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High-level Shape analysis

ang et al. 11] .
o Exploration of shape



Segmentation and Correspondence

Segmentation Correspondence



Individual vs. Co-segmentation
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Individual vs. Co-segmentation




Challenge

Similar geometries can be associated with different semantics

6



Challenge

Similar semantics can be represented by different geometries
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Large set are more challenging
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Methods do not give perfect results
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Descriptor-based unsupervised
co-segmentation

[Sidi et al.11]
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co-segmentation

Clustering in feature space




Clustering (basic stuff)

Takes a set of points,



Clustering (basic stuff)

Takes a set of points, and groups them into several
separate clusters



Clustering is not easy...

— Clean separation to groups not always possible
— Must make “hard splitting” decisions

— Number of groups not always known, or can be
very difficult to determine from data



Clustering is hard!




Clustering is hard!

Hard to determine number of clusters




Clustering is hard!

Hard to determine number of clusters




Clustering is hard!

Hard to decide where to split clusters




Clustering

Hard to decide where to split clusters




Clustering

 Two general types of input for Clustering:
— Spatial Coordinates (points, feature space), or
— Inter-object Distance matrix



Clustering

Spatial Coordinates (points, feature space), or
Inter-object Distance matrix

K-Means, EM, Mean-Shift, Linkage, DBSCAN, Spectral Clustering



Clustering 101




Initial co-segmentation

o Over-segmentation mapped to a descriptor
space (geodesic distance, shape diameter function,
normal histogram)

High-dimensional feature space

24



Co-segmentation

Points represent some kind of object parts, and
we want to cluster them as means to co-
segment the set of objects
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Clustering

 Underlying assumptions behind all clustering
algorithms:

— Neighboring points imply similar parts.



Clustering

 Underlying assumptions behind all clustering
algorithms:

— Distant points imply dissimilar parts.
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e When assumptions fail, result is not useful:

— Similar parts are distant in feature space
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e When assumptions fail, result is not useful:

— Dissimilar parts are close in feature space
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Clustering

* Assumptions might fail because:
— Data is difficult to analyze
— Similarity/Dissimilarity of data not well defined
— Feature space is insufficient or distorted
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Supervised Clustering
Add training set of labeled data (pre-clustered)
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Supervised Clustering

Then clustering becomes easy...
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Supervised segmentation

[Kalogerakis et al.10, van Kaick et al. 11]
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Semi-Supervised Clustering

e Supervision as pair-wise constraints:
— Must Link and Cannot-Link
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Semi-Supervised Clustering

e Cluster data while respecting constraints
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Learning from labeled
and unlabeled data
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Supervised learning
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Unsupervised learning
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Semi-supervised learning



Constrained clustering

Must Link Cannot Link
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Active Co-analysis of a Set of Shapes
Wang et al. SIGGRAPH ASIA 2012




Active Co-Analysis

« A semi-supervised method for co-segmentation
with minimal user input
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Automatically suggest the user which
constraints can be effective
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Constrained Clustering

Initial Co-segmentation

Final result Active Learning
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Constrained Clustering
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Spring System

e A spring system is used to re-embed all the
points in the feature space, so the result of
clustering will satisfy constraints.
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Spring System

e Result of clustering after re-embedding
(mistakes marked with circle):
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Spring System

Nelghbor Spring

Can’t Link
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Can't-Link =————
Must-Link =
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Uncertain points

e “Uncertain” points are located using the
Silhouette Index:

Darker points have lower confidence

68



Silhouette Index

e Silhouette Index of node Xx:




Constraint Suggestion

* Pick super-faces with lowest confidence

* Pick the highest confidence super-faces
o Ask the user to add constraints between such pairs
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Candelabra: 28 shapes, 164
super-faces,24 constraints

Initial
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Fourleg: 20 shapes, 264
super-faces,69 constraints

Initial
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Tele-alien: 200 shapes, 1869
super-faces,106 constraints
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Vase: 300 shapes, 1527

super-faces,44 constraints
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Cannot-Link Springs
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Constraints as Features
CVPR 2013

Goal: Modify data so distances fit constraints

Basic idea:

— Convert constraints into extra-features that are
added to the data (augmentation)

— Recalculate the distances
— Unconstrained clustering of the modified data
— Clustering result more likely to satisfy constraints

Apply this idea to Cannot-Link constraints
Must-Link constraints handled differently



Cannot-link Constraints

e Points should be distant.

e What value should be given: D(c,, ¢c,) =X ?
— Should relate to max(D(x, y)), but how?

e |f modified, how to restore triangle-inequality?




