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Aliasing, Image Sampling
and Reconstruction

Many of the slides are taken from Thomas Funkhouser course slides and 
the rest from various sources over the web…

https://youtu.be/yr3ngmRuGUc Recall: a pixel is a point…

• It is NOT a box, disc or teeny wee light

• It has no dimension

• It occupies no area

• It can have a coordinate

• More than a point, it is a SAMPLE

Image Sampling

• An image is a 2D rectilinear array of samples
 Quantization due to limited intensity resolution
 Sampling due to limited spatial and temporal resolution

Pixels are
infinitely small
point samples

Imaging devices area sample.

• In video camera the CCD 
array is an area integral 
over a pixel.

• The eye: photoreceptors

Intensity, I

J. Liang, D. R. Williams and D. Miller, "Supernormal vision
and high- resolution retinal imaging through adaptive optics,"
J. Opt. Soc. Am. A 14, 2884- 2892 (1997)
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Aliasing Good Old Aliasing

Slide © Rosalee Nerheim-Wolfe

Reconstruction artefact Sampling and Reconstruction

Sampling

Reconstruction
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Sources of Error

• Intensity quantization
 Not enough intensity resolution

• Spatial aliasing
 Not enough spatial resolution

• Temporal aliasing
 Not enough temporal resolution

Aliasing (in general)

• In general:
 Artifacts due to under-sampling or poor reconstruction

• Specifically, in graphics:
 Spatial aliasing
 Temporal aliasing

Figure 14.17 FvDFHUnder-sampling

Sampling & Aliasing

• Real world is continuous

• The computer world is discrete

• Mapping a continuous function to a discrete one is called 
sampling

• Mapping a continuous variable to a discrete one is called 
quantizaion

• To represent or render an image using a computer, we 
must both sample and quantize

Spatial Aliasing

• Artifacts due to limited spatial resolution
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Slide © Rosalee Nerheim-Wolfe

Can be a serious problem… Spatial Aliasing

• Artifacts due to limited spatial resolution

“Jaggies”

Aliasing Anti-aliasing
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Spatial Aliasing

• Artifacts due to limited spatial resolution

“Jaggies”

Temporal Aliasing

• Artifacts due to limited temporal resolution
 Strobing
 Flickering

Temporal Aliasing

• Artifacts due to limited temporal resolution
 Strobing
 Flickering

Temporal Aliasing

• Artifacts due to limited temporal resolution
 Strobing
 Flickering
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Temporal Aliasing

• Artifacts due to limited temporal resolution
 Strobing
 Flickering

Temporal Aliasing

The raster aliasing effect – removal is called 
antialiasing

Images by Don Mitchell

Staircasing or Jaggies

Slide © Rosalee Nerheim-Wolfe

…very serious problem!
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Sampling and artifacts Blurring doesn’t work well.

Removed the jaggies, but also all the detail !  Reduction in resolution

Unweighted Area Sampling Weighted Area Sampling
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…with Overlap Sampling and Reconstruction

Figure 19.9 FvDFH

Antialiasing

• Sample at higher rate
 Not always possible
 Doesn’t always solve problem

• Pre-filter to form bandlimited signal
 Form bandlimited function (low-pass filter)
 Trades aliasing for blurring

Must consider
sampling theory!

How is antialiasing done?

• We need some mathematical tools to
 analyse the situation.
 find an optimum solution.

• Tools we will use :
 Fourier transform.
 Convolution theory.
 Sampling theory.

We need to understand the behavior of 
the signal in frequency domain
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Spectral Analysis / Fourier Transforms

• Spectral representation treats the function 
as a weighted sum of sines and cosines

• Every function has two representations
 Spatial (time) domain - normal representation
 Frequency domain - spectral representation

• The Fourier transform converts between 
the spatial and frequency domains.

Spectral Analysis / Fourier Transforms

• The Fourier transform converts between the spatial and frequency domain.

• Real and imaginary components.

• Forward and reverse transforms very similar.

Spatial domain
Frequency domain.
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Sampling Theory

• How many samples are required to represent a 
given signal without loss of information?

• What signals can be reconstructed without loss 
for a given sampling rate?

Spectral Analysis

• Spatial domain:
 Function: f(x)
 Filtering: convolution

• Frequency domain:
 Function: F(u)
 Filtering: multiplication

Any signal can be written as a 
sum of periodic functions.
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Fourier Transform

Figure 2.6 Wolberg

Fourier Transform

Figure 2.5 Wolberg

Sampling Theorem

• A signal can be reconstructed from its samples, 
if the original signal has no frequencies 
above 1/2 the sampling frequency - Shannon

• The minimum sampling rate for bandlimited 
function is called “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.

