


m Motivation: Add interesting and/or realistic detall to
surfaces of objects.

m Problem: Fine geometric detall is difficult to model
and expensive to render.

m Idea: Modify various shading parameters of the
surface by mapping a function (such as a 2D image)
onto the surface.






Textures and Shading

http://www.3drender.com/jbirn/hippo/hairyhipponose.html




Texture Mapping — Simple Example










Simple parametrization
"




Mappingis not unique




Bump Mapping
" A




Bump Mapping




Surface Parametrization

Most slides courtesy of Pierre Alliez, Craig Gotsman, and Noam Aigerman



Triangle mesh
"
m Discrete surface representation
m Piecewise linear surface (made of triangles)
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Triangle mesh
" A
m Geometry:
Vertex coordinates

X1y Y1y Z1)
('X'Z"yZ’ ZZ)
(Xn’ yn’ Zn)
m Connectivity (the graph)
List of triangles

(i1, J1: Kq)

(i2: Jo: ko)

(s Jno Kin)
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] What Is a ﬁarameterization?

S <R3 - given surface

D < R? - parameter domain

s:D - S 1-1andonto

x(u, V)
s(u,v) =| y(u,v)
L Z(u,v),




Example — flattening the earth

16



Mesh Parameterization




World Atlas
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Parameterizations are atlases




World Atlas




World Atlas
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World Atlas
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The true size of Africa

The True Size of Africa

A small contribution in the fght against rampant immappancy, by Kal Krause
Graphic layout for visuakzation only ( some countres are cut and rotated )
But the conclusions are very accurale: refer to table below for exact data

UNITED STATES

United States
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Another view of the same idea
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There are many possible maps
“ "0




Can’t flatten without distorting




] Another examgle:

Parameters: «, h
D = [0,m]x[-1,1]
X(e, h) = cos(a)
y(e, h) =h

2(a, ) = sin(a)
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Triangular Mesh
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Triangular Mesh
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Mesh Parameterization
=

m Uniquely defined by mapping mesh vertices
to the parameter domain:

U:{vy,..,v.} > DcR’
U(v) = (u;, v;)
m No two edges cross in the plane (in D)

Mesh parameterization < mesh embedding
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Mesh parameterization
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2D parameterization
"

3D space (X,Y,2) e pommn _
e ==\ 2D parameter domain (u,v)
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Application - Texture mapping
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Requirements
" J
m Bijective (1-1 and onto):
m Minimal “distortion”
Preserve 3D angles
Preserve 3D distances

Preserve 3D areas
No “stretch”

No triangles fold over.
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Distortion minimization

Kent et al ‘92 Floater 97

Sander et al ‘01
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More texture mapping
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Resampling problems

Cat mesh Distorting
embedding

r " " ¥
- - I,
" E~E' B E- N B

Resampling
on regular grid
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Remeshing
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Remeshing examples
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Remeshing

"
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More remeshing examples
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Conformal parametrization

Shape-preserving

Texture map

Conformal
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Non-simple domains
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Cutting
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Parameterization of closed genus-0 triangle meshes
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Non-Constrained Planar Spherical
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Introducing seams (cuts)
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Partition

,h,.m..
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Introducing seams (cuts)
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Introducing seams (cuts)
"
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Bad parameterization
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Better...(free boundary)

_R_ﬁ%i e
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Partition — problems
"

m Discontinuity of parameterization
m Visible artifacts in texture mapping

m Require special treatment

Vertices along seams have several (u,v)
coordinates

Problems in mip-mapping

Make seams short and hide them
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Summary
"

m “Good” parameterization = non-distorting
Angles and area preservation
Continuous param. of complex surfaces cannot avoid distortion.

m “Good” partition/cut:
Large patches, minimize seam length
Align seams with features (=hide them)
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Mesh parameterization
" J
s and U are piecewise-linear
Linear inside each mesh triangle

N

In 2D In 3D

A mapping between two triangles
IS a mapping
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Barycentric coordinates
"

}

o
A B

C

F3:<P, B, C>A N (P, C, A>§ N (P, A, B)

(A, B, C) (A, B, C) (A, B, C)

(-, -, -) denotes the (signed) area of the triangle

C
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Mapping triangle to triangle
"

P3

—
/>< ©
P1

P>

<p’ p2’ p3> <p’ p3’ p1>
g, +
(Pr P2r Ps) — (Pus Py P3)

s(p) =

Oy +

(P, P1s Py)

(Prs P2y Ps)

U
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Some technigues




Convex mapping (Tutte, Floater)
" J
m \Works for meshes equivalent to a disk

m First, we map the boundary to a convex polygon
m Then we find the inner vertices positions

VAY N

: T
, T R
O

)

3

Vy, Vo, ..., V, — INNer vertices; v, V.4, ..., Vy — DOUNdary vertices
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Inner vertices
=

m \We constrain each inner vertex to be a weighted
average of its neighbors:

