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Surface Parametrization

Most slides courtesy of Pierre Alliez and Craig Gotsman2

The plan for today

� What is triangle mesh
� What is parameterization and what is it good for:

� Texture mapping 
� Remeshing

� Parameterization
� Convex mapping
� Harmonic mapping
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Triangle mesh

� Discrete surface representation
� Piecewise linear surface (made of triangles)
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Triangle mesh

� Geometry:
� Vertex coordinates

(x1, y1, z1)

(x2, y2, z2)
.    .    .

(xn, yn, zn)

� Connectivity (the graph)
� List of triangles

(i1, j1, k1)

(i2, j2, k2)
.    .    .

(im, jm, km)
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2D parameterization

3D space (x,y,z)
2D parameter domain (u,v)

boundary
boundary
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Application - Texture mapping
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Requirements

� Bijective (1-1 and onto): No triangles fold over.
� Minimal “distortion”

� Preserve 3D angles
� Preserve 3D distances
� Preserve 3D areas
� No “stretch”
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Distortion minimization

Kent et al ‘92 Floater 97 Sander et al ‘01

Texture map
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More texture mapping
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Applications

� Texture Mapping
� Remeshing
� Surface Reconstruction
� Morphing 
� Compression

Remeshing
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Remeshing examples
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More remeshing examples
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Conformal parametrization

Texture map

Tutte Shape-preserving Conformal
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Non-simple domains

16

Cutting
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Parameterization of closed genus-0 triangle meshes

Non-Constrained Planar Spherical
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Convex mapping (Tutte, Floater)

� Works for meshes equivalent to a disk
� First, we map the boundary to a convex polygon
� Then we find the inner vertices positions

v1, v2, …, vn – inner vertices;     vn, vn+1, …, vN – boundary vertices
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Inner vertices

� We constrain each inner vertex to be a weighted 
average of its neighbors:
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Linear system of equations
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Shape preserving weights

To compute �1, …, �5, a local embedding of the patch is found:

1) || pi – p || = || xi – x ||

2) angle(pi, p, pi+1) = (2� /��i ) angle(vi, v, vi+1)

p4 p3

p5

p1

p
p2

2D3D

p = � �i pi

�i > 0

� �i  = 1

� use these � as edge weights.� �i ,

v3 v2

v1v4 v5

v �1
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Linear system of equations

� A unique solution always exists
� Important: the solution is legal (bijective)

� The system is sparse, thus fast numerical 
solution is possible

� Numerical problems (because the vertices in the 
middle might get very dense…)
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Harmonic mapping

� Another way to find inner vertices
� Strives to preserve angles (conformal)
� We treat the mesh as a system of springs.
� Define spring energy:

where vi are the flat position (remember that the boundary
vertices vn, vn+1, …, vN are constrained).
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Energy minimization – least squares

� We want to find such flat positions that the 
energy is as small as possible.

� Solve the linear least squares problem! 
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Energy minimization – least squares

� To find minimum: �Eharm= 0

� Again, xn+1,…., xN and yn+1, …, yN are constrained.
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Energy minimization – least squares

� To find minimum: �Eharm= 0

� Again, xn+1,…., xN and yn+1, …, yN are constrained.
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The spring constants ki,j

� The weights ki,j are chosen to minimize angles 
distortion:
� Look at the edge (i, j) in the 3D mesh
� Set the weight   ki,j = cot � + cot �

� �

i

j
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Discussion

� The results of harmonic mapping are better than those of 
convex mapping (local area and angles preservation).

� But: the mapping is not always legal (the weights can be 
negative for badly-shaped triangles…)

� Both mappings have the problem of fixed boundary –
it constrains the minimization and causes distortion.

� There are more advanced methods that do not require 
boundary conditions.

Thanks


