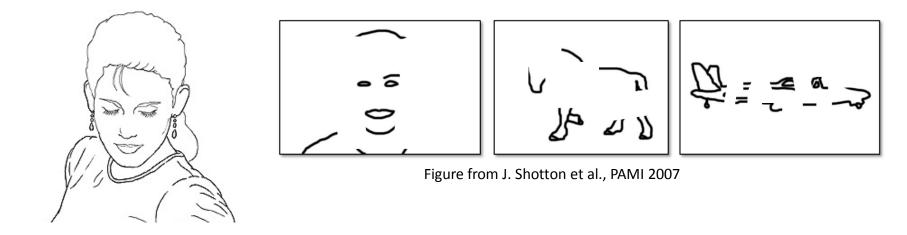
איתור-סף – איפה עוברים הקוים בתמונה?

Edge detection

- **Goal**: map image from 2d array of pixels to a set of curves or line segments or contours.
- Why?

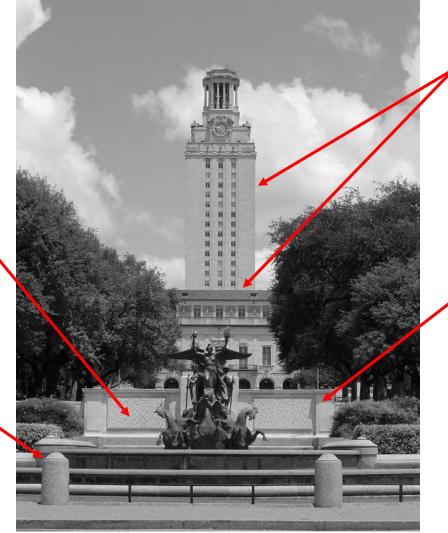


• Main idea: look for strong gradients, post-process

What can cause an edge?

Reflectance change: appearance information, texture

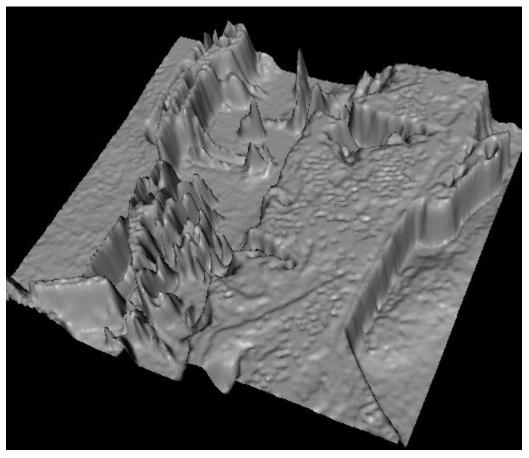
Change in surface orientation: shape



Depth discontinuity: object boundary

Cast shadows

Recall : Images as functions

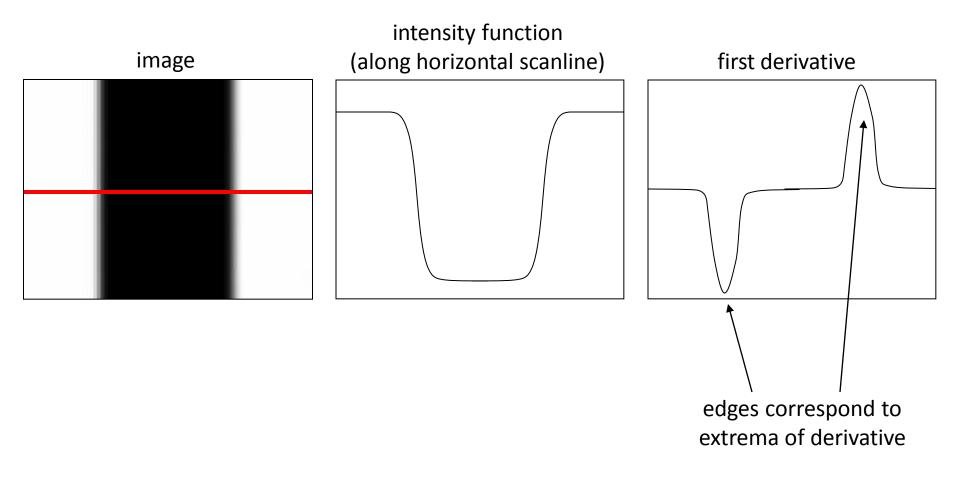


• Edges look like steep cliffs

Source: S. Seitz

Derivatives and edges

An edge is a place of rapid change in the image intensity function.