V, = Z/li,jvj, i=12,....n

JeN(i)

1 - 0 1, arenotneighbors
"I 1>0 (i, j)eE (neighbours)

D A =1

JeN(i)
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Linear system of equations
"
V, — Z/l v. =0, i=12,....n

o]
JeN(i)

- Y AN = DAY, i=12..n

jeN(i)\B keN ()NB
/1 _ﬂl h _ﬂiljdl\ (Vl\ (01\
1 v, | | o,
1 —
_14,1'1
\ ~hi, Lo \Vv,) o,
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Shape preserving weights

o 2D
P
A
P
* P3

To compute 4, ..., 4, a local embedding of the patch is found:

D Ipi=pll=I%—-x]

2) angle(p;, p, Pis1) = (2 /26, ) angle(v;, v, Vi)

(p=2%m

I, A A >0 —> use these 1 as edge weights.
XA =1

N
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Linear system of equations
" J
m A unigue solution always exists
m Important: the solution is legal (bijective)

m The system Is sparse, thus fast numerical

solution Is
m Numerical

nossible
oroblems (because the vertices Iin the

middle mig

Nt get very dense...)
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2D parameterization
"

3D space (X,Y,2) e pommn _
e ==\ 2D parameter domain (u,v)
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Harmonic mapping
JE

Another way to find inner vertices

Strives to preserve angles (conformal)
We treat the mesh as a system of springs.
Define spring energy:

harm T Zkl jHV —V; H

(I J)eE

where v; are the flat position (remember that the boundary
vertices v, V.4, ..., Vy @re constrained).



Energy minimization — least squares
"

m \We want to find such flat positions that the
energy Is as small as possible.

m Solve the linear least squares problem!

Vi = (Xi’ Yi)

(i,])eE

E,.m IS function of 2n variables
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Energy minimization — least squares

m To find minimum: VE, _.,=0

m
|

1

2

1

2

D 2k (% —x;)=0

JeN(i)

ZZki,j(yi _yj):O

JeN (i)

m Again, X ,q,...., Xy and y. .4, ..., yy are constrained.
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Energy minimization — least squares
"
m To find minimum: VE, _.,=0

D k(% —x)=0, i=12,...n
jeN i)

Y ki(y,-y;))=0 i=12..n

JeN(i)

m Again, X ,q,...., Xy and y. .4, ..., yy are constrained.
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The spring constants k;;
"
m The weights k;; are chosen to minimize angles
distortion:
Look at the edge (i, J) in the 3D mesh
Set the weight |k;; = cot o + cot g

. ‘w-

J




Discussion
=

The results of harmonic mapping are better than those of
convex mapping (local area and angles preservation).

But: the mapping is not always legal (the weights can be
negative for badly-shaped triangles...)

Both mappings have the problem of fixed boundary —
It constrains the minimization and causes distortion.

There are more advanced methods that do not require
boundary conditions.
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Convex weights for inner vertices
"

vi= > wyv, st > w=1andw,>0
(i, ))=N (i) (i, /)N (i)

m [If the weights are convex, the solution is always valid (no self-
Intersections) [Floater 97]

m The cotangent weight in Harmonic Mapping can be negative =
sometimes there are triangle flips

m In [Floater 2003] new CONveX weights are proposed that
approximate harmonic mapping
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Angle-based Flattening (ABF)
[Sheffer and de Sturler 2001]
" J

m Angle-preserving parameterization

m The energy functional is formulated using the flat
mesh angles only!

m Allows free boundary
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Angle-based Flattening (ABF)

[Sheffer and de Sturler 2001]
" J
m The goal: minimize the difference

N
2
Z (ai - b )
i=1
where B; are angles of original (3D) mesh and o,
are the unknowns (the flat mesh)
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The angles equations (constraints)
" J
All angles are positive:
a. >0 (1)

Angles around an inner vertex in 2D sum up to 2w

Zaj =27 (2)

_ _ jaround i
Angles in a triangle sum up to «

a +a +a =7 (3)
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The angles equations (constraints)
" J

m Finally, something like the sine theorem must
hold:
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The angles equations (constraints)
" J

m Finally, something like the sine theorem must
hold:
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The final optimization:
" J

m \We minimize

ZN:(O‘i - b )2

1=1

under the 4 constraints

m It’s enough to fix one triangle in the plane to
define the whole flat mesh
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Results

" 4M faces
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Discussion
" A

m Pros:
Angle preserving
Always valid (at least internally)
No rigid boundary constraints

m Cons:

Non-linear optimization
m Expensive (but now a multi-grid method exists)

Building the mesh from angles can be unstable
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Solid Textures
Peachey 1 Perlin 1985)

m Problem: mapping a 2D image/function onto the
surface of a general 3D object is a difficult
problem:

O Distortion
O Discontinuities

m Ildea: use a texture function defined over a 3D
domain - the 3D space containing the object

O Texture function can be digitized or procedural



Solid Textures



















