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Edge detection

Goal: map image from 2d array of pixels to a set of curves

[ ]
or line segments or contours.
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Figure from J. Shotton et al., PAMI 2007

Main idea: look for strong gradients, post-process



What can cause an edge?

Depth discontinuity:
Reflectance change: object boundary
appearance

information, texture

Cast shadows

Change in surface
orientation: shape




Recall : Images as functions

* Edges look like steep cliffs

Source: S. Seitz



Derivatives and edges

An edge is a place of rapid change in the image
intensity function.

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

Source: L. Lazebnik



Differentiation and convolution

For 2D function, f(x,y), the partial derivative is:

Axy) i fOcrey) - £(0y)
OX £—0 g

For discrete data, we can approximate using finite differences:

o (xy)  T(x+1ly)-T(XY)
OX 1

To implement above as convolution, what would be the associated
filter?




Side note: Filters and Convolutions

e First, consider a signal in 1D...

e Let’s replace each pixel with an average of all
the values in its neighborhood

e Moving average in 1D:
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Weighted Moving Average

* Can add weights to our moving average
 Weights [1,1,1,1,1] /5

M

Source: S. Marschner



Weighted Moving Average

* Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner



Moving Average In 2D

Flz, y] Glz, y.

Source: S. Seitz



Moving Average In 2D

Flz, y] Glz, y.

Source: S. Seitz



Moving Average In 2D
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Source: S. Seitz



Moving Average In 2D
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Source: S. Seitz



Moving Average In 2D
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Source: S. Seitz



Moving Average In 2D

Flz, y] Glz, y.

Source: S. Seitz



Correlation filtering

Say the averaging window size is 2k+1 X 2k+1:

|
Glin ) = 12 z;kv_z_ Fli+u.j + ]

) | J
! |

Attribute uniform weight Loop over all pixels in neighborhood around
to each pixel image pixel F[i,j]

Now generalize to allow different weights depending on
neighboring pixel's relative position

Gli, 5] = Z Z H[u U]F[Z—|-Uj—|—’v]

w=—kov=—%FL " Y
Non-uniform weights




Correlation filtering

ko k
Gli,jl= > ) Hluv]F[i+u,j+ ]

u=—kv=-—k%
This is called cross-correlation, denoted G = H K F

Filtering an image: replace each pixel with a linear combination of
its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the
weights in the linear combination.



Convolution

e Convolution:

— Flip the filter in both dimensions (bottom to top, right to left)
— Then apply cross-correlation

Gli, 7] = Z Z Hlu,v]F[i —u,j — v]

u=—kv=-—k

G=HxF 4

T

Notation for
convolution
operator




Convolution vs. correlation

Convolution
k k
u=—kv=—=%k
G =HxF

Cross-correlation

Eook
Gli,jl= > > Hluv]F[i+u,j+ ]

u=—kv=-—%k
G=HF
Back to our question: To implement the derivates, what would be the
associated filter? of (X, y) f (X +1 y) _f (X, y)

OX 1



Partial derivatives of an image

Which shows changes with respect to x?



Assorted finite difference filters

>>
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>>

-0
Prewitt: M, = [-1]0
-1pn
Ljop1
Sobel: M, = il E
L{opl
01
Roberts: M. = 175

My = fspecial(‘sobel’);

outim = imfilter (double (im),

imagesc (outim) ;
colormap gray;

[

M, = [0 0
-1 1
a1
M, = il BE
2| -1

1

M, = |z

My) ;




Image gradient

The gradient of an image:
_ [9f of
V= [Gx’ Gy]

The gradient points in the direction of most rapid change in intensity

vf=[4L.0 I Vi =5 5]
vi =02 k

78y

The gradient direction (orientation of edge normal) is given by:
— -1 (9f 3_f>
6 = tan ( 9y =

The edge strength is given by the gradient magnitude

VAl = D% + (33

Slide credit S. Seitz
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imple Edge Detection Using Gradients

A simple edge detector using gradient magnitude

Compute gradient vector at each pixel by
convolving image with horizontal and
vertical dertvative filters

*Compute gradient magnitude at each pixel

If magnitude at a pixel exceeds a threshold,
report a possible edge point.
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'Compute Spatial Image Gradients
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Partial derivative wrty

Replace with your favorite
smoothing+derivative operator
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mple Edge Detection Using Gradients