The frequency is called the bandwidth.

Convolution

• Convolution of two functions (= filtering):
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GFgf 

gfGF 

Convolution in frequency domain is 
same as multiplication in spatial domain, and vice-versa

Image Processing

Resampling

• Image processing is a resampling problem

Antialiasing in Image Processing

• General Strategy
 Pre-filter transformed image via convolution 

with low-pass filter to form bandlimited 
signal

• Rationale
 Prefer blurring over aliasing 
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Filtering in the frequency domain

Image
Frequency 

domain
Filter Image

Lowpass filter

Highpass filter

Fourier 
Transform

Fourier 
Transform

Low-pass Filtering

Low and High Pass Filtering.

• Low pass

• High pass

Low-pass Filtering



13

Low-pass Filtering How can we represent sampling ?

Multiplication of the sample with a regular train of delta 
functions.

Sampling: Frequency domain.

The Fourier transform of regular comb of delta functions is a 
comb.
Spacing is inversely proportional

Multiple solutions at regularly 
increasing values of   f

Sampling , the Comb function
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Reconstruction in frequency domain

Bandpass filter due to regular array of pixels.

Original signal.

Undersampling leads to aliasing.

Spurious components : 
Cause of aliasing.

Samples are too close

The Sampling Theorem.

A signal can be reconstructed from its samples
without loss of information, if the original signal

has no frequencies above 1/2 the sampling 
frequency

For a given bandlimited function, the rate at which it must 
be sampled is called the Nyquist Frequency

This result is known as the Sampling Theorem 
and is due to Claude Shannon who first discovered it in 1949

Sampling at the Nyquist Frequency
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Aliasing in the frequency domain

Removing aliasing is called antialiasing

How do we remove aliasing ?

• Perfect solution - prefilter with perfect bandpass filter.

Perfect bandpass

No aliasing.

Aliased example

How do we remove aliasing ?

• Perfect solution - prefilter with perfect bandpass filter.
 Difficult/Impossible to do in frequency domain.

• Convolve with sinc function in space domain
 Optimal filter - better than area sampling.
 Sinc function is infinite !!
 Computationally expensive.

Adequate sampling
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Inadequate sampling Pre-filtering

The ‘Sinc’ function.
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Recall Euler’s formula : = sinc f

The Sinc Filter
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Common Filters Sample-and-Hold

Image Reconstruction

• Re-create continuous image from samples
 Example: cathode ray tube

Image is reconstructed
by displaying pixels 

with finite area
(Gaussian)

End…



18

Adjusting Brightness

• Simply scale pixel components
 Must clamp to range (e.g., 0 to 255) 

Original Brighter

Adjusting Contrast

• Compute mean luminance L for all pixels
 luminance = 0.30*r + 0.59*g + 0.11*b

• Scale deviation from L for each pixel component
 Must clamp to range (e.g., 0 to 255) 

Original More Contrast

L

Image Processing

• Quantization
 Uniform Quantization
 Random dither
 Ordered dither
 Floyd-Steinberg dither 

• Pixel operations
 Add random noise
 Add luminance
 Add contrast
 Add saturation

• Filtering
 Blur
 Detect edges

• Warping
 Scale
 Rotate
 Warps

• Combining
 Morphs
 Composite

Adjust Blurriness

• Convolve with a filter whose entries sum to one
 Each pixel becomes a weighted average of its neighbors

Original Blur
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Edge Detection

• Convolve with a filter that finds differences 
between neighbor pixels 

Original Detect edges
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Image Processing

• Quantization
 Uniform Quantization
 Random dither
 Ordered dither
 Floyd-Steinberg dither 

• Pixel operations
 Add random noise
 Add luminance
 Add contrast
 Add saturation

• Filtering
 Blur
 Detect edges

• Warping
 Scale
 Rotate
 Warps

• Combining
 Morphs
 Composite

Scaling

• Resample with triangle or Gaussian filter

Original 1/4X 
resolution

4X 
resolution

More on this next lecture!

Summary

• Image processing is a resampling problem
 Avoid aliasing
 Use filtering
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Triangle Filter

• Convolution with triangle filter

Figure 2.4 Wolberg

• Convolution with Gaussian filter