Source: L. Lazebnik

Differentiation and convolution

For 2D function, f(x,y), the partial derivative is:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon, y) - f(x, y)}{\varepsilon}$$

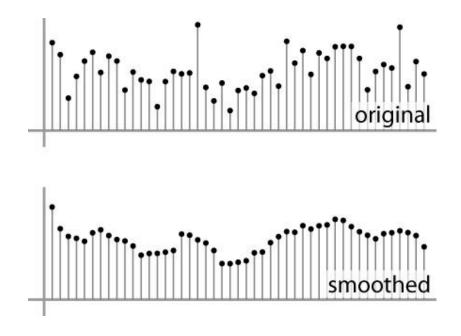
For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$$

To implement above as convolution, what would be the associated filter?

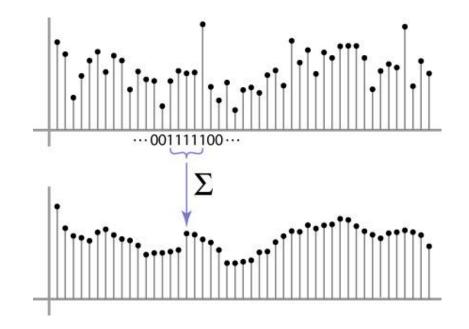
Side note: Filters and Convolutions

- First, consider a signal in 1D...
- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in 1D:



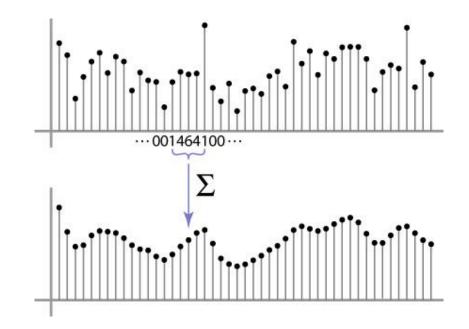
Weighted Moving Average

- Can add weights to our moving average
- Weights [1, 1, 1, 1, 1] / 5



Weighted Moving Average

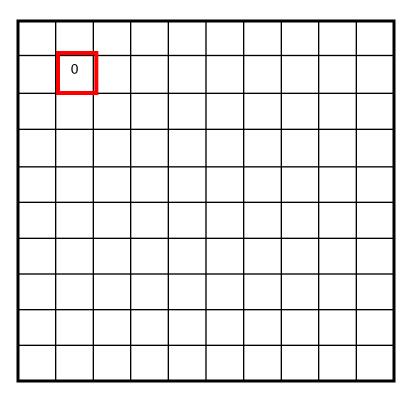
• Non-uniform weights [1, 4, 6, 4, 1] / 16



F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0



F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10				

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

				_		
0	10	20	30			

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{\substack{u=-k}}^{k} \sum_{\substack{v=-k}}^{k} F[i+u,j+v]$$

Attribute uniform weight Loop over all pixels in neighborhood aroundto each pixelimage pixel F[i,j]

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} \frac{H[u, v]F[i+u, j+v]}{v}$$

Non-uniform weights

Correlation filtering

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called cross-correlation, denoted $G = H \otimes F$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" H[u,v] is the prescription for the weights in the linear combination.

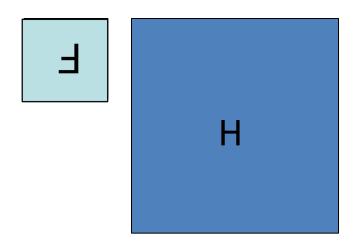
Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

Notation for convolution operator



Convolution vs. correlation

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

Cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$
$$G = H \otimes F$$

Back to our question: To implement the derivates, what would be the associated filter? $\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x+1, y) - f(x, y)}{1}$

Partial derivatives of an image

 $\frac{\partial f(x, y)}{\partial x}$ $\frac{\partial f(x, y)}{\partial y}$ -1 -1 1 1

Which shows changes with respect to x?

