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Acceleration Data Structures 
for Ray Tracing

Most slides are taken from Fredo Durand

Extra rays needed for these effects:
• Distribution Ray Tracing

– Soft shadows
– Anti-aliasing (getting rid of jaggies)
– Glossy reflection
– Motion blur
– Depth of field (focus)

Shadows
• one shadow ray per 

intersection per point 
light source

no shadow rays

one shadow ray

Soft Shadows
• multiple shadow rays 

to sample area light 
source

one shadow ray

lots of shadow rays

Antialiasing – Supersampling
• multiple 

rays per 
pixel

point light

area light

jaggies w/ antialiasing • one reflection ray per intersection

perfect mirror

Reflection

θθ
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Glossy Reflection
• multiple reflection 

rays

polished surfaceθθ

Justin Legakis

Motion Blur
• Sample objects 

temporally

Rob Cook

Algorithm Analysis
• Ray casting
• Lots of primitives
• Recursive
• Distributed Ray 

Tracing Effects
– Soft shadows
– Anti-aliasing
– Glossy reflection
– Motion blur
– Depth of field

cost  ≤ height * width * 
num primitives * 
intersection cost * 
num shadow rays *
supersampling *
num glossy rays *              
num temporal samples *
max recursion depth *
. . .

can we reduce this?

The Ray Tree

R2

R1

R3

L2

L1

L3N1

N2

N3

T1

T3

Ni surface normal

Ri reflected ray

Li shadow ray

Ti transmitted (refracted) ray

Eye

L1

T3R3

L3L2

T1R1

R2

Eye

Questions? Accelerating Ray Tracing
• Four main groups of acceleration techniques:

– Reducing the average cost of intersecting a ray with a 
scene:

• Faster intersection calculations
• Fewer intersection calculations

– Reducing the total number of rays that are traced
• Adaptive recursion depth control

– Discrete Ray Tracing
• proximity clouds

– Using generalized rays
– Parallelization, specialized hardware



3

Acceleration of Ray Casting
• Goal: Reduce the 

number of 
ray/primitive 
intersections

Bounding Volumes
• Idea: associate with each object a simple bounding 

volume. If a ray misses the bounding volume, it also 
misses the object contained therein.

• Common bounding volumes:
– spheres
– bounding boxes
– bounding slabs

• Effective for additional applications:
– Clipping acceleration
– Collision detection

• Note: bounding volumes offer no asymptotic 
improvement!

Conservative Bounding Region
• First check for an 

intersection with a 
conservative 
bounding region

• Early reject

Conservative Bounding Regions

axis-aligned 
bounding box

non-aligned 
bounding box

bounding 
sphere

arbitrary convex region 
(bounding half-spaces)

• tight → avoid
false positives

• fast to intersect

Bounding Volumes Bounding Boxes can overlap
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Intersection with Axis-Aligned Box
From Lecture 3, 

Ray Casting II
• For all 3 axes, 

calculate the intersection 
distances t1 and t2

• tnear = max (t1x, t1y, t1z)
tfar = min (t2x, t2y, t2z)

• If tnear> tfar, 
box is missed

• If tfar< tmin, 
box is behind

• If box survived tests, 
report intersection at tnear

y=Y2

y=Y1

x=X1 x=X2

tnear

tfar

t1x

t1y

t2x

t2y

Bounding Volume Hierarchy
• Introduced by James Clark (SGI, Netscape) in 

1976 for efficient view-frustum culling.

Procedure IntersectBVH(ray, node)
begin

if IsLeaf(node) then
Intersect(ray, node.object)

else if IntersectBV(ray,node.boundingVolume) 
then

foreach child of node do
IntersectBVH(ray, child)

endfor
endif

end

Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse

Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse

Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse

Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse



5

Bounding Volume Hierarchy
• Find bounding box of objects
• Split objects into two groups
• Recurse

Where to split objects?
• At midpoint    OR
• Sort, and put half of the objects on each side    OR
• Use modeling hierarchy

Intersection with BVH
• Check subvolume with closer intersection first

Intersection with BVH
• Don't return intersection immediately if the 

other subvolume may have a closer intersection

Questions? Spatial Subdivision
• Uniform spatial subdivision:

– The space containing the scene is subdivided into a 
uniform grid of cubes “voxels”.

– Each voxel stores a list of all objects at least partially 
contained in it.in

– Given a ray, voxels are traversed using a 3D variant 
of the 2D line drawing algorithms.

– At each voxel the ray is tested for intersection with 
the primitives stored therein

– Once an intersection has been found, there is no need 
to continue to other voxels.
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Regular Grid

Cell (i, j)

Create grid
• Find 

bounding 
box of scene

• Choose grid 
spacing

• gridx need 
not = gridy

gridy

gridx

Insert primitives into grid
• Primitives 

that overlap 
multiple 
cells?

