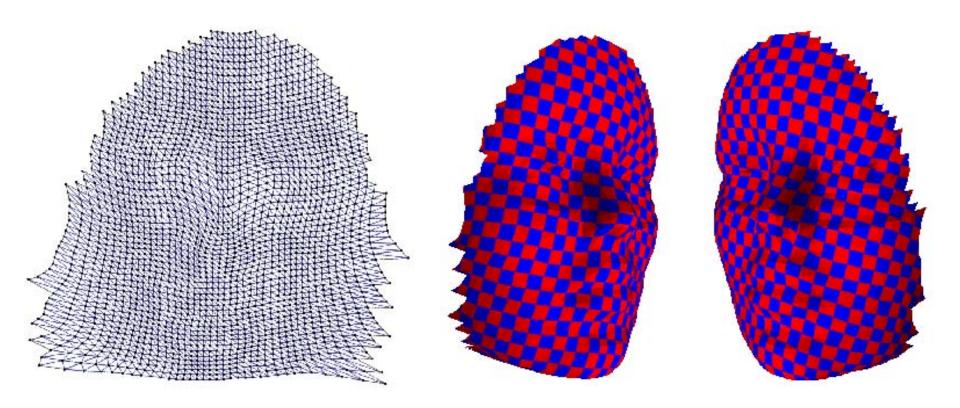
Introducing seams (cuts)



Bad parameterization



Better...(free boundary)



Partition – problems

- Discontinuity of parameterization
- Visible artifacts in texture mapping
- Require special treatment
 Vertices along seams have several (u,v) coordinates
 - Problems in mip-mapping

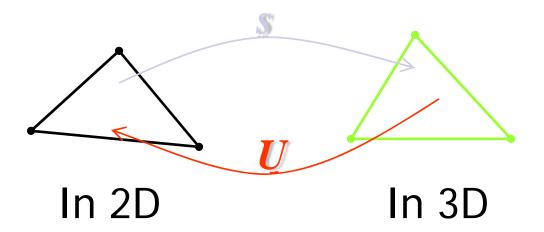
Make seams short and hide them

Summary

- "Good" parameterization = non-distorting
 - Angles and area preservation
 - Continuous param. of complex surfaces cannot avoid distortion.
- "Good" partition/cut:
 - □ Large patches, minimize seam length
 - □ Align seams with features (=hide them)

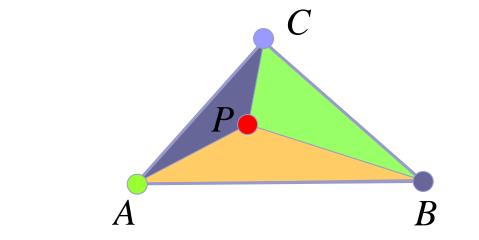
Mesh parameterization

s and *U* are piecewise-linear Linear inside each mesh triangle



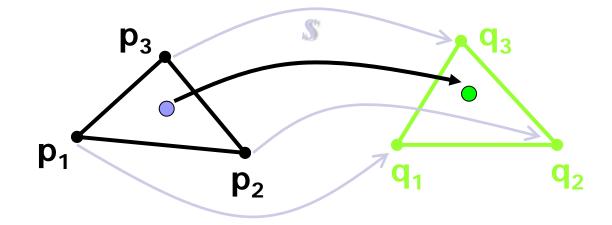
A mapping between two triangles is a *unique affine* mapping

Barycentric coordinates



$$\vec{P} = \frac{\langle P, B, C \rangle}{\langle A, B, C \rangle} \vec{A} + \frac{\langle P, C, A \rangle}{\langle A, B, C \rangle} \vec{B} + \frac{\langle P, A, B \rangle}{\langle A, B, C \rangle} \vec{C}$$
$$\langle \cdot, \cdot, \cdot \rangle \text{ denotes the (signed) area of the triangle}$$

Mapping triangle to triangle

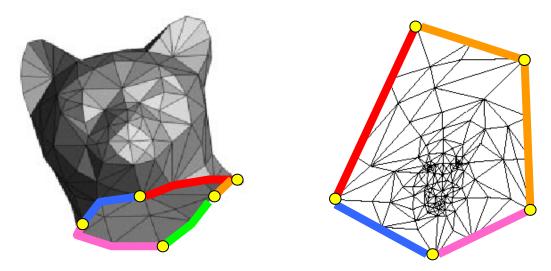


$$\mathbf{s}(\mathbf{p}) = \frac{\langle \mathbf{p}, p_2, p_3 \rangle}{\langle p_1, p_2, p_3 \rangle} q_1 + \frac{\langle \mathbf{p}, p_3, p_1 \rangle}{\langle p_1, p_2, p_3 \rangle} q_2 + \frac{\langle \mathbf{p}, p_1, p_2 \rangle}{\langle p_1, p_2, p_3 \rangle} q_3$$