Assorted finite difference filters

Prewitt: $M_x =$; $M_y =$ $0 \ 1$ -1 000 $M_x =$; Sobel: $\mathbf{2}$ $M_y =$ -200 -20 1
-1 0 ; $M_y =$ Roberts: $M_x =$ _

- >> imagesc(outim);
- >> colormap gray;

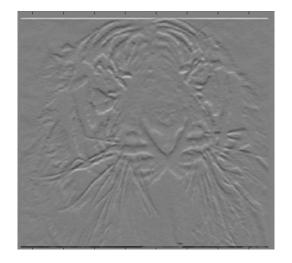


Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

CSE486, Penn Stemple Edge Detection Using Gradients

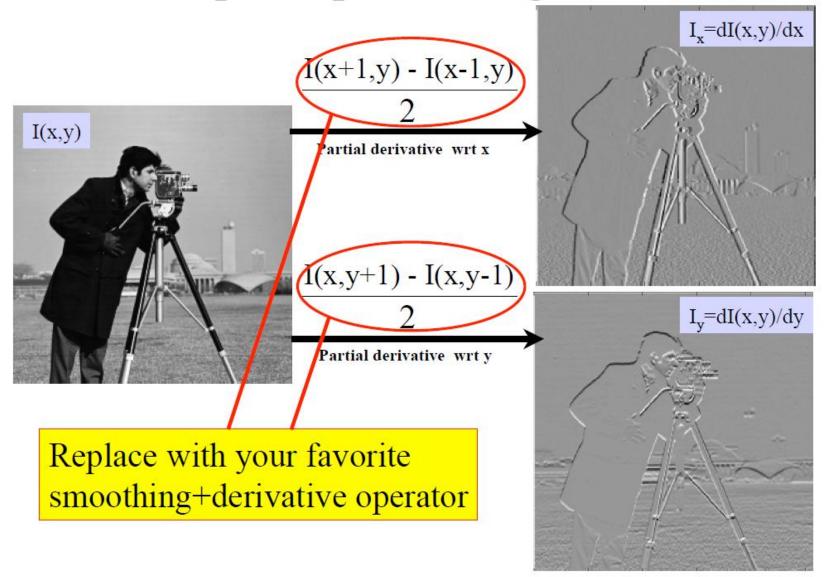
A simple edge detector using gradient magnitude

•Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters

•Compute gradient magnitude at each pixel

•If magnitude at a pixel exceeds a threshold, report a possible edge point.

CSE486, Penn StaCompute Spatial Image Gradients



CSE486, Penn Stemple Edge Detection Using Gradients

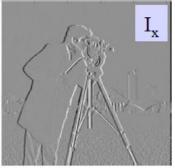
A simple edge detector using gradient magnitude

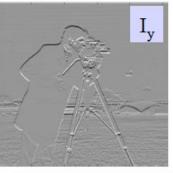
•Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters

•Compute gradient magnitude at each pixel

•If magnitude at a pixel exceeds a threshold, report a possible edge point.

CSE486, Penn State Compute Gradient Magnitude





Magnitude of gradient sqrt(Ix.^2 + Iy.^2)

Measures steepness of slope at each pixel (= edge contrast)

CSE486, Penn Stemple Edge Detection Using Gradients

A simple edge detector using gradient magnitude

•Compute gradient vector at each pixel by convolving image with horizontal and vertical derivative filters

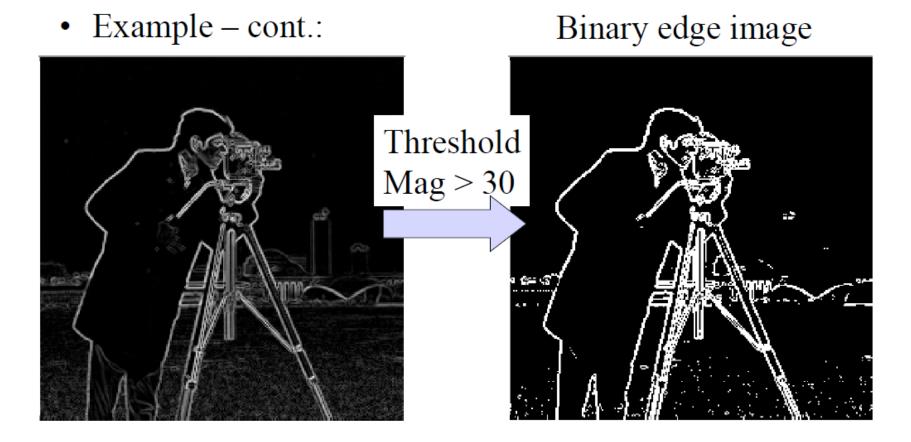
•Compute gradient magnitude at each pixel

•If magnitude at a pixel exceeds a threshold, report a possible edge point.

