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Tmages contain objects and features of different size, which may be viewed over a range of
distances, and therefore a transformation should analyze the image at different scales.
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Laplacian pyramid
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Wavelet

+ Representation size N, sparse
+ Local in space and frequency
+ Linear and invertible

+ Progressive
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Steerable pyramid
+ Representation size k(4/3)N
« Linear and invertible
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Images contain features with different orientation, and
may be rotated, and therefore a transformation should
analyze the image at various orientations.

Image statistics
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distribution function (histogram)

+ Image statistics vaty locally.

+ Images have sharp local features like edges as well as large
homogeneous regions, and generally defy simple statistical models
for their structure.

Matching image statistics

+ Decompose noise and texture image into pyramids.

+ Match between distributions (histograms) of corresponding

pyramid levels.
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+ Reconstruct noise pyramid.

Texture model

+ Stationaty - under a proper window size, the
observable portion always appears similar.

+ Local - each pixel is predictable from a small
set of neighboring pixels and independent of
the rest of the image.




Algorithm
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source target

+ Assign some random pixels (from source) to target.
+ Synthesize target one pixel at a time.

+ Find best matching neighborhood in source and assign that
pixel to target.

search for matching
neighborhoods
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Synthesis results with different neighborhood sizes

11x11

+ To capture the structure with a small neighborhood — multi-resolution

Multi-resolution algorithm

+ Decompose source into (Gaussian) pyramid.
+ For each level from coarse to fine, and each target pixel in
scanline order
¢ Search for best matching neighborhoods at multiple
resolutions.

Variants

1. Synthesis Unit: pixel/block

2. Order to synthesize target
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3. Neighborhood to match
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causal half full

4. Search method of source texture: naive/random/coherent/TSVQ

5. Similarity metric: weighted sum of square differences/other

Image Quilting
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Algorithm Texture transfer
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texture

+  Go through the image to be synthesized in scanline order in steps of block-overlap.

+  For every location, search the input texture for a set of blocks that satisfy the
overlap constraints within some error tolerance. Randomly pick one.

+ Compute the error surface between the newly chosen block and the old blocks at
the overlap region. Find the minimum cost path along this surface (dynamic
programming/Dijkstra/greedy) and make it the boundary of the new block. Paste
block onto texture.

Applications - Texture
Transfer

Algorithm
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Image analogies (filter by example)
Ato A’like B to B’
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Algorithm

+ decompose A, A’, B into Gaussian pyramids.
+ for each level ! from coarse to fine, for each pixel q in B%
p = match(A-1, A, A1, A% Beer, B, Bi-1, BY, q)
Bi(q) = A(p)
]
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assumes dense correspondence between A and A’

texture segmentation input

drawing with color coded textures output

Target Pairs:
Source Pair:

By Number”

By color-labeling source image parts a =
realistic synthesized image can be created

Texture synthesis on surface




Extension of 2D algorithm

+ Mesh pyramid

+ Sampling - uniform density to minimize stretching an
distortion.

« Local texture orientation - handle oriented textures, avoid
seems.

+ Synthesis order - define neighbors.
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Algorithm

+ Decompose texture into image pyramid and model into
mesh pyramid.

+ Retile surfaces of mesh from fine to coarse, uniformly
distributing the mesh vertices.
+ Assign texture orientation to each mesh vertex.
+ Assign a color to each mesh vertex, randomly from the
corresponding level in the image pyramid.
« For each level from coarse to fine, and each mesh vertex
locally flatten and resample mesh neighborhood

Search for best matching neighborhoods

Local texture orientation

+ Random

+ Symmetry - 2 way

+ Symmetry - 4 way

Local texture orientation

+ User defined and interpolation
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random 2 way symmetry

FEH R

4 way symmetry no symmetry

Synthesis order

+ Random

+ Defined by orientation field




texture matches user
specified orientation

isotropic texture
onto model with
branching surfaces

texture does not tile
scale rows of model

periodic texture
onto model with
complex topology
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