Some techniques

Convex mapping (Tutte, Floater)

- Works for meshes equivalent to a disk
- First, we map the boundary to a convex polygon
- Then we find the inner vertices positions



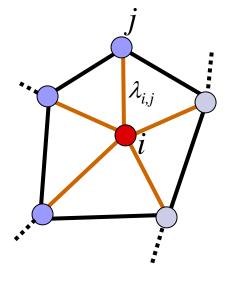
 $v_1, v_2, ..., v_n$ – inner vertices; $v_n, v_{n+1}, ..., v_N$ – boundary vertices

Inner vertices

We constrain each inner vertex to be a weighted average of its neighbors:

$$\boldsymbol{v}_i = \sum_{j \in N(i)} \lambda_{i,j} \boldsymbol{v}_j, \quad i = 1, 2, \dots, n$$

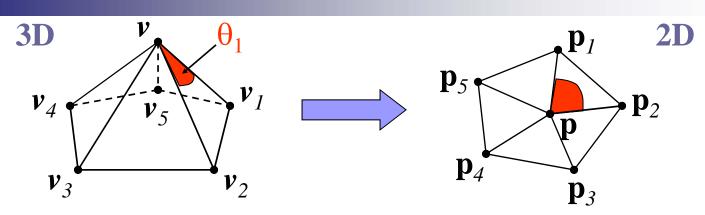
 $\lambda_{i,j} = \begin{cases} 0 & i, j \text{ are not neighbors} \\ > 0 & (i, j) \in E \text{ (neighbours)} \\ & \sum_{i \in N(i)} \lambda_{i,j} = 1 \end{cases}$



Linear system of equations

$$\begin{split} \mathbf{v}_{i} &- \sum_{j \in N(i)} \lambda_{i,j} \mathbf{v}_{j} = 0, \quad i = 1, 2, \dots, n \\ \mathbf{v}_{i} &- \sum_{j \in N(i) \setminus B} \lambda_{i,j} \mathbf{v}_{j} = \sum_{k \in N(i) \cap B} \lambda_{i,k} \mathbf{v}_{k}, \quad i = 1, 2, \dots, n \\ \begin{pmatrix} 1 & -\lambda_{1,j_{1}} & -\lambda_{1,j_{d1}} \\ 1 & & \\ -\lambda_{4,j_{1}} & \ddots & \\ & -\lambda_{n,j_{5}} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \vdots \\ \mathbf{v}_{n} \end{pmatrix} = \begin{pmatrix} \sigma_{1} \\ \sigma_{2} \\ \vdots \\ \mathbf{v}_{n} \end{pmatrix} \end{split}$$

Shape preserving weights



To compute $\lambda_1, ..., \lambda_5$, a local embedding of the patch is found:

1) $\parallel \mathbf{p}_i - \mathbf{p} \parallel = \parallel \mathbf{x}_i - \mathbf{x} \parallel$

2) $angle(\mathbf{p}_i, \mathbf{p}, \mathbf{p}_{i+1}) = (2\pi / \Sigma \theta_i) angle(\mathbf{v}_i, \mathbf{v}, \mathbf{v}_{i+1})$

$$\exists \ \lambda_i \ , \ \begin{cases} \mathbf{p} = \Sigma \ \lambda_i \ \mathbf{p}_i \\ \lambda_i > 0 \\ \Sigma \ \lambda_i \ = 1 \end{cases} \implies \text{use these } \lambda \text{ as edge weights.}$$

Linear system of equations

- A unique solution always exists
- Important: the solution is legal (bijective)
- The system is sparse, thus fast numerical solution is possible
- Numerical problems (because the vertices in the middle might get very dense...)

Harmonic mapping

- Another way to find inner vertices
- Strives to preserve angles (conformal)
- We treat the mesh as a system of springs.
- Define spring energy:

$$E_{harm} = \frac{1}{2} \sum_{(i,j)\in E} k_{i,j} \| \mathbf{v}_i - \mathbf{v}_j \|^2$$

where v_i are the flat position (remember that the boundary vertices v_n , v_{n+1} , ..., v_N are constrained).

