#### 3D Photography

Obtaining 3D shape (and sometimes color) of real-world objects



Based on slides from Szymon Rusinkiewicz

#### Industrial Inspection

• Determine whether manufactured parts are within tolerances



#### Medicine

• Plan surgery on computer model, visualize in real time



#### Medicine

• Plan surgery on computer model, visualize in real time



#### Medicine

• Plan surgery on computer model, visualize in real time



#### Medicine

• Plan surgery on computer model, visualize in real time



#### Scanning Buildings

- Quality control during building
- As-build models



#### Scanning Buildings

- Quality control during building
- As-build models



#### Clothing

- Scan a person, custom-fit clothing
- U.S. Army; booths in malls



#### Graphics Research

 Availability of complex datasets drives research (you wouldn't believe how the poor bunny has been treated...)



#### Sculpture Scanning

• The Pietà Project IBM Research



• The Digital Michelangelo Project Stanford University



• The Great Buddha Project University of Tokyo



#### Why Scan Sculptures?

- Interesting geometry
- Introduce scanning to new disciplines
  - Art: studying working techniques
  - Art history
  - Cultural heritage preservation
  - Archeology
- High-visibility projects

#### Why Scan Sculptures?

- Challenging
  - High detail, large areas
  - Large data sets
  - Field conditions
  - Pushing hardware, software technology
- But not too challenging
  - Simple topology
  - Possible to scan most of surface

#### Issues Addressed

- Resolution
- Coverage
  - Theoretical: limits of scanning technologies
  - Practical: physical access, time
- Type of data
  - High-res 3D data vs. coarse 3D + normal maps
  - Influenced by eventual application
- Intellectual Property



#### Goals

- Scan 10 sculptures by Michelangelo
- High-resolution ("quarter-millimeter") geometry
- Side projects: architectural scanning (Accademia and Medici chapel), scanning fragments of Forma Urbis Romae





















#### IBM's Pietà Project

- Michelangelo's "Florentine Pietà"
- Late work (1550s)
- Partially destroyed by Michelangelo, recreated by his student
- Currently in the Museo dell'Opera del Duomo in Florence



## Results





#### The Great Buddha Project

- Great Buddha of Kamakura
- Original made of wood, completed 1243
- Covered in bronze and gold leaf, 1267
- Approx. 15 m tall
- Goal: preservation of cultural heritage



#### Single Laser Range Image



A single scan is a grid: Connect adjacent samples when z-difference is small.

# The acquisition of a single range map is only an intermediate single step of the overall acquisition session













- Independent scans are defined in coordinate spaces which depend on the spatial locations of the scanning unit and the object at acquisition time. They have to be registered (roto-translation) to lie in the same space lie in the same space
- Standard approach:
  1. initial **manual** placement
- 2. Iterative Closest Point (ICP) |Besl92,CheMed92|



### Manuel Pairwise Registration Mode 1) The user manually places a range map over another (interact manipulation) Mode 2) Selection of multiple pairs of matching points

## Pairwise Registration An approximation to the distance between range scans $\mathsf{E} = \mathsf{S} \mid \mid \mathsf{T} \, \mathsf{qi} - \mathsf{pi} \mid \mid 2$ • where the **qi** are samples from scan **Q** and the **pi** are the corresponding points of scan





#### So far...

- Mainly engineering problems, planning, scanning and registration.
- Now, once registered, all scans have to be fused in a single, continuous, hole-free mesh
- In other words surface reconstruction..
- Or, surface consolidation



#### Consolidation

#### Desirable properties for surface reconstruction:

- No restriction on topological type
- Representation of range uncertainty
- Utilization of all range data (integrate over overlapped regions)
- Incremental and order independent updating
- Time and space efficiency
- Robustness (to noise)
- Ability to **fill holes** in the reconstruction

#### Methods that construct triangle meshes directly:

#### Reconstruction from point clouds

- Local Delaunay triangulations [Boissonat84]
  Alpha shapes [Edelsbrunner+92]
  Crust algorithm [Amenta+98]
  Delaunay-based sculpturing [Attene+00]
  Ball Prooting [Bernardini+99]
  Localized Delaunay [Copi+00]

#### Reconstruction from range maps

•Re-triangulation in projection plane [Soucy+92] •Zippering in 3D [Turk+94]

































#### Phase 3: Piecewise Smooth Surface





piecewise planar ⇒ piecewise smooth surface

#### Piecewise smooth

• Not everywhere smooth, but piecewise smooth!