Threshold to Find Edge Pixels

Robert Collins

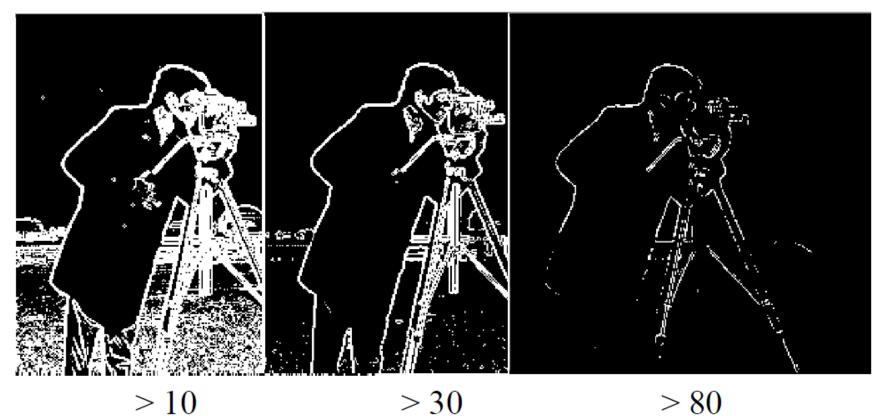
CSE486, Penn State



Robert Collins CSE486, Penn State

Issues to Address

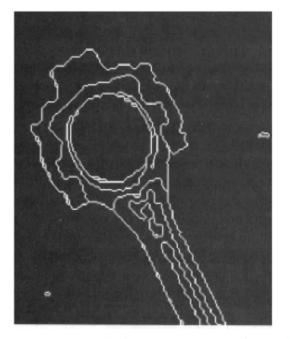
How should we choose the threshold?



Issues to Address

Edge thinning and linking

smoothing+thresholding gives us a binary mask with "thick" edges

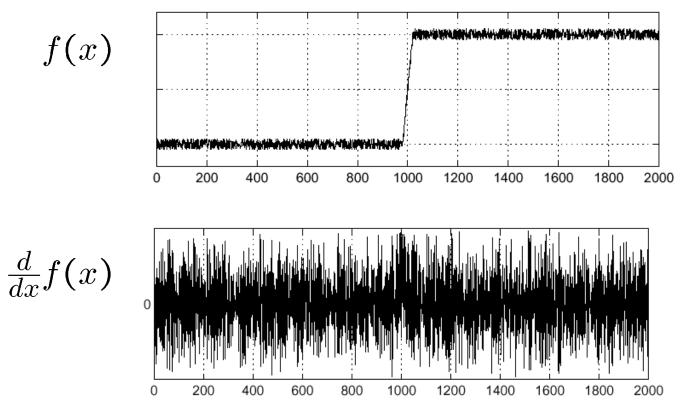


we want thin, one-pixel wide, connected contours

Another issue: The effects of noise

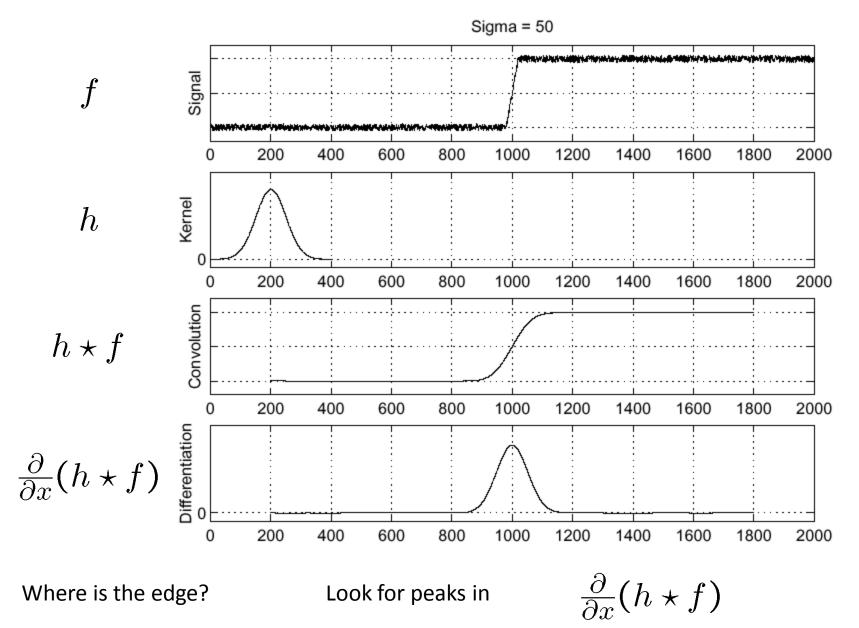
Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal



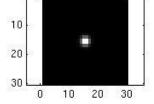
Where is the edge?

