The plan for today

- What is triangle mesh
- What is parameterization and what is it good for:
\square Texture mapping
\square Remeshing
- Parameterization
\square Convex mapping
\square Harmonic mapping

Triangle mesh

- Discrete surface representation
- Piecewise linear surface (made of triangles)

Requirements

- Bijective (1-1 and onto): No triangles fold over.
- Minimal "distortion" - Preserve 3D angles - Preserve 3D distances - Preserve 3D areas \square No "stretch"

Linear system of equations

$$
\begin{aligned}
& \boldsymbol{v}_{i}-\sum_{j \in N(i)} \lambda_{i, j} \boldsymbol{v}_{j}=0, \quad i=1,2, \ldots, n \\
& \boldsymbol{v}_{i}-\sum_{j \in N(i) B B} \lambda_{i, j} \boldsymbol{v}_{j}=\sum_{k \in N(i) \cap B} \lambda_{i, k} \boldsymbol{v}_{k}, \quad i=1,2, \ldots, n \\
& \left(\begin{array}{ccccc}
1 & & -\lambda_{1, j_{1}} & & -\lambda_{1, j_{d 1}} \\
& 1 & & & \\
& & 1 & & \\
& -\lambda_{4, j_{1}} & & \ddots & \\
& & -\lambda_{n, j_{5}} & & 1
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{v}_{1} \\
\boldsymbol{v}_{2} \\
\\
\end{array}\right.
\end{aligned}
$$

Inner vertices

- We constrain each inner vertex to be a weighted average of its neighbors:

$$
\begin{gathered}
\boldsymbol{v}_{i}=\sum_{j \in N(i)} \lambda_{i, j} \boldsymbol{v}_{j}, \quad i=1,2, \ldots, n \\
\lambda_{i, j}=\left\{\begin{array}{cc}
0 & i, j \text { are not neighbors } \\
>0 & (i, j) \in E \text { (neighbours) } \\
\sum_{j \in N(i, j} \lambda_{i, j}=1
\end{array}\right.
\end{gathered}
$$

Linear system of equations

- A unique solution always exists
- Important: the solution is legal (bijective)
- The system is sparse, thus fast numerical solution is possible
- Numerical problems (because the vertices in the middle might get very dense...)

Energy minimization - least squares

- We want to find such flat positions that the energy is as small as possible.
- Solve the linear least squares problem!
$v_{i}=\left(x_{i}, y_{i}\right)$
$E_{\text {harm }}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=\frac{1}{2} \sum_{(i, j) \in E} k_{i, j}\left\|\boldsymbol{v}_{i}-v_{j}\right\|^{2}=$
$=\frac{1}{2} \sum_{(i, i j \in E E} k_{i, j}\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)$.

$$
E_{\text {harm }} \text { is function of } 2 n \text { variables }
$$

Shape preserving weights

To compute $\lambda_{p}, \ldots, \lambda_{5}$, a local embedding of the patch is found:

1) $\left\|\mathbf{p}_{i}-\mathbf{p}\right\|=\left\|\mathbf{x}_{i}-\mathbf{x}\right\|$
2) $\operatorname{angle}\left(\mathbf{p}_{i}, \mathbf{p}, \mathbf{p}_{i+1}\right)=\left(2 \pi / \Sigma \theta_{i}\right) \operatorname{angle}\left(\boldsymbol{v}_{i}, \boldsymbol{v}, \boldsymbol{v}_{i+1}\right)$

$$
\exists \lambda_{i},\left\{\begin{array}{l}
\mathbf{p}=\Sigma \lambda_{i} \mathbf{p}_{i} \\
\lambda_{i}>0 \\
\Sigma \lambda_{i}=1
\end{array} \quad \Rightarrow \text { use these } \lambda\right. \text { as edge weights. }
$$

Harmonic mapping

- Another way to find inner vertices
- Strives to preserve angles (conformal)
- We treat the mesh as a system of springs.
- Define spring energy:

$$
E_{\text {harm }}=\frac{1}{2} \sum_{(i, j) \in E} k_{i, j}\left\|\boldsymbol{v}_{i}-\boldsymbol{v}_{j}\right\|^{2}
$$

where v_{i} are the flat position (remember that the boundary vertices $\boldsymbol{v}_{n}, \boldsymbol{v}_{n+1}, \ldots, \boldsymbol{v}_{N}$ are constrained).

Energy minimization - least squares

- To find minimum: $\nabla E_{\text {harm }}=0$

$$
\begin{array}{|ll}
\sum_{j \in N(i, j} k_{i j}\left(x_{i}-x_{j}\right)=0, & i=1,2, \ldots, n \\
\sum_{j \in N(i) j} k_{i, j}\left(y_{i}-y_{j}\right)=0, & i=1,2, \ldots, n \\
\hline
\end{array}
$$

- Again, x_{n+1}, \ldots, x_{N} and y_{n+1}, \ldots, y_{N} are constrained.

Energy minimization - least squares

- To find minimum: $\nabla E_{\text {harm }}=0$

$$
\begin{aligned}
& \frac{\partial}{\partial x_{i}} E_{\text {hasm }}=\frac{1}{2} \sum_{j \in N(i)} 2 k_{i, j}\left(x_{i}-x_{j}\right)=0 \\
& \frac{\partial}{\partial y_{i}} E_{\text {hasm }}=\frac{1}{2} \sum_{j \in N(i)} 2 k_{i, j}\left(y_{i}-y_{j}\right)=0
\end{aligned}
$$

- Again, $x_{n+1}, \ldots ., x_{N}$ and y_{n+1}, \ldots, y_{N} are constrained.

Discussion

- The results of harmonic mapping are better than those of convex mapping (local area and angles preservation).
- But: the mapping is not always legal (the weights can be negative for badly-shaped triangles...)
- Both mappings have the problem of fixed boundary it constrains the minimization and causes distortion.
- There are more advanced methods that do not require boundary conditions.

The spring constants $k_{i, j}$

- The weights $k_{i, j}$ are chosen to minimize angles distortion:
- Look at the edge (i, j) in the 3D mesh
\square Set the weight $k_{i, j}=\cot \alpha+\cot \beta$

3D