• Insert into 
multiple 
cells (use 
pointers)

For each cell along a ray 
• Does the cell 

contain an 
intersection?

• Yes: return 
closest
intersection

• No: continue

Preventing repeated computation
• Perform the 

computation 
once, "mark" 
the object 

• Don't 
re-intersect 
marked 
objects

Don't return distant intersections
• If intersection 

t is not within 
the cell range, 
continue 
(there may be 
something 
closer)
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Where do we start?
• Intersect ray 

with scene 
bounding box

• Ray origin 
may be inside
the scene 
bounding box

tmin

tnext_v

tnext_h

tmin

tnext_vtnext_h

Cell (i, j)

Is there a pattern to cell crossings?
• Yes, the 

horizontal 
and vertical 
crossings 
have regular 
spacing

dtv = gridy / diry

dth = gridx / dirx
gridy

gridx

(dirx, diry)

What's the next cell?

dtv
dth

Cell (i, j)

if   tnext_v <  tnext_h

i  +=  signx

tmin =  tnext_v

tnext_v +=  dtv

else
j  +=  signy

tmin =  tnext_h

tnext_h +=  dth

tmin

tnext_v

tnext_h

Cell (i+1, j)

(dirx, diry)

if (dirx > 0) signx = 1 else signx = -1
if (diry > 0) signy = 1 else signy = -1

What's the next cell? 
• 3DDDA – Three 

Dimensional Digital 
Difference Analyzer

• We'll see this 
again later, for 
line rasterization

Pseudo-code
create grid 

insert primitives into grid

for each ray r

find initial cell c(i,j), tmin, tnext_v & tnext_h
compute dtv, dth, signx and signy
while c != NULL

for each primitive p in c

intersect r with p

if intersection in range found

return

c = find next cell

Regular Grid Discussion
• Advantages?

– easy to construct
– easy to traverse

• Disadvantages?
– may be only sparsely filled
– geometry may still be clumped
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Questions? Adaptive Grids

Nested Grids Octree/(Quadtree)

• Subdivide until each cell contains no more than 
n elements, or maximum depth d is reached

Primitives in an Adaptive Grid
• Can live at intermediate levels, or

be pushed to lowest level of grid

Octree/(Quadtree)

Top down traversal

Split ray into sub-segments and 
traverse each segment 
recursively. 

Bottom Up traversal

Step from cell to cell. 
Intersect current cell and add an 
epsilon into the next cell.
Then search for the cell in the 
tree.
A naïve search starts from the 
root.
Otherwise, try an intelligent 
guess…

Kd-trees vs. Quad-tree
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Kd-trees vs. BSP-tree Adaptive Spatial Subdivision
• Disadvantages of uniform subdivision:

– requires a lot of space
– traversal of empty regions of space can be slow
– not suitable for “teapot in a stadium” scenes

• Solution: use a hierarchical adaptive spatial 
subdivision data structure
– octrees
– BSP-trees

• Given a ray, perform a depth-first traversal of the 
tree. Again, can stop once an intersection has 
been found.

Bounding Volume Hierarchy Discussion
• Advantages

– easy to construct
– easy to traverse
– binary

• Disadvantages
– may be difficult to choose a good split for a node
– poor split may result in minimal spatial pruning 

Uniform vs. Adaptive Subdivision

Macro-regions Proximity Clouds
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Parallel/Distributed RT
• Two main approaches:

– Each processor is in charge of tracing a subset of the 
rays. Requires a shared memory architecture, 
replication of the scene database, or transmission of 
objects between processors on demand.

– Each processor is in charge of a subset of the scene 
(either in terms of space, or in terms of objects). 
Requires processors to transmit rays among 
themselves.

Directional Techniques

• Light buffer: accelerates shadow rays.
– Discretize the space of directions around each 

light source using the direction cube
– In each cell of the cube store a sorted list of 

objects visible from the light source through that 
cell

– Given a shadow ray locate the appropriate cell of 
the direction cube and test the ray with the 
objects on its list

Directional Techniques
• Ray classification (Arvo and Kirk 87):

– Rays in 3D have 5 degrees of freedom: (x,y,z,θ,φ)
– Rays coherence: rays belonging to the same small 5D 

neighborhood are likely to intersect the same set of objects.
– Partition the 5D space of rays into a collection of 5D 

hypercubes, each containing a list of objects.
– Given a ray, find the smallest containing 5D hypercube, and 

test the ray against the objects on the list.
– For efficiency, the hypercubes are arranged in a hierarchy: a 

5D analog of the 3D octree. This data structure is constructed 
in a lazy fashion.