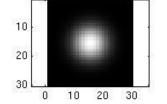
Solution: smooth first

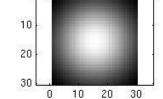


Smoothing with a Gaussian

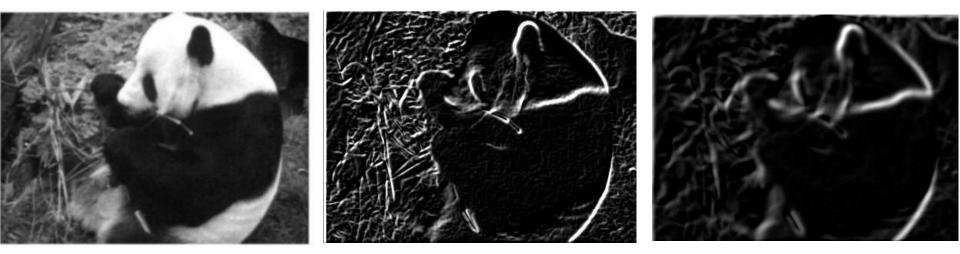
Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.







Effect of σ on derivatives



 σ = 1 pixel

 σ = 3 pixels

The apparent structures differ depending on Gaussian's scale parameter.

Larger values: larger scale edges detected Smaller values: finer features detected

So, what scale to choose?

It depends what we're looking for.

Too fine of a scale...can't see the forest for the trees. Too coarse of a scale...can't tell the maple grain from the cherry. Robert Collins CSE486, Penn State

Canny Edge Detector

An important case study

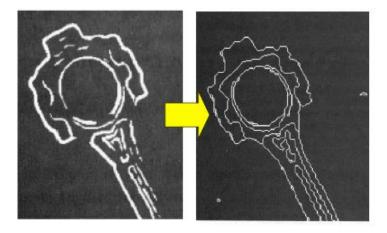
Probably, the most used edge detection algorithm by C.V. practitioners

Experiments consistently show that it performs very well

J. Canny *A Computational Approach to Edge Detection*, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 8, No. 6, Nov 1986 Robert Collins CSE486, Penn State

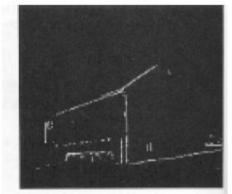
Recall: Practical Issues for Edge Detection

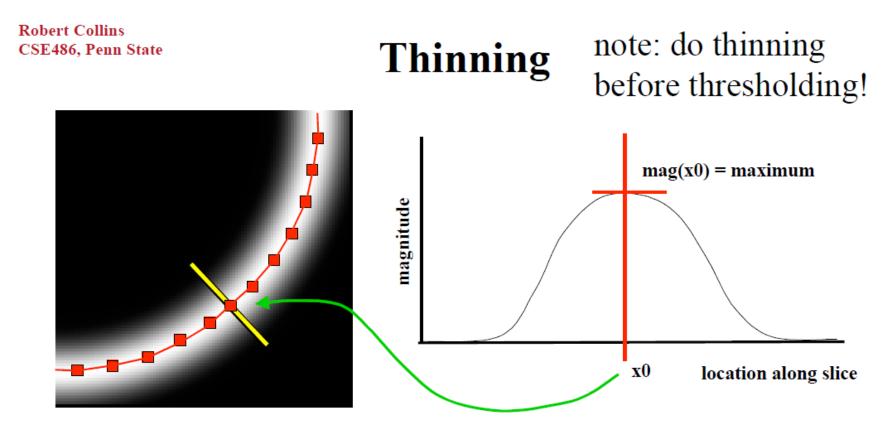
Thinning and linking Choosing a magnitude threshold



Canny has good answers to all!

OR



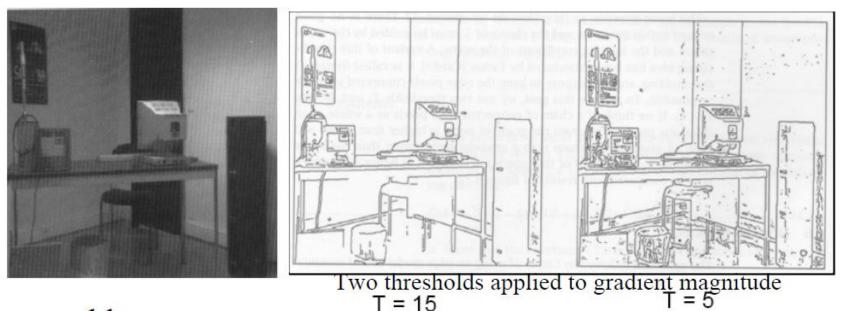


We want to mark points along curve where the magnitude is largest.