Energy minimization – least squares

- We want to find such flat positions that the energy is as small as possible.
- Solve the linear least squares problem!

$$\begin{aligned} \mathbf{v}_{i} &= (x_{i}, y_{i}) \\ E_{harm}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{n}) &= \frac{1}{2} \sum_{(i,j) \in E} k_{i,j} \left\| \mathbf{v}_{i} - \mathbf{v}_{j} \right\|^{2} = \\ &= \frac{1}{2} \sum_{(i,j) \in E} k_{i,j} \left((x_{i} - x_{j})^{2} + (y_{i} - y_{j})^{2} \right). \end{aligned}$$

 E_{harm} is function of 2n variables

Energy minimization – least squares

• To find minimum: $\nabla E_{harm} = 0$

$$\frac{\partial}{\partial x_i} E_{harm} = \frac{1}{2} \sum_{j \in N(i)} 2k_{i,j} (x_i - x_j) = 0$$
$$\frac{\partial}{\partial y_i} E_{harm} = \frac{1}{2} \sum_{j \in N(i)} 2k_{i,j} (y_i - y_j) = 0$$

• Again, x_{n+1}, \dots, x_N and y_{n+1}, \dots, y_N are constrained.

Energy minimization – least squares

• To find minimum: $\nabla E_{harm} = 0$

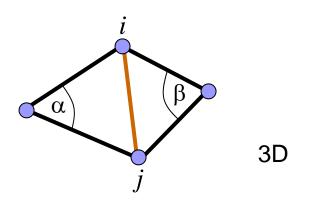
$$\sum_{j \in N(i)} k_{i,j} (x_i - x_j) = 0, \quad i = 1, 2, \dots, n$$
$$\sum_{j \in N(i)} k_{i,j} (y_i - y_j) = 0, \quad i = 1, 2, \dots, n$$

• Again, x_{n+1}, \dots, x_N and y_{n+1}, \dots, y_N are constrained.

The spring constants $k_{i,i}$

- The weights $k_{i,j}$ are chosen to minimize angles distortion:
 - \Box Look at the edge (i, j) in the 3D mesh

 \Box Set the weight $k_{i,j} = \cot \alpha + \cot \beta$



Discussion

- The results of harmonic mapping are better than those of convex mapping (local area and angles preservation).
- But: the mapping is not always legal (the weights can be negative for badly-shaped triangles...)
- Both mappings have the problem of fixed boundary it constrains the minimization and causes distortion.
- There are more advanced methods that do not require boundary conditions.

Angle-based Flattening (ABF) [Sheffer and de Sturler 2001]

- Angle-preserving parameterization
- The energy functional is formulated using the flat mesh angles only!
- Allows free boundary

Angle-based Flattening (ABF) [Sheffer and de Sturler 2001]

The goal: minimize the difference

$$\sum_{i=1}^{N} (\alpha_i - \beta_i)^2$$

where β_i are angles of original (3D) mesh and α_i are the unknowns (the flat mesh)

The angles equations (constraints)

All angles are positive:

 $\alpha_i > 0 \quad (1)$

Angles around an inner vertex in 2D sum up to 2π

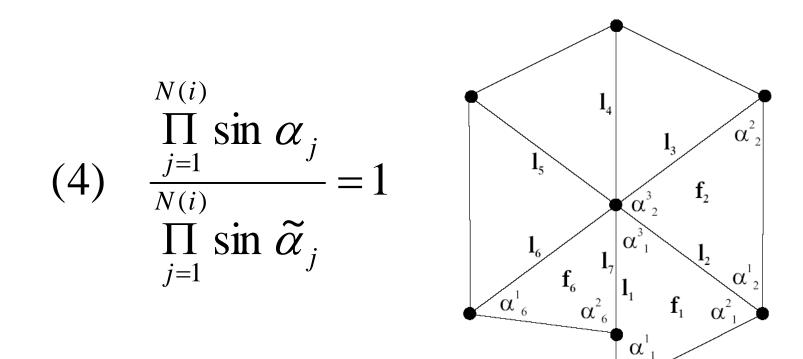
$$\sum_{\text{around}\,i} \alpha_j = 2\pi \quad (2)$$

Angles in a triangle sum up to π^{ja}

$$a_{i_1} + a_{i_2} + a_{i_3} = \pi \quad (3)$$

The angles equations (constraints)

Finally, something like the sine theorem must hold:



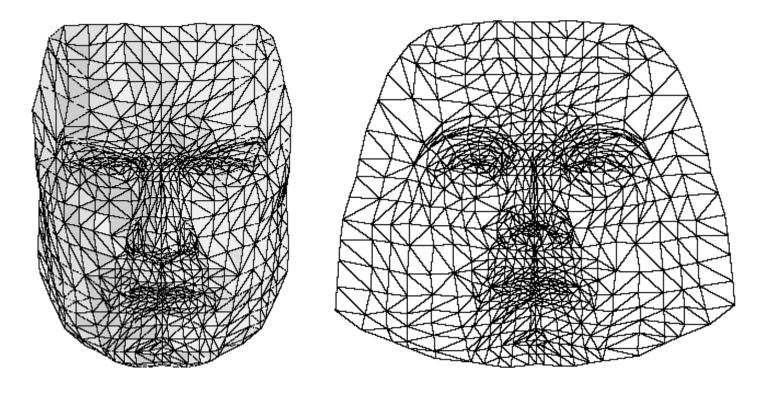
The final optimization:

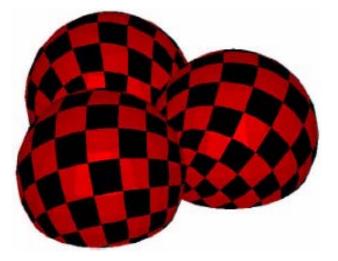
We minimize

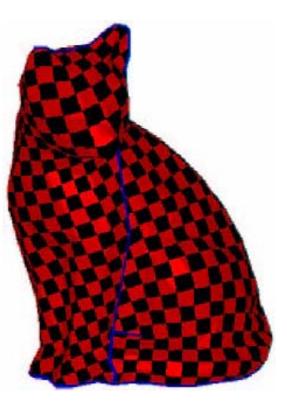
$$\sum_{i=1}^{N} (\alpha_i - \beta_i)^2$$

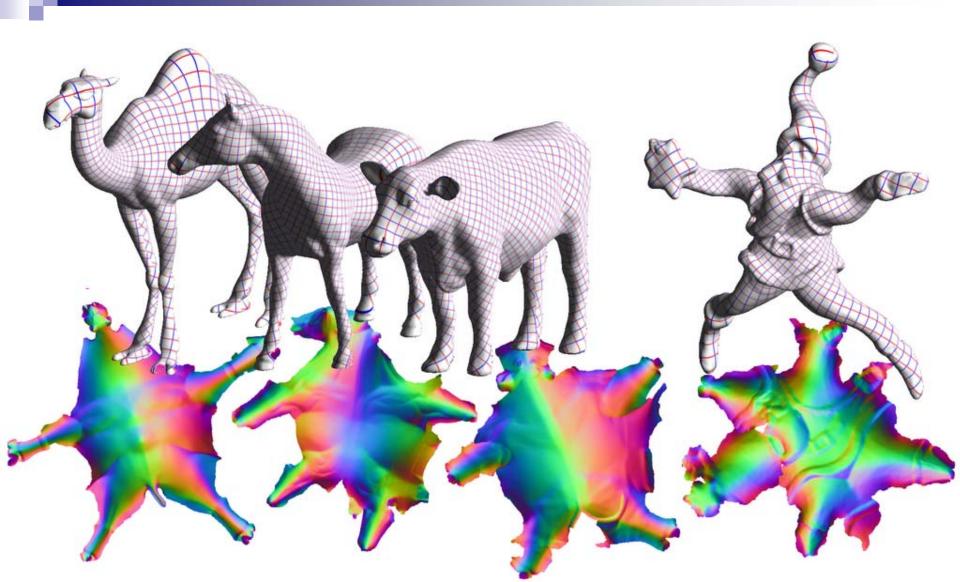
under the 4 constraints

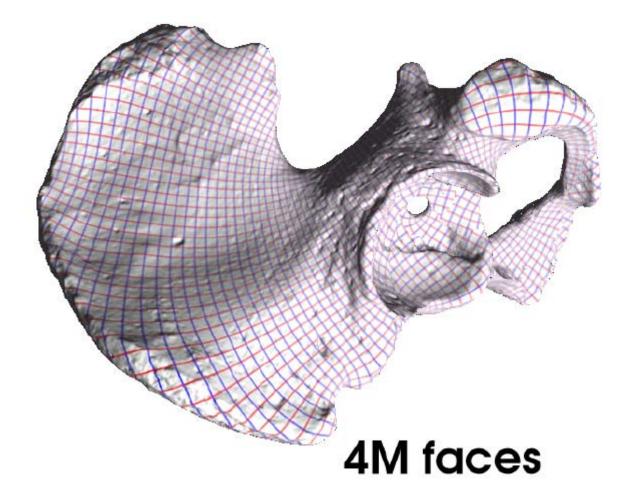
It's enough to fix one triangle in the plane to define the whole flat mesh











Discussion

Pros:

- Angle preserving
- □ Always valid (at least internally)
- No rigid boundary constraints
- Cons:
 - Non-linear optimization
 - Expensive (but now a multi-grid method exists)
 - Building the mesh from angles can be unstable

Thanks