Smooth surface

Piecewise smooth surface

#### Point Set Surfaces[Alexa+01]

- Smooth surface manifold representation of point sets
- Up-sample
- Down-sample
- Noise reduction
- · Interactive rendering



#### The moving least squares (MLS)[Levin]

#### Constructive definition of the surface:

- Compute a local reference plane H,=<q,n>
- Compute a local polynomial over the plane G,
- Project point  $r = G_r(0)$



#### Local reference plane

- Plane equation: H,=<q,n>
- $H_r = \min \Sigma_i (d(x_i, H_i)\theta(||q-x_i||)$ Non-linear optimization

#### Where

- {x<sub>i</sub>} neighbor points
   θ(x)=exp(-x²/h²)
- h reconstruction parameter, depends on the spacing of points
- Note: q != r



#### Projecting the point

- $G_r = min \ \Sigma_i \big| \ G(x_{ix}) x_{iy} \big| \ \theta(\big| \big| \ q x_i \big| \ \big|)$  Linear optimization
- $r' = G_r(0)$







#### Downsample

- S<sub>p</sub>- Surface
- Remove Point  $p_i$  if  $|S_p S_{P-pi}| < \epsilon$
- Speedup: Evaluate  $|p_i\text{-Project}(p_i, S_{P\text{-pi}})|$



#### Reconstruction by Radial Bases Function

- Scattered data interpolation scheme
- Input: set of points on the surface
- Output: Implicit function that interpolates the points in a nice way
- Nice way

$$E(f) = \int_{s \in \Omega} f_{xx}^{2}(s) + 2f_{xy}^{2}(s) + f_{yy}^{2}(s)ds$$

$$E(f) = \int_{s \in \Omega} f_{xx}^{2}(s) + f_{yy}^{2}(s) + f_{zz}^{2}(s) + 2f_{xy}^{2}(s)ds + 2f_{xz}^{2}(s)ds + 2f_{yz}^{2}(s)ds$$

#### Form of solution

• The solution is of the form:

$$f(x) = \sum_{i=1}^{n} w_{i} \Phi(||x - x_{i}||)$$

- Where P is a polynomial
- $\Phi$  is a radially symmetric function
- The trivial solution is  $w_i = 0$



## Forming a signed-distance function Off surface points

- For every point, add two offsurface points, one inside and one outside the surface in the direction of the normal
- Add a point only if it is closest to its source
- N≈3n points





#### Forming a signed-distance function



• Off-surface points are projected along surface normals

#### Radial basis functions



Minimizes 2nd derivative in 3D

Minimizes 2<sup>nd</sup> derivative in 2D



Minimizes 3<sup>nd</sup> derivative in 3D

#### Computing the weights

• Input :  $\{x_i\}$ ,  $\{f_i\}$ . Compute  $\{w_i\}$   $f(x) = \sum_{i=1}^n w_i \Phi(||x - x_i||)$ 

Unknowns to compute

$$(A_{N\!x\!N})(W)=(f)$$
 — Function values

Matrix dependent on the locations of the data points

#### Computing - example

$$\begin{pmatrix} \Phi(\lVert x_1 - x_1 \rVert) & \Phi(\lVert x_2 - x_1 \rVert) & \dots & \Phi(\lVert x_N - x_1 \rVert) \\ \Phi(\lVert x_1 - x_2 \rVert) & \Phi(\lVert x_2 - x_2 \rVert) & \dots & \Phi(\lVert x_N - x_2 \rVert) \end{pmatrix} \begin{pmatrix} W_1 \\ W_2 \\ \vdots \\ \vdots \\ \Phi(\lVert x_1 - x_N \rVert) & \Phi(\lVert x_2 - x_N \rVert) & \dots & \Phi(\lVert x_N - x_N \rVert) \end{pmatrix} \begin{pmatrix} W_1 \\ W_2 \\ \vdots \\ \vdots \\ f_N \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_N \end{pmatrix}$$

• Symmetric positive matrix

#### Complexity

Straight-forward method:

- Storage O(N2)
- Solving the  $W_i O(N^3)$
- Evaluating f(x) O(N)

Fast method [Carr01]

- Storage O(N)
- Solving the  $W_i$  O(NlogN)
- Evaluating f(x)
  O(1) + O(Nlog ) 1 Fe 101

#### Simplification (center reduction)

- Reduce the number of centers (points)
- Greedy algorithm, reduce points as long as the surface is close enough