A simple edge detector using eradient magnitude

Compute gradient vector at each pixel by
convolving image with horizontal and
vertical derivative filters

*Compute gradient magnitude at each pixel

If magnitude at a pixel exceeds a threshold,
report a possible edge pomt.
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Compute Gradient Magnitude

Magnitude of gradient
sari(Ix.”2 + 1y.A2)

Measures steepness of
slope at each pixel
(= edge contrast)
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mple Edge Detection Using Gradients

A simple edge detector using eradient magnitude

Compute gradient vector at each pixel by
convolving image with horizontal and
vertical derivative filters

*Compute gradient magnitude at each pixel

If magnitude at a pixel exceeds a threshold,

report a possible edge pomt.



Robert Collins

CSE486, Penn State Threshold to Find Edge Pixels

» Example — cont.: Binary edge image

Threshold
Mag > 30
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Issues to Address

How should we choose the threshold?
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Issues to Address

Edge thinning and linking

smoothing+thresholding A\ W
gives us a binary mask we want thin, one-pixel
with “thick™ edges wide, connected contours



Another issue: The effects of noise

Consider a single row or column of the image

— Plotting intensity as a function of position gives a signal

f(@)
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Where is the edge?



Solution: smooth first

Sigma = 50

-
Signal

-~
Kernel
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hx f

Convolution
[
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Ge(h* f)

Differentiation
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. , : 8,
Where is the edge: Look for peaks in %(h * f)



Smoothing with a Gaussian

Parameter o is the “scale” / “width” / “spread” of the Gaussian
kernel, and controls the amount of smoothing.

H )
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Effect of o on derivatives

o =1 pixel o = 3 pixels

The apparent structures differ depending on Gaussian’s
scale parameter.

Larger values: larger scale edges detected
Smaller values: finer features detected



So, what scale to choose?

It depends what we’re looking fo

I

A \.
&

Too fine of a scale...can’t see the forest for the trees.
Too coarse of a scale...can’t tell the maple grain from the cherry.



Robert Collins

s Canny Edge Detector

An important case study

Probably, the most used edge detection
algorithm by C.V. practitioners

Experiments consistently show that 1t
performs very well

J. Canny A Computational Approach to Edge Detection,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol 8, No. 6, Nov 1986



Robert Collins

AT ios, P Recall: Practical Issues
for Edge Detection

Thinning and linking  Choosing a magnitude threshold

Canny has good
answers to all!




Robert Collins
CSE486, Penn State

note: do thinning

Thinnin
5 before thresholding!

mag(x0) = maximum

/ N

x0 location along slice

magnitude

We want to mark points along curve where the magnitude 1s largest.

We can do this by looking for a maximum along a 1D intensity
slice normal to the curve (non-maximum supression).

These points should form a one-pixel wide curve.
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Which Threshold to Pick?
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problem:
*If the threshold 1s too high:
—Very few (none) edges
*High MISDETECTIONS, many gaps
*If the threshold 1s too low:
—Too many (all pixels) edges
*High FALSE POSITIVES, many extra edges

I'wo thresholds apphed W) gradlen_‘lt_ maégmtude
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coraserastSOLUTION: Hysteresis Thresholding
Allows us to apply both! (e.g. a “fuzzy” threshold)

*Keep both a high threshold H and a low threshold L.

*Any edges with strength < L are discarded.

*Any edge with strength > H are kept.

*An edge P with strength between L and H 1s kept
only 1f there 1s a path of edges with strength > L
connecting P to an edge of strength > H.

*In practice, this thresholding 1s combined with
edge linking to get connected contours
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craeransocExample of Hysteresis Thresholding
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Complete Canny Algorithm

1. Compute x» and y derivatives of image

L =GExI Iy=GoxI

2. Compute magnitude of gradient at every
pixel

M(x,y) = |VI| = \/IZ + I

3. Eliminate those pixels that are not local
maxima of the magnitude in the direction
of the gradient

4. Hysteresis Thresholding

e Select the pixels such that M > T}, (high
threshold)

e Collect the pixels such that M > T; (low
threshold) that are neighbors of already
collected edge points



Edge detection is just the beginning...

image human segmentation gradient magnitude

Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Much more on segmentation later...

Source: L. Lazebnik


http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