We can do this by looking for a maximum along a 1D intensity slice normal to the curve (non-maximum supression).

These points should form a one-pixel wide curve.

Which Threshold to Pick?



problem:

Robert Collins

CSE486, Penn State

•If the threshold is too high:

-Very few (none) edges

•High MISDETECTIONS, many gaps

•If the threshold is too low:

-Too many (all pixels) edges

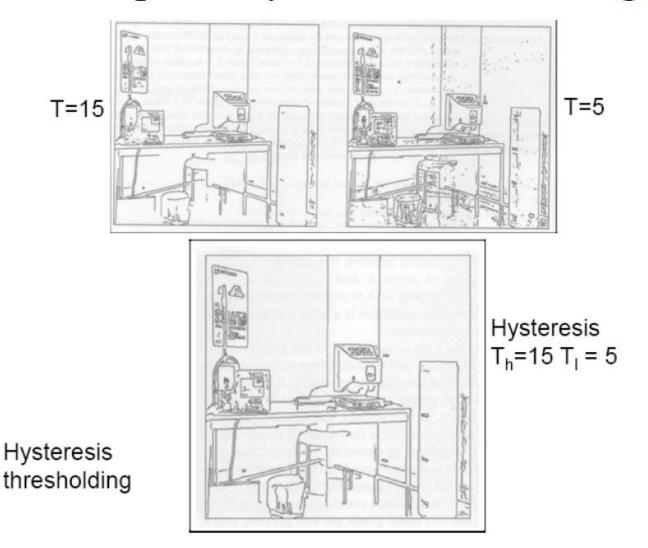
•High FALSE POSITIVES, many extra edges

CSE486, Penn Sta SOLUTION: Hysteresis Thresholding

Allows us to apply both! (e.g. a "fuzzy" threshold)

- •Keep both a high threshold H and a low threshold L.
- •Any edges with strength < L are discarded.
- •Any edge with strength > H are kept.
- •An edge P with strength <u>between</u> L and H is kept only if there is a path of edges with strength > L connecting P to an edge of strength > H.
- •In practice, this thresholding is combined with edge linking to get connected contours

Robert Collins CSE486, Penn State Example of Hysteresis Thresholding



Complete Canny Algorithm

1. Compute x and y derivatives of image

Robert Collins

CSE486, Penn State

$$I_x = G^x_\sigma * I \quad I_y = G^y_\sigma * I$$

 Compute magnitude of gradient at every pixel

$$M(x,y) = |\nabla I| = \sqrt{I_x^2 + I_y^2}$$

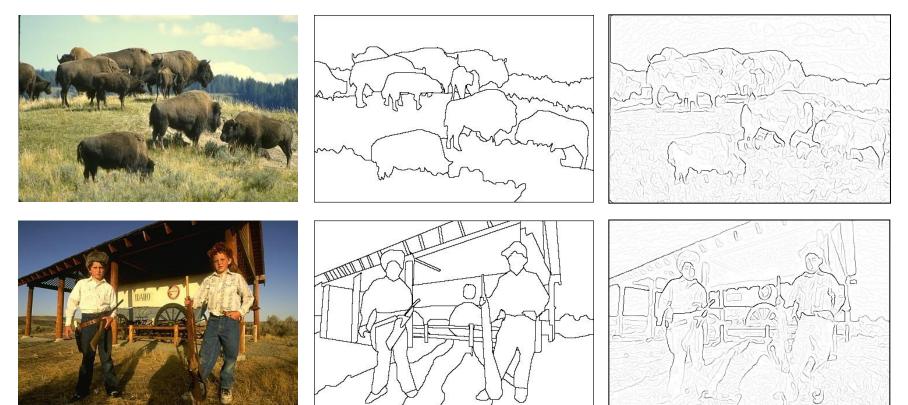
- Eliminate those pixels that are not local maxima of the magnitude in the direction of the gradient
- 4. Hysteresis Thresholding
 - Select the pixels such that M > T_h (high threshold)
 - Collect the pixels such that M > T_l (low threshold) that are neighbors of already collected edge points

Edge detection is just the beginning...

image

human segmentation

gradient magnitude



Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Much more on segmentation later...

Source: L. Lazebnik