Constraints as Features

e Solution:

— Add extra-dimension, where Cannot-Link pair is
far away (x1):




Constraints as Features

e Solution:

— Add extra-dimension, where Cannot-Link pair is
far away (x1):

— What values should other points be given?




Constraints as Features

e Values of other points:
— Points closer to ¢, should have values closer to +1,

— Points closer to ¢, should have values closer to -1

e Formulation:
(p(i, c2) — (1, cl))
(p(i, c2) + (i, c1))

e Simple distance ¢(7,cl) does not convey real
closeness.
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Constraints as Features

e Point A should be “closer” to c1, despite
smaller Euclidean distance.




Constraints as Features

e Use a Diffusion Map, where this holds true.
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Constraints as Features

e Diffusion Maps related to random walk
process on a graph

o Affinity Matrix:

2
D% .
t,J

Aij=e

e Eigen-Analysis of normalized A forms a
Diffusion Map:

Uy(x) = (A1Y1(x), Agthe (), ..., AWk (7))



Constraints as Features

e Use Diffusion Map distances:

ol y) = |Wi(x) = Ti(y)]

e Calculate value of each point in new
dimension:




Constraints as Features

 Create new distance matrix, of distances in the
new extra dimension:

(¢) _
D; 7 = v — vj
 Add distance matrix per Cannot-Link:

DY =D+ Y (a-Diy

t,J t,J J
ce[1,N]

e Cluster data by modified distance matrix D



Constraints as Features

Original Springs Features
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Constraints as Features!!!

Unconstrained clustering of the modified data




Results — UCI (CVPR 2013)
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Summary

A new semi-supervised clustering method.

e Constraints are embedded into the data,

reducing the problem to an unconstrained
setting.




Thank you!
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Book Contents

Chapter 1: Analytical Geometry ... ... .................. 1
Olga Sorkine-Hornung and Daniel Cohen-Or

In the first chapter, we will familiarize ourselves with some basic
geometric tools and see how we can put them to practical use to
solve several geometric problems. Instead of describing the tools
directly, we do it through an inter-
esting discussion of two possible ways
to approach the geometric problem at
hand: we can employ our geometric
intuition and use geometric reasoning,
or we can directly formalize evervthing
and employ our algebraic skills to write
down and solve some equations. The discussion leads to a pre-
sentation of linear geometric elements (points, lines, planes), and
the means to manipulate them in common geometric applications
that we encounter, such as distances, transformations, projections
and more.

Chapter 2: Linear Algebra? .. ... ... ... ................13
Daniel Cohen-Or, Olga Sorkine-Hornung and Chen Greif

In this chapter, we will review basic linear algebra notions that we
learned in a basic linear algebra course, including vector spaces, or-
thogonal bases, subspaces, eigenvalues and eigenvectors. However,
our main goal here is to convince the
readers that these notions are really
useful. Furthermore, we will see the
close relation between linear algebra
and geometry. The chapter will be
driven by an important tool called
singular value decomposition (SVD),
to which we will devote a separate full chapter. To understand
what an SVD is, we first need to understand the notions of bases,
eigenvectors, and eigenvalues and to refresh some fundamentals of
linear algebra with examples in geometric context.
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Chapter 3: Least-Squares Solutions...................... 31

Niloy J. Mitra

When dealing with real-world data, simple patterns can often be

submerged in noise and outliers. In
this chapter, we will learn about
basic data fitting using the least-
squares method, first starting with
simple line fitting before moving on
to fitting low-order polynomials. Be-
yond robustness to noise, we will also
learn how to handle outliers and look
at basic robust statics.

Chapter 4: PCAand SVD...........ooiiiiiiiiiiiiann.

Olga Sorkine- Hornung

.47

In this chapter, we introduce two related tools from linear algebra
that have become true workhorses in countless areas of science:
principal component analysis (PCA) and singular value decom-
position (SVD). These tools are extremely useful in geometric

O—&

modeling, computer vision, image
processing, computer graphics, ma-
chine learning and many other ap-
plications. We will see how to de-
compose a matrix into several factors
that are easy to analyze and reveal
important properties of the matrix
and hence the data, or the problem
in which the matrix arises. As in the

whole book, the presentation is rather light, emphasgizing the main
principles without excessive rigor.




Chapter 5: Spectral Transform........................... 63
Hao (Richard) Zhang

The use of signal transforms, such as the discrete Fourier or co-
sine transforms, is a classic topic in image and signal processing.
In this chapter,

we will learn A A A A
how such trans- /[ ™ /|
forms can be . /4, yy ¢
formulated and -/ .~ | N\ AN
applied to the

processing of 2D and 3D geometric shapes. The key concept to
take away is the use of eigenvectors of discrete Laplacian opera-
tors as basis vectors to define spectral transforms for geometry.
We will show how the Laplacian operators can be defined for 2D
and 3D shapes, as well as a few applications of spectral transforms
including geometry smoothing, enhancement and compression.

Chapter 6: Solution of Linear Systems.................. 81
Chen Greif

In the solution of problems discussed in this book, a frequent
task that arises is the need to solve a linear syvstem. Under-
standing the properties of the matrix associated with the linear
system is critical for guaranteeing
speed and accuracy of the solution
procedure. In this chapter, we pro-
vide an overview of linear system
solvers. We describe direct methods
and iterative methods, and discuss
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important criteria for the selection of

a solution method, such as sparsity
and positive definiteness. Important
notions such as pivoting and precon-
ditioning are explained, and a recipe is provided that helps in
determining which solver should be used.



Chapter 7: Laplace and Poisson. ......................... 99
Daniel Cohen-Or and Gil Hoffer

In this chapter, we make use of the well-known equations of Laplace
and Poisson. The two equations have an extremely simple form,
and they are very useful in many
diverse branches of mathematical
physics., However, in this chapter, we
will interpret them in the context of
image processing. We will show some
interesting image editing and geo-
metric problems and how they can be
solved by simple means using these
equations.

Chapter 8: Curvatures: A Differential Geometry Tool..117
Niloy J. Mitra and Daniel Cohen-Or

Local surface details, e.g., how “flat” a surface is locally, carry
important information about the underlying object. Such infor-
mation is critical for many ap-
plications in geometry process-
ing, ranging from surface mesh-
ing, shape matching, surface re-
construction, scan alignment and
detail-preserving deformation, to
name only a few. In this chapter,
we will cover the basics of differen-
tial geometry, particularly focus-
ing on curvature estimates with
some illustrative examples as an
aid to geometry processing tasks.




Chapter 9: Dimensionality Reduction........... EBRS. 131
Hao (Richard) Zhang and Daniel Cohen-Or

In this chapter, we will learn the concept, usefulness, and exe-
cution of dimensionality reduction. Generally speaking, we will

seek to reduce the dimensional-
ity of a given data set, mapping
high-dimensional data into a lower-
dimensional space to facilitate visual-
ization, processing, or inference. We
will present and discuss only a sam-
ple of dimensionality reduction tech-
niques and illustrate them using vi-
sually intuitive examples, including
face recognition, surface flattening

and pose normalization of 3D shapes.

o

Chapter 10: Scattered Data Interpolation............. 147

Tao Ju

In this chapter, we visit the classical mathematical problem of
obtaining a continuous function over a spatial domain from data

at a few sample locations. The prob-
lem comes up in various geometric
modeling scenarios, a good example
of which is surface reconstruction.
The chapter will eventually mtro-
duce the very useful radial basis func-
tions (RBFs) as a smooth and ef-
ficient solution to the interpolation
problem. However, to understand
their usefulness, the chapter will go

through a succession of methods with increasing sophistication,
including piecewise linear interpolation and Shepherd’s method.
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Chapter 11: Topology: How Are Objects Connected? 163
Niloy J. Miim

In Chapter 8, we learned about local differential analysis of sur-
faces. In this chapter, we focus on global aspects. We will
learn about what is meant by ori-
entable surfaces or manifold sur-
faces. Most importantly, we will
learn about the Euler characteris-
tic, which links local curvature prop-
erties to global connectivity con-
straints, and comes up in a surprising
range of applications.

Chapter 12: Graphs and Images........................ 177

Ariel Shamir

Graphs play an important role in many computer science fields
and are also extensively used in imaging and graphics. This chap-
ter concentrates on image processing and demonstrates how im-
ages can be represented by a graph. This allows translating prob-
lems of analysis and manipulation
of images to well-known graph al-
gorithms.  Specifically, we will
show how segmentation of im-
ages can be solved using region-
growing algorithms such as wa-
tershed or partitioning algorithms
using graph cuts. We will also
show how intelligently changing the size and aspect ratio of im-
ages and video can be solved using dynamic programming or graph
cuts.
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Chapter 13: Skewing Scheme .....................cc.... 205
Daniel Cohen-Or

In this chapter, we will show an example of the usefulness of
number theory, or at least one of its
known theorems. We will discuss map-
pings of numbers to a lattice, a problem
that has practical applications in sys-
tems that require simultaneous, conflict-
free access to elements distributed in
different memory modules. Such map-
pings are also called skewing schemes
since they skew the trivial mapping from
element to memorv. To understand
these mappings, we will visit the no-
tions of relatively prime numbers, and the greatest common divisor
(ged).
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